: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High－Voltage，Precision，Low－Power Op Amps

Abstract

General Description The MAX9943／MAX9944 is a family of high－voltage amplifiers that offers precision，low drift，and low－power consumption． The MAX9943（single）and MAX9944（dual）op amps offer 2.4 MHz of gain－bandwidth product with only $550 \mu \mathrm{~A}$ of supply current per amplifier． The MAX9943／MAX9944 family has a wide power sup－ ply range operating from $\pm 3 \mathrm{~V}$ to $\pm 19 \mathrm{~V}$ dual supplies or a 6 V to 38 V single supply． The MAX9943／MAX9944 is ideal for sensor signal condi－ tioning，high－performance industrial instrumentation and loop－powered systems（e．g．，4mA－20mA transmitters）． The MAX9943 is offered in a space－saving 6－pin TDFN or 8 －pin $\mu \mathrm{MAX}{ }^{\circledR}$ package．The MAX9944 is offered in an 8 －pin SO or an 8－pin TDFN package．These devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive tempera－ ture range．

Applications
Sensor Interfaces
Loop－Powered Systems
Industrial Instrumentation
High－Voltage ATE
High－Performance ADC／DAC Input／Output Amplifiers
$\mu M A X$ is a registered trademark of Maxim Integrated Products，Inc．

＿Features
－Wide 6V to 38V Supply Range
－Low 100～V（max）Input Offset Voltage
－Low $0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Offset Drift
－Unity Gain Stable with 1nF Load Capacitance
－2．4MHz Gain－Bandwidth Product
－550 4 A Supply Current
－20mA Output Current
－Rail－to－Rail Output
－Package Options
$3 \mathrm{~mm} \times 5 \mathrm{~mm}$ ， 8 －Pin $\mu \mathrm{MAX}$ or $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ ，6－Pin TDFN Packages（Single）
$5 \mathrm{~mm} \times 6 \mathrm{~mm}$ ， 8 －Pin SO or $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ ， 8 －Pin TDFN Packages（Dual）

Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	TOP MARK
MAX9943AUA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	AACA
MAX9943ATT +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 TDFN－EP＊	AUF
MAX9944ASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	-
MAX9944ATA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 TDFN－EP＊	BLN

＋Denotes a lead（Pb）－free／RoHS－compliant package． ＊EP＝Exposed pad．

Package Detail

TOP VIEW תVノハXIスI

＊EP＝EXPOSED PAD

Pin Configurations appear at end of data sheet．

For pricing，delivery，and ordering information，please contact Maxim Direct at 1－888－629－4642， or visit Maxim＇s website at www．maxim－ic．com．

High-Voltage, Precision, Low-Power Op Amps

```
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ..............................-0.3V to +40V
All Other Pins (Note 1) ....................(VEE - 0.3V) to (VCC + 0.3V)
OUT Short-Circuit Current Duration
8-Pin \muMAX (VCC - VEE \leq 20V)...........................................3s
8-Pin \muMAX (VCC - VEE > 20V)..............................Momentary
6-Pin TDFN (VCC - VEE \leq 20V)........................................60s
6-Pin TDFN (VCC - VEE > 20V)..........................................2s
8-Pin SO (VCC - VEE \leq 20V)............................................60s
8-Pin SO (VCC - VEE > 20V)...............................................2s
8-Pin TDFN (VCC - VEE < 20V)........................................60s
8-Pin TDFN (VCC - VEE > 20V)...........................................2s
```


Note 1: Operation is limited by thermal limits.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

PACKAGE THERMAL CHARACTERISTICS (Note 2)

```
8 MMAX
    Junction-to-Ambient Thermal Resistance (0JA)......206.30}\textrm{C}/\textrm{W
    Junction-to-Ambient Case Resistance (0JC)
```

\qquad

```
                            6.3}\mp@subsup{}{}{\circ}\textrm{C}/
        ...........
        Junction-to-Ambient Thermal Resistance ( }0\textrm{JA}\mathrm{ )........
        .42}\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
        Junction-to-Ambient Case Resistance (0JC).
                            .9}\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
```

