: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

200kHz, 4 μ A, Rail-to-Rail I/O Op Amps with Shutdown

Abstract

General Description The single MAX9910/MAX9911 and dual MAX9912/ MAX9913 operational amplifiers (op amps) feature a maximized ratio of gain bandwidth (GBW) to supply current and are ideal for battery-powered applications such as portable instrumentation, portable medical equipment, and wireless handsets. These CMOS op amps feature an ultra-low input-bias current of 1pA, rail-to-rail inputs and outputs, low supply current of $4 \mu \mathrm{~A}$, and operate from a single 1.8 V to 5.5 V supply. For additional power conservation, the MAX9911/MAX9913 feature a low-power shutdown mode that reduces supply current to 1 nA , and puts the amplifiers' outputs in a high-impedance state. These devices are unity-gain stable with a 200 kHz GBW product. The MAX9910 is available in a 5-pin SC70 package. The MAX9911 is available in tiny 6-bump WLP and a 6-pin SC70 packages. The MAX9912 is available in an 8-pin SOT23 package, and the MAX9913 is available in a 10pin $\mu \mathrm{MAX}{ }^{\circledR}$ package. All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended operating temperature range.

Applications
Portable Medical Devices
Portable Test Equipment
Laptops
Data-Acquisition Equipment
Typical Operating Circuit

Features

- 200kHz GBW
- Ultra-Low 4 AA Supply Current
- Single 1.8 V to 5.5 V Supply Voltage Range
- Ultra-Low 1pA Input Bias Current
- Rail-to-Rail Input and Output Voltage Ranges
- Low $\pm 200 \mu \mathrm{~V}$ Input Offset Voltage
- Low 0.001 $\mu \mathrm{A}$ Shutdown Current
- High-Impedance Output During Shutdown (MAX9911/MAX9913)
- Unity-Gain Stable
- Available in Tiny WLP, SC70, SOT23, and μ MAX Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9910EXK +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC 70	AGA
MAX9910EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC 70	AGA
MAX9911EXT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC 70	ACA
MAX9911EXT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC 70	ACA
MAX9911EWT +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 WLP	BQ
MAX9912EKA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mathrm{SOT23}$	AEJY
MAX9912EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT 23	AEJY
MAX9913EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX9913EUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-

+Denotes lead(Pb)-free/RoHS-compliant package.

Selector Guide

PART	AMPLIFIERS PER PACKAGE	SHUTDOWN MODE
MAX9910EXK-T	1	No
MAX9911EXT-T	1	Yes
MAX9912EKA-T	2	No
MAX9913EUB	2	Yes

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.mxim-ic.com.

200kHz, 4 μ A, Rail-to-Rail I/O Op Amps with Shutdown

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (VDD to VSS)......................-0.3V to +6.0V IN_+, IN_-, OUT_, SHDN_............... (VSS - 0.3V) to (VDD + 0.3V)	
Current into IN_+, IN_- ... $\pm 20 \mathrm{~mA}$	
Output Short-Circuit Duration to VDD or VSS Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
5-Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 247 mW	
6 -Bump WLP (derate 10.5mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........ 840 mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{S_{H D N}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+} \mathbf{2 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR test		1.8		5.5	V
Supply Current	IDD	MAX9910/MAX9911	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$		4		$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		4	5.0	
		MAX9912/MAX9913	$V_{D D}=1.8 \mathrm{~V}$		7		
			$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		7	9	
Shutdown Supply Current	$\mathrm{IDD}(\overline{\text { SHDN_) }}$	$\overline{S H D N}_{-}=$GND, MAX9911/MAX9913			0.001	0.5	$\mu \mathrm{A}$
Input Offset Voltage	Vos				± 0.2	± 1	mV
Input-Offset-Voltage Matching		MAX9912/MAX9913			± 250		$\mu \mathrm{V}$
Input Bias Current	IB	(Note 2)			± 1	± 10	pA
Input Offset Current	Ios	(Note 2)			± 1	± 10	pA
Input Resistance	RIN	Common mode			1		$\mathrm{G} \Omega$
		Differential mode, -1mV $<$ VIN $<+1 \mathrm{mV}$			10		
Input Common-Mode Range	$\mathrm{V}_{\text {CM }}$	Guaranteed by CMRR test		$\begin{gathered} \text { VSS - } \\ 0.1 \end{gathered}$		$\begin{gathered} V_{D D}+ \\ 0.1 \end{gathered}$	V
Common-Mode Rejection Ratio	CMRR	$-0.1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		70	80		dB
Power-Supply Rejection Ratio	PSRR	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$		65	95		dB
Open-Loop Gain	Avol	$\begin{aligned} & 25 \mathrm{mV}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{DD}}-25 \mathrm{mV}, \\ & R_{L}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$		95	120		dB
		$\begin{aligned} & 100 \mathrm{mV}<V_{\text {OUT }}<V_{D D}-100 \mathrm{mV}, \\ & R_{L}=5 \mathrm{k} \Omega, V_{D D}=5.5 \mathrm{~V} \end{aligned}$		95	110		
Output-Voltage-Swing High	VOH	VDD - Vout	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		2.5	5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		50	70	
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		250		
Output-Voltage-Swing Low	VOL	Vout - VSS	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		2.5	5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		50	70	
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		250		
Channel-to-Channel Isolation	CHISO	Specified at DC, MAX9912/MAX9913			100		dB
Output Short-Circuit Current	IOUT(SC)				± 15		mA

