

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

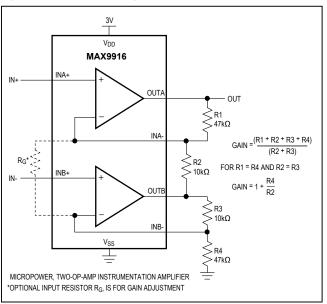
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MAX9914-MAX9917

1MHz, 20μA, Rail-to-Rail I/O Op Amps with Shutdown

General Description


The single MAX9914/MAX9915 and dual MAX9916/ MAX9917 operational amplifiers feature maximized ratio of gain bandwidth to supply current and are ideal for battery-powered applications such as portable instrumentation, portable medical equipment, and wireless handsets. These CMOS op amps feature an ultra-low 1pA input bias current, rail-to-rail inputs and outputs, low 20µA supply current, and operate from a single 1.8V to 5.5V supply. For additional power conservation, the MAX9915/MAX9917 feature a low-power shutdown mode that reduces supply current to 1nA, and puts the amplifier outputs in a high-impedance state. These devices are unity-gain stable with a 1MHz gain-bandwidth product.

The MAX9914 and MAX9915 are available in 5-pin and 6-pin SC70 packages, respectively. The MAX9916 is available in an 8-pin SOT23 package, and the MAX9917 in a 10-pin μ MAX® package. All devices are specified over the -40°C to +85°C extended operating temperature range.

Applications

- Portable Medical Devices
- Portable Test Equipment
- RF Tags
- Laptops
- Data-Acquisition Equipment

Typical Operating Circuit

Features

- High 1MHz GBW
- Ultra-Low 20µA Supply Current
- Single 1.8V to 5.5V Supply Voltage Range
- Ultra-Low 1pA Input Bias Current
- Rail-to-Rail Input and Output Voltage Ranges
- Low ±200µV Input Offset Voltage
- Low 0.001µA Shutdown Current
- High-Impedance Output During Shutdown (MAX9915/MAX9917)
- Unity-Gain Stable
- Available in Tiny SC70, SOT23, and μMAX Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9914EXK+T	-40°C to +85°C	5 SC70	AGB
MAX9914EXK-T	-40°C to +85°C	5 SC70	AGB
MAX9915EXT+T	-40°C to +85°C	6 SC70	ACB
MAX9915EXT-T	-40°C to +85°C	6 SC70	ACB
MAX9916EKA+T	-40°C to +85°C	8 SOT23	AEJZ
MAX9916EKA-T	-40°C to +85°C	8 SOT23	AEJZ
MAX9917EUB	-40°C to +85°C	10 µMAX	_
MAX9917EUB+	-40°C to +85°C	10 µMAX	_

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Selector Guide

PART	AMPLIFIERS PER PACKAGE	SHUTDOWN MODE	PACKAGE
MAX9914EXK+T	1	No	5 SC70
MAX9915EXT+T	1	Yes	6 SC70
MAX9916EKA+T	2	No	8 SOT23
MAX9917EUB+	2	Yes	10 μMAX

µMAX is a registered trademark of Maxim Integrated Products, Inc.

T = Tape and reel.