8 SO
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)......... $132^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient Case Resistance ($\theta \mathrm{JC}$) $38^{\circ} \mathrm{C} / \mathrm{W}$
8 TDFN-EP
Junction-to-Ambient Thermal Resistance (θ_{JA})........... $41^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient Case Resistance ($\theta \mathrm{Jc}$) $8^{\circ} \mathrm{C} / \mathrm{W}$

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$ to $\mathrm{GND}, \mathrm{VGND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
Operating Supply Voltage Range	V ${ }_{\text {SUPPLY }}$	Guaranteed by PSRR test	± 3		± 19	V
Quiescent Supply Current per Amplifier	IcC			550	950	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 19 \mathrm{~V}$	105	130		dB
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	100	$\mu \mathrm{V}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			240	
Input Offset Voltage Drift	TCVOS			0.4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IBIAS	$V_{E E}+0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\text {CC }}-1.8 \mathrm{~V}$		4	20	nA
		$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\text {CC }}-1.8 \mathrm{~V}$			90	
Input Offset Current	Ios	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\text {CC }}-1.8 \mathrm{~V}$		1	10	nA
Input Voltage Range	$\mathrm{VIN}_{+}, \mathrm{V}_{\text {IN }}$	Guaranteed by CMRR test, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	VEE		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.8 \end{gathered}$	V
Common-Mode Rejection Ratio	CMRR	$V_{E E}+0.3 \mathrm{~V} \leq \mathrm{V}_{C M} \leq \mathrm{V}_{C C}-1.8 \mathrm{~V}$	105	125		dB
		$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\text {CC }}-1.8 \mathrm{~V}$	105			

High-Voltage, Precision, Low-Power Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Open-Loop Gain	Avol	$\begin{aligned} & -13.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq+13.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		115	130		dB
		$\begin{aligned} & -13.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq+13.5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & T_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		100			
		$\begin{aligned} & -12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq+12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		100	110		
		$\begin{aligned} & -12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq+12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		90			
Output Voltage Swing	VOH	$R \mathrm{~L}=10 \mathrm{k} \Omega$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.2 \end{gathered}$			V
		$R \mathrm{~L}=600 \Omega$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.8 \end{gathered}$			
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	VCC -2			
	VOL	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$				$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 0.1 \end{gathered}$	
		$R \mathrm{~L}=600 \Omega$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1 \end{gathered}$	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.1 \end{gathered}$	
Short-Circuit Current	Isc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			60		mA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			100		
AC CHARACTERISTICS							
Gain Bandwidth Product	GBWP				2.4		MHz
Slew Rate	SR	$-5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+5 \mathrm{~V}$			0.35		V/ $/$ s
Input Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$			17.6		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Voltage Noise	TOTAL NOISE	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{~Hz}$			500		$\mathrm{n} \mathrm{P}_{\text {P-P }}$
Input Current Noise Density	In	$\mathrm{f}=1 \mathrm{kHz}$			0.18		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Capacitive Loading	CLOAD	No sustained oscillation			1000		pF

Note 3: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Temperature limits are guaranteed by design.

High-Voltage, Precision, Low-Power Op Amps

OFFSET VOLTAGE
vs. COMMON-MODE VOLTAGE

High－Voltage，Precision，Low－Power Op Amps

$\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R} \mathrm{L}=10 \mathrm{k} \Omega\right.$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

COMMON－MODE REJECTION RATIO vs．FREQUENCY

VoH vs．OUTPUT CURRENT

Vol vs．OUTPUT CURRENT

High-Voltage, Precision, Low-Power Op Amps

High-Voltage, Precision, Low-Power Op Amps

Pin Description

MAX9943 $\mathbf{6 ~ T D F N - E P ~}$	MAX9943 $\mathbf{8} \boldsymbol{\mu M A X}$	MAX9944 $\mathbf{8 ~ S O / T D F N - E P ~}$	NAME	FUNCTION
1	6	-	OUT	Output
-	-	1	OUTA	Output A
-	-	7	OUTB	Output B
2	4	4	VEE 2	Negative Power Supply. Bypass with a 0.1 $\mu \mathrm{F}$ capacitor to ground.
3	3	-	IN+	Positive Input
-	-	3	INA+	Positive Input A
-	-	5	INB+	Positive Input B
4	2	-	IN-	Negative Input
-	-	2	INA-	Negative Input A
-	-	6	INB-	Negative Input B
5	$1,5,8$	-	N.C.	No Connection
6	7	8	VCC	Positive Power Supply. Bypass with a 0.1 μ F capacitor to ground.
		-	EP	Exposed Pad (TDFN Only). Connect to a large VEE plane to maximize thermal performance. Not intended as an electrical connection point.
-	-			