200 kHz , 4 $\mu \mathrm{A}$, Rail-to-Rail I/O Op Amps with Shutdown

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+} \mathbf{2 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{\text { SHDN_ Logic Low }}$	VIL	$V_{\text {DD }}=1.8 \mathrm{~V}$ to 3.6V, MAX9911/MAX9913				0.4	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5V, MAX9911/MAX9913				0.8	
SHDN_ Logic High	V_{IH}	$V_{D D}=1.8 \mathrm{~V}$ to 3.6V, MAX9911/MAX9913		1.4			V
		V ${ }_{\text {DD }}=3.6 \mathrm{~V}$ to 5.5V, MAX9911/MAX9913		2			
SHDN_ Input Bias Current	IIL	$\overline{S H D N}_{-}=V_{S S}, ~ M A X 9911 / M A X 9913$ (Note 2)				1	nA
	IIH	$\overline{S H D N}_{-}=V_{\text {DD }}, ~ M A X 9911 / \mathrm{MAX9913}$				500	
Output Leakage in Shutdown	IOUT(SHDN_)	$\begin{aligned} & \overline{\text { SHDN }}=1^{=} \mathrm{V}_{\text {SS }}, \text { V OUT }=0 \mathrm{~V} \text { to } \mathrm{V}_{\text {DD }}, \\ & \text { MAX }^{2911 / \text { MAX }^{2913}} \end{aligned}$			1	500	nA
Gain-Bandwidth Product					200		kHz
Slew Rate					0.1		V/us
Capacitive-Load Stability (See the Driving Capacitive Loads Section)	Cload	No sustained oscillations	$\mathrm{AV}=1 \mathrm{~V} / \mathrm{V}$		30		pF
			AV $=10 \mathrm{~V} / \mathrm{V}$		250		
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{AV}_{\mathrm{V}}=1 \mathrm{~V} / \mathrm{V}$		200		
			$\mathrm{RISO}=1 \mathrm{k} \Omega, \mathrm{AV}=1 \mathrm{~V} / \mathrm{V}$		100		
Input Voltage-Noise Density		$\mathrm{f}=1 \mathrm{kHz}$			400		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current-Noise Density		$f=1 \mathrm{kHz}$			0.001		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Settling Time		To 0.1\%, VOUT = 2V step, A V $=-1 \mathrm{~V} / \mathrm{V}$			18		$\mu \mathrm{s}$
Delay Time to Shutdown	tSH	IDD $=5 \%$ of normal operation, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=5.5 \mathrm{~V}$ to 0 step			2		$\mu \mathrm{s}$
Delay Time to Enable	ten	VOUT $=2.7 \mathrm{~V}$, VOUT settles to 0.1%, $V_{D D}=5.5 \mathrm{~V}, V_{S H D N}=0$ to 5.5 V step			30		$\mu \mathrm{s}$
Power-Up Time		$\mathrm{V}_{\mathrm{DD}}=0$ to 5.5 V step			5		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR test		1.8		5.5	V
Supply Current	IDD	MAX9910/MAX9911	$V_{D D}=5.5 \mathrm{~V}$			5.5	$\mu \mathrm{A}$
		MAX9912/MAX9913				11	
Shutdown Supply Current	$\mathrm{IDD}(\overline{\mathrm{SHDN}}$-)	$\overline{S H D N}_{-}=$GND, MAX9911/MAX9913				1	$\mu \mathrm{A}$
Input Offset Voltage	VOS					± 5	mV
Input-Offset-Voltage Temperature Coefficient	TCvos				± 5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