1MHz, 20µA, Rail-to-Rail I/O Op Amps with Shutdown

Absolute Maximum Ratings

Power-Supply Voltage (V _{DD} to V _{SS})0.3V to +6.0V	8-Pin SOT23 (derate 5.1mW/°C above +70°C)408mW
IN_+, IN, OUT_, \overline{SHDN} (V _{SS} - 0.3V) to (V _{DD} + 0.3V)	10-Pin μMAX (derate 5.6mW/°C above +70°C)444mW
Current into IN_+, IN±20mA	Operating Temperature Range40°C to +85°C
Output Short-Circuit Duration to V _{DD} or V _{SS} Continuous	Junction Temperature+150°C
Continuous Power Dissipation (T _A = +70°C)	Storage Temperature Range65°C to +150°C
5-Pin SC70 (derate 3.1mW/°C above +70°C)247mW	Lead Temperature (soldering, 10s)+300°C
6-Pin SC70 (derate 3.1mW/°C above +70°C)245mW	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(V_{DD} = 1.8V to 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = ∞ connected to V_{DD}/2, $\overline{\text{SHDN}}$ _ = V_{DD}, $\overline{\text{T}}_{\textbf{A}}$ = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR	Guaranteed by PSRR test			5.5	V
		NAA VOOA 4/NAA VOOA 5	V _{DD} = 1.8V		20		
Cumply Cumpant		MAX9914/MAX9915	V _{DD} = 5.5V		20	25	
Supply Current	I _{DD}	MAX9916/MAX9917	V _{DD} = 1.8V		40		μA
			V _{DD} = 5.5V		40	50	
Shutdown Supply Current	I _{DD(SHDN_)}	SHDN_ = GND, MAX9	915/MAX9917		0.001	0.5	μΑ
Input Offset Voltage	V _{OS}				±0.2	±1	mV
Input-Offset-Voltage Matching		MAX9916/MAX9917			±250		μV
Input Bias Current	Ι _Β	(Note 2)			±1	±10	pА
Input Offset Current	los	(Note 2)			±1	±10	pА
Input Decistores	D	Common mode			1		GΩ
Input Resistance	R _{IN}	Differential mode, -1mV < V _{IN} < +1mV			10		GΩ
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR test		V _{SS} - 0.1		V _{DD} + 0.1	V
Common-Mode Rejection Ratio	CMRR	-0.1V < V _{CM} < V _{DD} + 0.1V, V _{DD} = 5.5V		70	80		dB
Power-Supply Rejection Ratio	PSRR	1.8V < V _{DD} < 5.5V		65	85		dB
Onen Leen Coin	٨	$25\text{mV} < V_{OUT} < V_{DD} - R_L = 100\text{k}\Omega, V_{DD} = 5.5$		95	120		- dB
Open-Loop Gain	A _{VOL}	100mV < V _{OUT} < V _{DD} RL = 5kΩ, V _{DD} = 5.5V		95	110		uв
			R _L = 100kΩ		2.5	5	
Output-Voltage-Swing High	V_{OH}	V _{DD} - V _{OUT}	$R_L = 5k\Omega$		50	70	mV
			$R_L = 1k\Omega$		250		
Output-Voltage-Swing Low			R _L = 100kΩ		2.5	5	mV
	V _{OL}	V _{OUT} - V _{SS}	$R_L = 5k\Omega$		50	70	
			$R_L = 1k\Omega$		250		
Channel-to-Channel Isolation	CH _{ISO}	Specified at DC, MAXS	9916/MAX9917		100		dB
Output Short-Circuit Current	I _{OUT(SC)}				±15		mA

Electrical Characteristics (continued)

 $(V_{DD}$ = 1.8V to 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = $V_{DD}/2$, R_L = ∞ connected to $V_{DD}/2$, \overline{SHDN}_{-} = V_{DD} , $\overline{V_A}$ = +25°C, unless otherwise noted.) (Note 1)

