: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

General Description

The MAX9995 dual, high-linearity, downconversion mixer provides 6.1 dB gain, +25.6 dBm IIP3, and 9.8 dB NF for WCDMA, TD-SCDMA, LTE, TD-LTE, and GSM/EDGE base-station applications

This device integrates baluns in the RF and LO ports, a dual-input LO selectable switch, an LO buffer, two doublebalanced mixers, and a pair of differential IF output amplifiers. The MAX9995 requires a typical LO drive of OdBm and supply current is guaranteed to be below 380 mA .
These devices are available in a compact 36-pin TQFN package ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) with an exposed pad. Electrical performance is guaranteed over the extended temperature range, from $\mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

Applications

WCDMA, TD-SCDMA, and cdma2000® 3G Base Stations

LTE and TD-LTE
Base Stations
GSM/EDGE
Base Stations

PHS/PAS Base Stations
Fixed Broadband
Wireless Access
Wireless Local Loop
Private Mobile Radio
Military Systems

Pin Configuration/ Functional Diagram

- 1700 MHz to 2700 MHz RF Frequency Range
- 1400MHz to 2600 MHz LO Frequency Range
- 40MHz to 350MHz IF Frequency Range
- 6.1dB Conversion Gain
- +25.6dBm Input IP3
-9.8dB Noise Figure
- 66dBc 2RF - 2LO Spurious Rejection at PRF = -10dBm
- Dual Channels Ideal for Diversity Receiver Applications
- Integrated LO Buffer
- Integrated RF and LO Baluns for Single-Ended Inputs
- Low -3dBm to +3dBm LO Drive
- Built-In SPDT LO Switch with 50dB LO1 - LO2 Isolation and 50ns Switching Time
- 44dB Channel-to-Channel Isolation

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9995ETX +	$\mathrm{T}^{*}=-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	36 TQFN-EP**
MAX9995ETX +T	$\mathrm{T}^{*}=-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	36 TQFN-EP ${ }^{* *}$

+Denotes a lead(PB)-free and RoHS-compliant package.
*TC = Case temperature
${ }^{* *} E P=$ Exposed pad.
T = Tape and reel.

MAX9995

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

```
Vcc.
-0.3V to +5.5V
LO1, LO2 to GND ..........................................................40.3V
IFM_, IFD_, IFM_SET, IFD_SET, LOSEL,
    LO_ADJ_M, LO_ADJ_D to GND...........--0.3V to (VCC + 0.3V)
RFMAIN, RFDIV, and LO_ Input Power
......................+20dBm
RFMAIN, RFDIV Current
(RF is DC shorted to GND through balun)
``` \(\qquad\)
``` .50 mA
```

Note 1: Based on junction temperature $T_{J}=T_{C}+\left(\theta_{J C} \times V_{C C} \times I_{C C}\right)$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 2: T_{C} is the temperature on the exposed pad of the package. T_{A} is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS

TQFN
Junction-to-Ambient Thermal Resistance ($\mathrm{\theta JA}$)
(Note 3, 4)
$.38^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Board Thermal Resistance ($\theta \mathrm{JB}$).................12.2 ${ }^{\circ} \mathrm{C} / \mathrm{W}$

Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$)
(Note 1, 4)
$7.4^{\circ} \mathrm{C} / \mathrm{W}$

Note 3: Junction temperature $\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\left(\theta_{\mathrm{JA}} \times \mathrm{V}_{C C} \times \mathrm{ICC}\right)$. This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, no input RF or LO signals applied, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at V_{CC} $=5.0 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$V_{\text {CC }}$		4.75	5	5.25	V
Supply Current	Icc	Total supply current		332	380	mA
		$\mathrm{V}_{\text {CC }}($ pin 16)		82	90	
		$\mathrm{V}_{\text {cc }}(\mathrm{pin} 30)$		97	110	
		IFM+/IFM- (total of both)		70	90	
		IFD+/IFD- (total of both)		70	90	
LOSEL Input High Voltage	V_{IH}		2			V
LOSEL Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
LOSEL Input Current	$I_{\text {IL }}$ and $\mathrm{IIH}^{\text {H }}$		-10		+10	$\mu \mathrm{A}$