200kHz, 4 μ, Rail-to-Rail I/O Op Amps with Shutdown

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Input Bias Current	IB				± 30	pA
Input Offset Current	los				± 20	pA
Input Common-Mode Range	$V_{\text {CM }}$	Guaranteed	test	$\begin{aligned} & V_{S S}- \\ & 0.05 \end{aligned}$	$\begin{gathered} \text { VDD }+ \\ 0.05 \end{gathered}$	V
Common-Mode Rejection Ratio	CMRR	$-0.05 \mathrm{~V}<\mathrm{V}_{C M}$	$+0.05 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	60		dB
Power-Supply Rejection Ratio	PSRR	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}$		59		dB
Open-Loop Gain	Avol	$\begin{aligned} & 25 \mathrm{mV}<V_{O U T}<V_{D D}-25 \mathrm{mV}, \\ & R_{L}=100 \mathrm{k} \Omega, V_{D D}=5.5 \mathrm{~V} \end{aligned}$		85		dB
		$\begin{aligned} & 150 \mathrm{mV}<V_{\text {OUT }}<V_{D D}-150 \mathrm{mV}, \\ & R_{L}=5 \mathrm{k} \Omega, V_{D D}=5.5 \mathrm{~V} \end{aligned}$		80		
Output-Voltage-Swing High	VOH	VDD - Vout	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		90	
Output-Voltage-Swing Low	Vol	Vout - VSS	$R \mathrm{~L}=100 \mathrm{k} \Omega$		5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		90	
SHDN_ Logic Low	VIL	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6 V			0.4	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V			0.8	
SHDN_ Logic High	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6V, MAX9911/MAX9913		1.4		V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5V, MAX9911/MAX9913		2		
$\overline{\text { SHDN_ Input-Bias Current }}$	IIL	$\overline{S H D N}_{-}=V_{S S}$, MAX9911/MAX9913			5	nA
	IIH	$\overline{S H D N}_{-}=V_{\text {DD }}, ~ M A X 9911 / \mathrm{MAX9913}$			1000	nA
Output Leakage in Shutdown	Iout($\overline{\text { SHDN_ }}$)	$\overline{\mathrm{SHDN}}_{-}=\mathrm{V}_{S S}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}},$MAX9911/MAX9913			1000	nA

Note 1: Specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (exceptions noted). All temperature limits are guaranteed by design.
Note 2: Guaranteed by design, not production tested.
\qquad

200kHz, 4 μ A, Rail-to-Rail I/O Op Amps with Shutdown

Typical Operating Characteristics

$\left(V_{D D}=3 V, V_{S S}=V_{C M}=0 V, R_{L}\right.$ to $V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

INPUT OFFSET VOLTAGE
vs. TEMPERATURE

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

INPUT BIAS CURRENT
vs. TEMPERATURE

COMMON-MODE REJECTION RATIO
vs. TEMPERATURE

INPUT OFFSET VOLTAGE
vs. INPUT COMMON-MODE VOLTAGE

INPUT BIAS CURRENT vs. INPUT COMMON-MODE VOLTAGE

COMMON-MODE REJECTION RATIO vs. FREQUENCY

200kHz, 4 μ A, Rail-to-Rail I/O Op Amps with Shutdown

$\left(V_{D D}=3 V, V_{S S}=V_{C M}=0 V, R_{L}\right.$ to $V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

OPEN-LOOP GAIN vs. TEMPERATURE (RLTO VSS)

GAIN AND PHASE
vs. FREQUENCY ($\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\text {LOAD }}=100 \mathrm{pF}$)

Typical Operating Characteristics (continued)

OPEN-LOOP GAIN vs. TEMPERATURE (RLTO VDD)

CROSSTALK
vs. FREQUENCY

OUTPUT-SWING LOW vs. TEMPERATURE

GAIN AND PHASE
vs. FREQUENCY ($R_{L}=\infty$, CLOAD $=15 \mathrm{pF}$)

TOTAL HARMONIC DISTORTION
PLUS NOISE vs. FREQUENCY

200kHz, 4 4 A, Rail-to-Rail I/O Op Amps with Shutdown

Typical Operating Characteristics (continued)

$\left(V_{D D}=3 V, V_{S S}=V_{C M}=0 V, R_{L}\right.$ to $V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