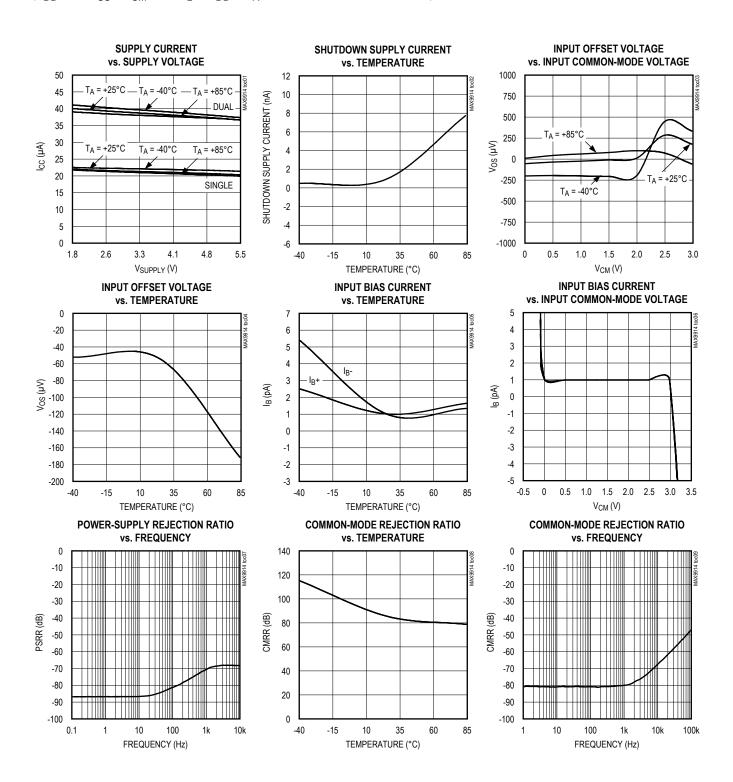
PARAMETER	SYMBOL	(CONDITIONS	MIN	TYP	MAX	UNITS
CUDN Locial au	\/	V _{DD} = 1.8V to 3.	6V, MAX9915/MAX9917			0.4	V
SHDN_ Logic Low	V _{IL}	V _{DD} = 3.6V to 5.	5V, MAX9915/MAX9917			0.8	\ \ \ \ \ \ \
			6V, MAX9915/MAX9917	1.4			
SHDN_ Logic High	V _{IH}	V _{DD} = 3.6V to 5.	/ _{DD} = 3.6V to 5.5V, MAX9915/MAX9917				V
I _I L		SHDN_ = V _{SS} , N	//AX9915/MAX9917 (Note 2)			1	
SHDN_ Input Bias Current	l _{IH}	SHDN_ = V _{DD} , N	MAX9915/MAX9917			500	nA
Output Leakage in Shutdown	I _{OUT(SHDN_)}	SHDN_ = V _{SS} , V _{OUT} = 0V to V _{DD} , MAX9915/MAX9917			1	500	nA
Gain-Bandwidth Product					1		MHz
Phase Margin		C _L = 15pF			45		degrees
Gain Margin		C _L = 15pF			10		dB
Slew Rate					0.5		V/µs
			A _V = 1V/V		30		
Capacitive-Load Stability (See		No sustained	A _V = 10V/V		100		
the <i>Driving Capacitive Loads</i> Section)	C _{LOAD}	oscillations	$R_L = 5k\Omega$, $A_V = 1V/V$		100	pr	- pF
			$R_{ISO} = 1k\Omega$, $A_V = 1V/V$		100		
Input Voltage-Noise Density		f = 1kHz	•		160		nV/√ Hz
Input Current-Noise Density		f = 1kHz			0.001		pA/√ Hz
Settling Time		To 0.1%, V _{OUT} = 2V step, A _V = -1V/V			3.5		μs
Delay Time to Shutdown	t _{SH}	I _{DD} = 5% of normal operation, V _{DD} = 5.5V, V _{SHDN} _ = 5.5V to 0 step			2		μs
Delay Time to Enable	t _{EN}	V _{OUT} = 2.7V, V _{OUT} settles to 0.1%, V _{DD} = 5.5V, V _{SHDN} = 0 to 5.5V step			10		μs
Power-Up Time		V _{DD} = 0 to 5.5V	step		2		μs

Electrical Characteristics

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty \text{ connected to } V_{DD}/2, \overline{SHDN}_ = V_{DD}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