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency Range	$f_{\text {RF }}$	(Note 5)	1700		2700	MHz
LO Frequency Range	flo	(Note 5)	1400		2600	MHz
IF Frequency Range	$\mathrm{fIF}^{\text {l }}$	(Note 5)	40		350	MHz
LO Drive Level	PLO	(Note 5)	-3		+3	dBm

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS-fRF $=1700 \mathrm{MHz}$ TO 2200MHz

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $\mathrm{f}_{\mathrm{RF}}=$ 1700 MHz to 2200 MHz , $\mathrm{f}_{\mathrm{LO}}=1400 \mathrm{MHz}$ to $2000 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, with $f_{\mathrm{RF}}>\mathrm{f}_{\mathrm{LO}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=$ 5.0V, $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, and $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) $($ Notes 6,7$)$

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS—fRF $=\mathbf{2 5 4 0 M H z}$

(Typical Application Circuit, RF and LO ports are driven from 50Ω sources, fRF $>f$ fo, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=$ $2540 \mathrm{MHz}, \mathrm{f} \mathrm{fO}=2400 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP

Note 5: Operation outside this frequency band is possible but has not been characterized. See the Typical Operating Characteristics. Note 6: Guaranteed by design and characterization.
Note 7: All limits reflect losses of external components. Output measurements taken at IF outputs of Typical Application Circuit.
Note 8: Production tested.
Note 9: Two tones 3 MHz spacing, -5 dBm per tone at RF port.
Note 10: Measured at IF port at IF frequency. fLO1 and flo2 are offset by 1 MHz .
Note 11: IF return loss can be optimized by external matching components.

Typical Operating Characteristics

(Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}_{\mathrm{CL}}=0 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, VCC $=5.0 \mathrm{~V}$, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

INPUT IP3 vs. RF FREQUENCY

2RF - 2LO vs. FUNDAMENTAL FREQUENCY

3RF - 3LO vs. FUNDAMENTAL FREQUENCY

2RF - 2 LO vs. FUNDAMENTAL FREQUENCY

3RF - 3LO vs. FUNDAMENTAL FREQUENCY

MAX9995

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, VCC $=5.0 \mathrm{~V}$, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

LO SWITCH ISOLATION vs. LO FREQUENCY

CHANNEL ISOLATION vs. RF FREQUENCY

LO SWITCH ISOLATION vs. LO FREQUENCY

CHANNEL ISOLATION vs. RF FREQUENCY

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}^{2} \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

RF-TO-IF ISOLATION vs. RF FREQUENCY

MAX9995

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}^{2} \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Pin Description

PIN	NAME	FUNCTION
1	RFMAIN	Main Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
2	TAPMAIN	Main Channel Balun Center Tap. Connect a $0.033 \mu \mathrm{~F}$ capacitor from this pin to the board ground.
$\begin{gathered} 3,5,7,12,20,22, \\ 24,25,26,34 \end{gathered}$	GND	Ground
$\begin{gathered} 4,6,10,16,21,30 \\ 36 \end{gathered}$	VCC	Power Supply. Connect bypass capacitors as close as possible to the pin (see the Typical Application Circuit).
8	TAPDIV	Diversity Channel Balun Center Tap. Connect a $0.033 \mu \mathrm{~F}$ capacitor from this pin to the ground.
9	RFDIV	Diversity Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
11	IFD_SET	IF Diversity Amplifier Bias Control. Connect a $1.2 \mathrm{k} \Omega$ resistor from this pin to ground to set the bias current for the diversity IF amplifier.
13, 14	IFD+, IFD-	Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to V_{CC} (see the Typical Application Circuit).
15	IND_EXTD	Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.
17	LO_ADJ_D	LO Diversity Amplifier Bias Control. Connect a 392Ω resistor from this pin to ground to set the bias current for the diversity LO amplifier.
18,28	N.C.	No Connection. Not internally connected.
19	LO1	Local Oscillator 1 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
23	LOSEL	Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2.
27	LO2	Local Oscillator 2 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
29	LO_ADJ_M	LO Main Amplifier Bias Control. Connect a 392Ω resistor from this pin to ground to set the bias current for the main LO amplifier.
31	IND_EXTM	Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.
32, 33	IFM-, IFM+	Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCc (see the Typical Application Circuit).
35	IFM_SET	IF Main Amplifier Bias Control. Connect a $1.2 \mathrm{k} \Omega$ resistor from this pin to ground to set the bias current for the main IF amplifier.
-	EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Abstract