Detailed Description

The MAX9943/MAX9944 are single/dual operational amplifiers designed for industrial applications. They operate from 6 V to 38 V supply range while maintaining excellent performance. These devices utilize a threestage architecture optimized for low offset voltage and low input noise with only $550 \mu \mathrm{~A}$ supply current. The devices are unity gain stable with a 1 nF capacitive load. These well-matched devices guarantee the high open-loop gain, CMRR, PSRR, and low voltage offset.
The MAX9943/MAX9944 provide a wide input/output voltage range. The input terminals of the MAX9943/ MAX9944 are protected from excessive differential voltage with back-to-back diodes. The input signal current is also limited by an internal series resistor. With a 40V differential voltage, the input current is limited to 20 mA . The output can swing to the negative rail while delivering 20 mA of current, which is ideal for loop-powered system applications. The specifications and operation of the MAX9943/MAX9944 family is guaranteed over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Application Information

Bias Current vs. Input Common Mode

The MAX9943/MAX9944 use an internal bias current cancellation circuit to achieve very low bias current over a wide input common-mode range. For such a circuit to function properly, the input common mode must be at least 300 mV away from the negative supply V_{EE}. The input common mode can reach the negative supply VEE. However, in the region between VEE and VEE + 0.3 V , there is an increase in bias current for both inputs.

Capacitive Load Stability

Driving large capacitive loads can cause instability in many op amps. The MAX9943/MAX9944 are stable with capacitive loads up to 1 nF . The Capacitive Load vs. Resistive Load graph in the Typical Operating Characteristics gives the stable operation region for capacitive versus resistive loads. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output, as shown in Figure 1. This resistor improves the circuit's phase margin by isolating the load capacitor from the amplifier's output.

High-Voltage, Precision, Low-Power Op Amps

Abstract

Power Supplies and Layout The MAX9943/MAX9944 can operate with dual supplies from $\pm 3 \mathrm{~V}$ to $\pm 19 \mathrm{~V}$ or with a single supply from +6 V to +38 V with respect to ground. When used with dual supplies, bypass both VCC and VEE with their own $0.1 \mu \mathrm{~F}$ capacitor to ground. When used with a single supply, bypass VCc with a $0.1 \mu \mathrm{~F}$ capacitor to ground. Careful layout technique helps optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

Output Current Capability The MAX9943/MAX9944 are capable of driving heavy loads such as the ones that can be found in loop-powered systems for remote sensors. The information is transmitted through $\pm 20 \mathrm{~mA}$ or $4 \mathrm{~mA}-20 \mathrm{~mA}$ current output across long lines that are terminated with low resistance loads (e.g., 600 $)$. The Typical Application Circuit shows the MAX9944 used as a voltage-to-current converter with a current-sense amplifier in the feedback loop. Because of the high output current capability of the MAX9944, the device can be used to directly drive the current-loop.
The specifications and operation of the MAX9943/ MAX9944 family is guaranteed over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, However, when used in applications with $\pm 15 \mathrm{~V}$ supply voltage (see Figure 3), the capability of driving more than $\pm 20 \mathrm{~mA}$ of current is limited to the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Use a lower supply voltage if this current must be delivered at a higher temperature range.

Input Common Mode and Output Swing

 The MAX9943/MAX9944 input common-mode range can swing to the negative rail $V_{\text {EE. }}$. The output voltage can swing to both the positive VCC and the negative $V_{E E}$ rails if the output stage is not heavily loaded. These two features are very important for applications where the MAX9943/ MAX9944 are used with a single-supply (VEE connected to ground). One of the applications that can benefit from these features is when the single-supply op amp is driving an ADC.

Figure 1. Capacitive Load Driving Circuit

Figure 2. Input Protection Circuit

Input Differential Voltage Protection

During normal op-amp operation, the inverting and noninverting inputs of the MAX9943/MAX9944 are at essentially the same voltage. However, either due to fast input voltage transients or due to other fault conditions, these pins can be forced to be at two different voltages.
Internal back-to-back diodes and series resistors protect the inputs from an excessive differential voltage (see Figure 2). Therefore, $\mathrm{IN}+$ and IN - can be any voltage within the range shown in the absolute maximum rating. Note the protection time is still dependent on the package thermal limits.