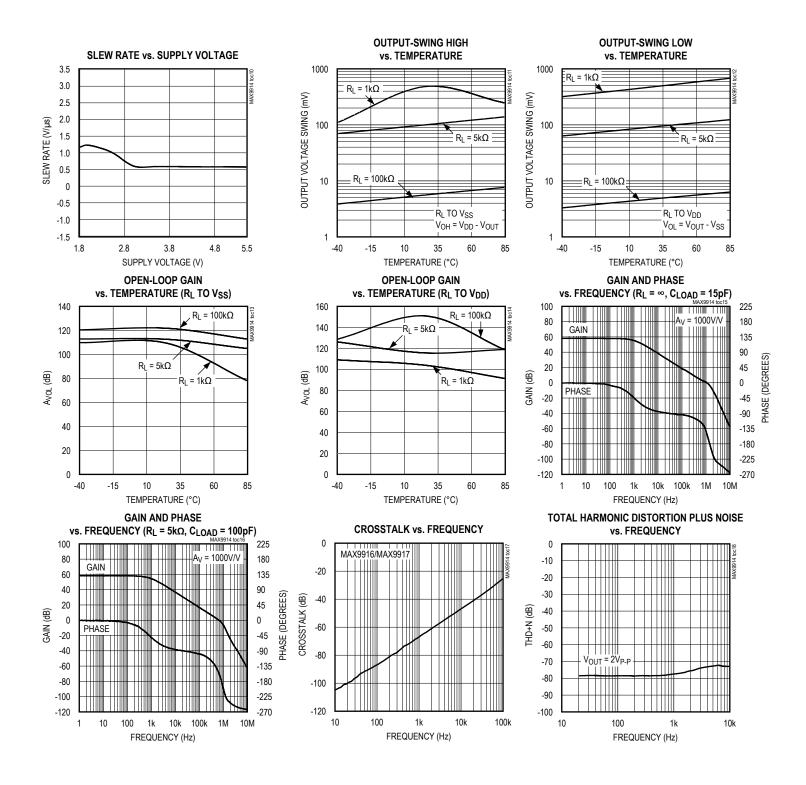
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V_{DD}	Guaranteed by PSRR test		1.8		5.5	V
Cumply Cumpnt	IDD	MAX9914/MAX9915	\\ - F F\\			29	
Supply Current		MAX9916/MAX9917	V _{DD} = 5.5V			60	μA
Shutdown Supply Current	I _{DD(SHDN_)}	SHDN_ = GND, MAX9915/MAX9917				1	μA
Input Offset Voltage	Vos					±3	mV

Electrical Characteristics (continued)