10 $\mu \mathrm{s} / \mathrm{div}$

$100 \mu \mathrm{~s} / \mathrm{div}$

200kHz, 4 μ, Rail-to-Rail I/O Op Amps with Shutdown

Typical Operating Characteristics (continued)

$\left(V_{D D}=3 V, V_{S S}=V_{C M}=0 V, R L\right.$ to $V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

$20 \mu \mathrm{~s} / \mathrm{div}$

200kHz, 4 4 A, Rail-to-Rail I/O Op Amps with Shutdown

Pin Description

PIN					NAME	FUNCTION
MAX9911 (WLP)	MAX9910	MAX9911 (SC70)	MAX9912	MAX9913		
A1	1	1	-	-	$\mathrm{IN}+$	Noninverting Amplifier Input
A2	2	2	4	4	$\mathrm{V}_{S S}$	Negative Supply Voltage
B1	3	3	-	-	IN-	Inverting Amplifier Input
C1	4	4	-	-	OUT	Amplifier Output
B2	5	6	8	10	VDD	Positive Supply Voltage
C2	-	5	-	-	SHDN	Shutdown
-	-	-	1	1	OUTA	Amplifier Output Channel A
-	-	-	2	2	INA-	Inverting Amplifier Input Channel A
-	-	-	3	3	INA+	Noninverting Amplifier Input Channel A
-	-	-	-	5	$\overline{\text { SHDNA }}$	Shutdown Channel A
-	-	-	-	6	$\overline{\text { SHDNB }}$	Shutdown Channel B
-	-	-	5	7	INB+	Noninverting Amplifier Input Channel B
-	-	-	6	8	INB-	Inverting Amplifier Input Channel B
-	-	-	7	9	OUTB	Amplifier Output Channel B

Detailed Description

Featuring a maximized ratio of GBW to supply current, low operating supply voltage, low input bias current, and rail-to-rail inputs and outputs, the MAX9910MAX9913 are an excellent choice for precision or gen-eral-purpose, low-current, low-voltage, battery-powered applications. These CMOS devices consume an ultralow $4 \mu \mathrm{~A}$ (typ) supply current and a $200 \mu \mathrm{~V}$ (typ) offset voltage. For additional power conservation, the MAX9911/MAX9913 feature a low-power shutdown mode that reduces supply current to 1 nA (typ), and puts the amplifiers' output in a high-impedance state. These devices are unity-gain stable with a 200 kHz GBW product, driving capacitive loads up to 30pF. The capacitive load can be increased to 250pF when the amplifier is configured for a $10 \mathrm{~V} / \mathrm{V}$ gain.

Rail-to-Rail Inputs and Outputs

All of the MAX9910-MAX9913 amplifiers have a parallelconnected n - and p -channel differential input stage that allows an input common-mode voltage range that extends 100 mV beyond the positive and negative supply rails, with excellent common-mode rejection.
The MAX9910-MAX9913 are capable of driving the output to within 5 mV of both supply rails with a $100 \mathrm{k} \Omega$
load. These devices can drive a $5 \mathrm{k} \Omega$ load with swings to within 60 mV of the rails. Figure 1 shows the output voltage swing of the MAX9910-MAX9913 configured as a unity-gain buffer powered from a single 3V supply.

Low Input Bias Current

The MAX9910-MAX9913 feature ultra-low 1pA (typ) input bias current. The variation in the input bias current is minimal with changes in the input voltage due to very high input impedance (in the order of $1 \mathrm{G} \Omega$).

Applications Information

Driving Capacitive Loads

The MAX9910-MAX9913 amplifiers are unity-gain stable for loads up to 30 pF. However, the capacitive load can be increased to 250 pF when the amplifier is configured for a minimum gain of $10 \mathrm{~V} / \mathrm{V}$. Applications that require greater capacitive-drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Also, in unity-gain applications with relatively small R_{L} (approximately $5 k \Omega$), the capacitive load can be increased up to 200pF.

Power-Supply Considerations

The MAX9910-MAX9913 are optimized for single 1.8 V to 5.5 V supply operation. A high amplifier power-supply

200kHz, 4 μ A, Rail-to-Rail I/O Op Amps with Shutdown

rejection ratio of 95 dB (typ) allows the devices to be powered directly from a battery, simplifying design and extending battery life.