Chip Information
PROCESS: BiCMOS

High-Voltage, Precision, Low-Power Op Amps

tゅ66XVW/Eゅ66XVW

Figure 3. Typical $\pm 20 \mathrm{~mA}$ Current-Source in Loop-Powered Systems

High-Voltage, Precision, Low-Power Op Amps

High-Voltage, Precision, Low-Power Op Amps

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
$8 \mu \mathrm{MAX}$	$\mathrm{U}+1$	$\underline{\mathbf{2 1 - 0 0 3 6}}$	$\underline{\mathbf{9 0 - 0 0 9 2}}$
$6 \mathrm{TDFN}-\mathrm{EP}$	$\mathrm{T} 633+2$	$\underline{\mathbf{2 1 - 0 1 3 7}}$	$\underline{\mathbf{9 0 - 0 0 5 8}}$
8 SO	$\mathrm{S} 8+4$	$\underline{\mathbf{2 1 - 0 0 4 1}}$	$\underline{\mathbf{9 0 - 0 0 9 6}}$
8 TDFN-EP	$\mathrm{T} 833+2$	$\underline{\mathbf{2 1 - 0 1 3 7}}$	$\underline{\mathbf{9 0 - 0 0 5 9}}$

High-Voltage, Precision, Low-Power Op Amps

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

High-Voltage, Precision, Low-Power Op Amps

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMON DIMENSIONS			
SYMBOL	MIN.	MAX.	
A	0.70	0.80	
D	2.90	3.10	
E	2.90	3.10	
A1	0.00	0.05	
L	0.20	0.40	
k	0.25 MIN.		
A2	0.20 REF.		

PACKAGE VARIATIONS							
PKG. CODE	N	D 2	E 2	e	JEDEC SPEC	b	$[(\mathrm{N} / 2)-1] \times \mathrm{e}$
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033MK-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-3F	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL DIMENSions are in mm. angles in degrees.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. " N " IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.

High-Voltage, Precision, Low-Power Op Amps

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NDTES:

1. ALL DIMENSİNS ARE IN MILLIMETERS UNLESS atherwiSE SPECIFIED.
2. MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC \# 10-0131.
3. DIMENSIUNS D AND E DO NOT INCLUDE MZLD PROTRUSIUN.

ALLDWABLE MDLD PROTRUSION IS 0.15 MM (.006") PER SIDE.
LEADS TI BE CDPLANAR WITHIN 0.10 mm (.004").
5. MEETS JEDEC MSO12
6. ALL dimensions apply ta bath leaded (-) and pbfree (+) pkg. cades.
-DRAWING NOT TO SCALE-

VARIATIDN A				
SYMBDL	INCHES		MM	
	MIN.	MAX.	MIN.	MAX.
D	.189	.197	4.80	5.00
N	8			
MS012	AA			
PKG.	S8-2, S8-4, S8-5, S8-6F, S8-7F, S8-8F, S8-10F, CDDE S8-11F, S8-16F			

VARIATIDN B				
SYMBDL	INCHES		MM	
	MIN.	MAX.	MIN.	MAX.
D	.337	.344	8.55	8.75
N	14			
MS012	AB			
PKG.	S14-1, S14-4, S14-5, S14-6; S14M-4, S14M-5, CDDE S14M-6, S14M-7			

VARIATIDN C				
SYMBCL	INCHES		MM	
	MIN.	MAX.	MIN.	MAX
D	.386	.394	9.80	10.00
N	16			
MS012	AC			
PKG.				
CDDE	S16-1, S16-3, S16-5, S16-6, S16-8, S16-7F, S16-9F, S16-10F; S16M-3, S16M-6			

AVIXINVI

High-Voltage, Precision, Low-Power Op Amps

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$3 / 09$	Initial release	-
1	$4 / 09$	Removed future product reference for the MAX9944, updated EC table	1,2
2	$6 / 09$	Corrected TOC 13 and added rail-to-rail output feature	$1,3,5,8$
3	$4 / 11$	Updated Pin Description section	7