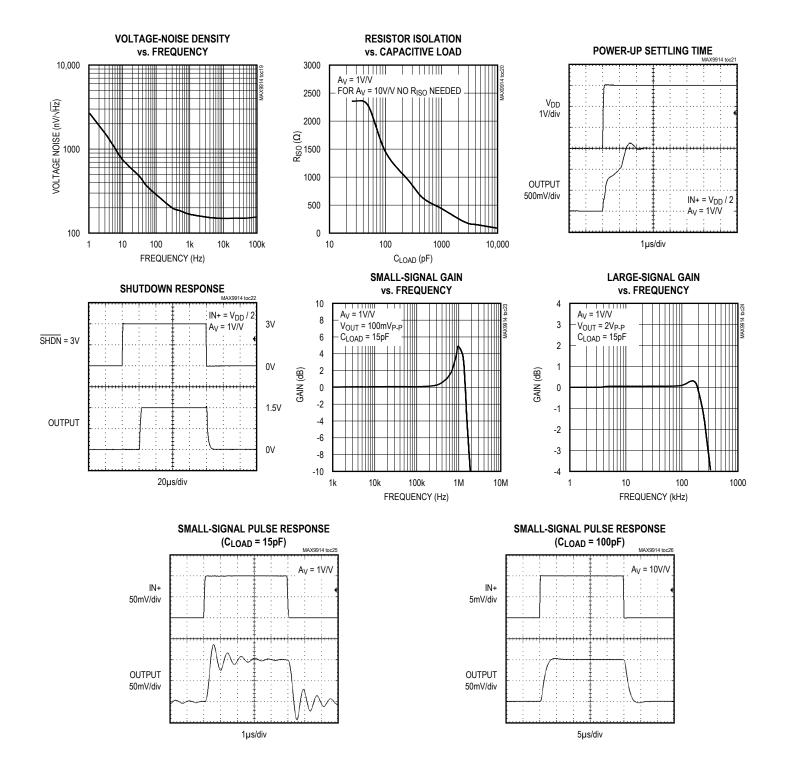

 $(V_{DD}$ = 1.8V to 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = $V_{DD}/2$, R_L = ∞ connected to $V_{DD}/2$, \overline{SHDN}_{\perp} = V_{DD} , T_{A} = -40°C to +85°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP MA	·Χ	UNITS	
Input-Offset-Voltage Temperature Coefficient (Note 2)	TC _{VOS}				±5		μV/°C	
Input Bias Current	Ι _Β				±3	0	рА	
Input Offset Current	I _{OS}				±2	0	рА	
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR	test	V _{SS} - 0.05	V _{DD} + (.05	V	
Common-Mode Rejection Ratio	CMRR	-0.05V < V _{CM} < V _{DD} +	$0.05V$, $V_{DD} = 5.5V$	60			dB	
Power-Supply Rejection Ratio	PSRR	1.8V < V _{DD} < 5.5V		60			dB	
Open Lean Cain	Δ	00. 22	$25\text{mV} < V_{OUT} < V_{DD} - 25\text{mV},$ $R_L = 100\text{k}\Omega, V_{DD} = 5.5\text{V}$				dB	
Open-Loop Gain	A _{VOL}	$150 \text{mV} < \text{V}_{\text{OUT}} < \text{V}_{\text{DD}}$ $\text{R}_{\text{L}} = 5 \text{k}\Omega, \text{V}_{\text{DD}} = 5.5 \text{V}$	- 150mV,	85			ив	
Outrot Valtage Code a Ulada	.,	., .,	R _L = 100kΩ		6		>/	
Output-Voltage-Swing High	V _{OH}	V _{DD} - V _{OUT}	$R_L = 5k\Omega$		9)	mV	
0.41.1/-11	.,	., .,	R _L = 100kΩ		5			
Output-Voltage-Swing Low	V_{OL}	V _{OUT} - V _{SS}	$R_L = 5k\Omega$		9)	mV	
CUDN Lasia Law		V_{DD} = 1.8V to 3.6V, MA	AX9915/MAX9917		0.	4	V	
SHDN_ Logic Low	V_{IL}	V _{DD} = 3.6V to 5.5V, MA	AX9915/MAX9917		0.	8	V	
OUDM I and a Unit		V _{DD} = 1.8V to 3.6V, MAX9915/MAX9917		1.4			.,	
SHDN_ Logic High	V_{IH}	V _{DD} = 3.6V to 5.5V, MAX9915/MAX9917		2			V	
OUDN I and Disc Consent	I _I L	SHDN_ = V _{SS} , MAX9915/MAX9917			5		nA	
SHDN_ Input Bias Current		SHDN_ = V _{DD} , MAX9915/MAX9917			100	00	nA	
Output Leakage in Shutdown	I _{OUT(SHDN_)}	SHDN_ = V _{SS} , V _{OUT} = MAX9915/MAX9917	= 0V to V _{DD} ,		100	00	nA	

Note 1: Specifications are 100% tested at $T_A = +25^{\circ}C$ (exceptions noted). All temperature limits are guaranteed by design. Note 2: Guaranteed by design, not production tested

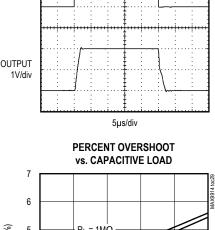

Typical Operating Characteristics

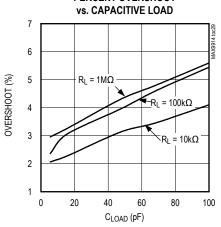
(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to $V_{DD}/2$, T_A = +25°C, unless otherwise noted.)

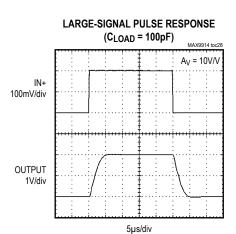

Typical Operating Characteristics (continued)

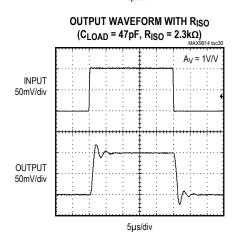
(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to $V_{DD}/2$, T_A = +25°C, unless otherwise noted.)