Power-Up Settling Time
The MAX9910-MAX9913 typically require $5 \mu \mathrm{~s}$ after power-up. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op-amp settling time depends primarily on the output voltage and is slew-rate limited. Figure 3 shows the MAX991_ in a noninverting voltage follower configuration with the input held at midsupply. The output settles in approximately $18 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ (see the Typical Operating Characteristics for power-up settling time).

Shutdown Mode

The MAX9911/MAX9913 feature active-low shutdown inputs. The MAX9911/MAX9913 enter shutdown in $2 \mu s$ (typ) and exit in $30 \mu \mathrm{~s}$ (typ). The amplifiers' outputs are in a high-impedance state in shutdown mode. Drive $\overline{\text { SHDN }}$ low to enter shutdown. Drive $\overline{\text { SHDN }}$ high to enable the amplifier. The MAX9913 dual-amplifier features separate shutdown inputs. Shut down both amplifiers for the lowest quiescent current.

Power-Supply Bypassing and Layout

To minimize noise, bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor to ground, as close to the pin as possible.
Good layout techniques optimize performance by decreasing the amount of stray capacitance and inductance to the op amps' inputs and outputs. Minimize stray capacitance and inductance by placing external components close to the IC.

Figure 1. Rail-to-Rail Output Voltage Range

Figure 2. Using a Resistor to Isolate a Capacitive Load from the Op Amp

Figure 3. Power-Up Test Configuration

200kHz, 4 4 A, Rail-to-Rail I/O Op Amps with Shutdown

Pin Configurations

ع $166 X \forall W-0 / 66 X V W$

Chip Information

PROCESS: BiCMOS

200kHz, 4 μ, Rail-to-Rail I/O Op Amps with Shutdown

\qquad
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC 70	$\mathrm{X} 5+1$	$\underline{\mathbf{2 1 - 0 0 7 6}}$	$\underline{\underline{\mathbf{9 0}-0188}}$
6 SC 70	$\mathrm{X} 6 \mathrm{SN}+1$	$\underline{\mathbf{2 1 - 0 0 7 7}}$	$\underline{\mathbf{2 1 - 0}-0189}$
6 WLP	$\mathrm{W} 61 \mathrm{~B} 1+1$	$\underline{\mathbf{2 1 - 0 2 1 7}}$	-
8 SOT 23	$\mathrm{~K} 8+5$	$\underline{\mathbf{2 1 - 0 0 7 6}}$	$\underline{90-0176}$
$10 \mu \mathrm{MAX}$	$\mathrm{U} 10+2$	$\underline{00-0330}$	

200kHz, 4 4 A, Rail-to-Rail I/O Op Amps with Shutdown

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", " "", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

200kHz, 4 μ, Rail-to-Rail I/O Op Amps with Shutdown

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

200 kHz , 4 $\mu \mathrm{A}$, Rail-to-Rail I/O Op Amps with Shutdown

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

SYMBOL	MIN	NOM	MAX
A	0.90	1.25	1.45
A1	0.00	0.06	0.15
A2	0.90	1.10	1.30
b	0.22	0.30	0.38
C	0.08	0.15	0.22
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.30	0.45	0.60
L2	0.25 BSC.		
e	0.65 BSC.		
e1	1.95 REF.		
θ	0.	3°	8^{*}
PKG CODES: K8-1, K8-2, K8F-4, K8FH-4, K8-5, K8SN-1; K8CN-2			

NOTE:

1. ALL DIMENSIONS ARE in millimeters.
fodt length measured frim lead tip to upper radius af heel af the lead

PARALLEL TO SEATING PLANE C.
3. PACKAGE qUTLINE EXCLUSIVE OF MILD FLASH \& METAL BURR.
4. PACKAGE DUTLINE INCLUSIVE DF SOLDER PLATING.
5. CDPLANARITY 4 MILS. MAX.
6. MARKING IS FIR PACKAGE पRIENTATION REFERENCE \quad INLY.
7. SOLDER THICKNESS MEASURED AT FLAT SECTIUN GF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.
8. MEETS JEDEC MDI78 VARIATIDN BA
9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND LEAD FREE (+) PACKAGE CDDES.
-DRAWING NOT TO SCALE-
DETAIL "A"

PACKAGE OUTLINE, SOT-23, 8L BODY

APPROVAL	DOCUMENT CONTROL NO.	REV.	$1 / 1$

200kHz, 4 μ, Rail-to-Rail I/O Op Amps with Shutdown

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

200kHz, 4 μ A, Rail-to-Rail I/O Op Amps with Shutdown

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$10 / 10$	Added WLP package	$1,2,9,11$