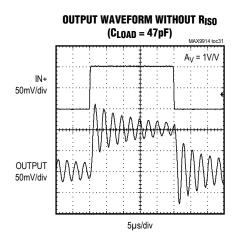
Typical Operating Characteristics (continued)


(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to $V_{DD}/2$, T_A = +25°C, unless otherwise noted.)




Typical Operating Characteristics (continued)


 $(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L \text{ to } V_{DD}/2, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$


LARGE-SIGNAL PULSE RESPONSE $(C_{LOAD} = 15pF)$ $A_V = 1V/V$ IN+ 1V/div OUTPUT 1V/div

Pin Description

	Р	IN		NAME	FUNCTION
MAX9914	MAX9915	MAX9916	MAX9917	NAME	FUNCTION
1	1	_	_	IN+	Noninverting Amplifier Input
2	2	4	4	V _{SS}	Negative Supply Voltage
3	3	_	_	IN-	Inverting Amplifier Input
4	4	_	_	OUT	Amplifier Output
5	6	8	10	V _{DD}	Positive Supply Voltage
_	5	_	_	SHDN	Shutdown
_	_	1	1	OUTA	Amplifier Output Channel A
_	_	2	2	INA-	Inverting Amplifier Input Channel A
_	_	3	3	INA+	Noninverting Amplifier Input Channel A
_	_	_	5	SHDNA	Shutdown Channel A
_	_	_	6	SHDNB	Shutdown Channel B
_	_	5	7	INB+	Noninverting Amplifier Input Channel B
_	_	6	8	INB-	Inverting Amplifier Input Channel B
_	_	7	9	OUTB	Amplifier Output Channel B

Detailed Description

Featuring a maximized ratio of gain bandwidth to supply current, low operating supply voltage, low input bias current, and rail-to-rail inputs and outputs, the MAX9914—MAX9917 are an excellent choice for precision or general-purpose low-current, low-voltage, battery-powered applications. These CMOS devices consume an ultra-low 20µA (typ) supply current and a 200µV (typ) offset voltage. For additional power conservation, the MAX9914/MAX9917 feature a lowpower shutdown mode that reduces supply current to 1nA (typ), and puts the amplifiers' output in a highimpedance state. These devices are unity-gain stable with a 1MHz gain-bandwidth product driving capacitive loads up to 30pF. The capacitive load can be increased to 100pF when the amplifier is configured for a 10V/V gain.

Rail-to-Rail Inputs and Outputs

The MAX9914–MAX9917 amplifiers all have a parallel-connected n- and p-channel differential input stage that allows an input common-mode voltage range that extends 100mV beyond the positive and negative supply rails, with excellent common-mode rejection.

The MAX9914–MAX9917 are capable of driving the output to within 5mV of both supply rails with a $100k\Omega$ load. These devices can drive a $5k\Omega$ load with swings to within 60mV of the rails. Figure 1 shows no clipping at the output voltage swing of the MAX9914–MAX9917 configured as a unity-gain buffer powered from a single 3V supply.

Low Input Bias Current

The MAX9914–MAX9917 feature ultra-low 1pA (typ) input bias current. The variation in the input bias current is minimal with changes in the input voltage due to very high input impedance (in the order of $1G\Omega$).

Applications Information

Driving Capacitive Loads

The MAX9914–MAX9917 amplifiers are unity-gain stable for loads up to 30pF. However, the capacitive load can be increased to 100pF when the amplifier is configured for a minimum gain of 10V/V.

Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Also, in unity-gain applications with relatively small R_L (about $5k\Omega),$ the capacitive load can be increased up to 100pF.

Power-Supply Considerations

The MAX9914–MAX9917 are optimized for single 1.8V to 5.5V supply operation. A high amplifier power-supply rejection ratio of 85dB (typ) allows the devices to be powered directly from a battery, simplifying design and extending battery life.

Power-Up Settling Time

The MAX9914–MAX9917 typically require $2\mu s$ after power-up. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op amp settling time depends primarily on the output voltage and is slew-rate limited. Figure 3 shows the MAX991_ in a noninverting voltage follower configuration with the input held at midsupply. The output settles in approximately $3.5\mu s$ for $V_{DD} = 3V$ (see the *Typical Operating Characteristics* for the Power-Up Settling Time graph).

Shutdown Mode

The MAX9915 and MAX9917 feature active-low shutdown inputs. The MAX9915 and MAX9917 enter shutdown in 2µs (typ) and exit shutdown in 10µs (typ). The amplifiers' outputs are high impedance in shutdown mode. Drive \$\overline{SHDN}\$ low to enter shutdown. Drive \$\overline{SHDN}\$ high to enable the amplifier. The MAX9917 dual amplifier features separate shutdown inputs. Shut down both amplifiers for lowest quiescent current.

Power-Supply Bypassing and Layout

Bypass V_{DD} with a $0.1\mu F$ capacitor to ground as close to the pin as possible to minimize noise.

Good layout techniques optimize performance by decreasing the amount of stray capacitance and inductance to the op amp's inputs and outputs. Minimize stray capacitance and inductance, by placing external components close to the IC.

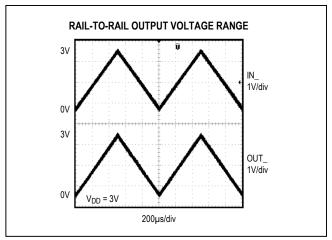


Figure 1. Rail-to-Rail Output Voltage Range

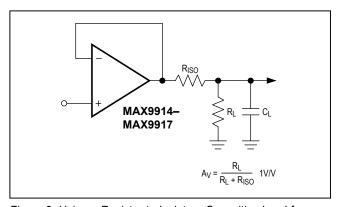


Figure 2. Using a Resistor to Isolate a Capacitive Load from the Op Amp

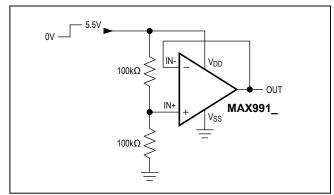
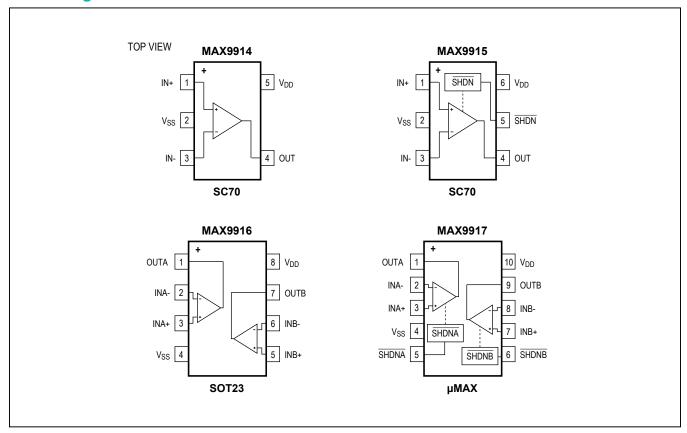



Figure 3. Power-Up Test Configuration

Pin Configurations

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	X5+1	21-0076	90-0188
6 SC70	X6SN+1	<u>21-0077</u>	90-0189
8 SOT23	K8+5	<u>21-0078</u>	<u>90-0176</u>
10 µMAX	U10+2	<u>21-0061</u>	90-0330

MAX9914-MAX9917

1MHz, 20µA, Rail-to-Rail I/O Op Amps with Shutdown

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/04	Initial release	
1	10/05	Removed future product asterisks from MAX9916/MAX9917, edited V_{OL}/V_{OH} specifications in the EC table, removed MAX9916 8-pin μ MAX package.	1, 2, 11
2	6/13	Updated Electrical Characteristics	3, 4
3	11/14	Updated Absolute Maximum Ratings and Electrical Characteristics	2, 3, 4

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.