Detailed Description The MAX9995 dual, high-linearity, downconversion mixer provides 6.1 dB gain and +25.6 dBm IIP3, with a 9.8 dB noise figure. Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. A single-pole, double-throw (SPDT) LO switch provides $50 n$ switching time between LO inputs, with 50dB LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9995's inputs to -3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCDMA, TD-SCDMA, LTE, TD-LTE, and GSM/EDGE base stations. The MAX9995 is specified to operate over an RF input range of 1700 MHz to 2700 MHz , an LO range of 1400 MHz to 2600 MHz , and an IF range of 40 MHz to 350 MHz . Operation beyond this is possible; however, performance is not characterized. This device is available in a compact $6 \mathrm{~mm} \times 6 \mathrm{~mm}, 36$-pin TQFN package with an exposed pad.

RF Input and Balun

The MAX9995's two RF inputs (RFMAIN and RFDIV) are internally matched to 50Ω, requiring no external matching components. DC-blocking capacitors are required as the inputs are internally DC shorted to ground through the on-chip baluns. Input return loss is typically 14 dB over the entire RF frequency range of 1700 MHz to 2700 MHz .

LO Input, Switch, Buffer, and Balun

The mixers can be used for either high-side or low-side injection applications with an LO frequency range of 1400 MHz to 2600 MHz . As an added feature, the MAX9995 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than adequate for virtually all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic-high selects LO1, and logic-low selects LO2. LO1 and LO2 inputs are internally matched to 50Ω, requiring only a 22 pF DC-blocking capacitor.

A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3 dBm to +3 dBm . The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixers

The core of the MAX9995 is a pair of double-balanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2RF - 2LO rejection, and NF performance is typically $+25.6 \mathrm{dBm}, 66 \mathrm{dBc}$, and 9.8 dB , respectively.

Differential IF Output Amplifiers

The MAX9995 mixers have an IF frequency range of 40 MHz to 350 MHz . The differential, open-collector IF output ports require external pullup inductors to V_{CC}. Note that these differential outputs are ideal for providing enhanced 2RF - 2LO rejection performance. Singleended IF applications require a $4: 1$ balun to transform the 200Ω differential output impedance to a 50Ω singleended output. After the balun, VSWR is typically 1.5:1.

Applications Information

Input and Output Matching

The RF and LO inputs are internally matched to 50Ω. No matching components are required. Return loss at each RF port is typically 14 dB over the entire input range (1700 MHz to 2700 MHz), and return loss at the LO ports is typically 18 dB (1400 MHz to 2000 MHz). RF and LO inputs require only DC-blocking capacitors for interfacing.
The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit).

Bias Resistors

Bias currents for the LO buffer and the IF amplifier are optimized by fine tuning the resistors (R1, R2, R4, and R5). If reduced current is required at the expense of performance, contact the factory. If the $\pm 1 \%$ bias resistor values are not readily available, substitute standard $\pm 5 \%$ values.

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Abstract

INDEXTM and INDEXTD Inductors Short INDEXTM and INDEXTD to ground using 0Ω resistors. For applications requiring improved RF-to-IF and LO-to-IF isolation, use 10nH inductors (L3 and L6) in place of the 0Ω resistors. However, to ensure stable operation, the mixer IF ports must be presented with low common-mode load impedance. Contact the factory for details. Since approximately 100 mA flows through INDEXTM and INDEXTD, it is important to use low-DCR wire-wound inductors.

Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX9995 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maximintegrated.com.

Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with a capacitor as close as possible to the pin (Typical Application Circuit).

Exposed Pad RF/Thermal Considerations

The exposed pad (EP) of the MAX9995's 36-pin TQFNEP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX9995 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Table 1. Component Values

COMPONENT	VALUE	DESCRIPTION
C1, C8	4 pF	Microwave capacitors (0402)
C2, C7	10 pF	Microwave capacitors (0402)
C3, C6	$0.033 \mu \mathrm{~F}$	Microwave capacitors (0603)
C4, C5, C14, C16	22 pF	Microwave capacitors (0402)
C9, C13, C15, C17, C18	$0.01 \mu \mathrm{~F}$	Microwave capacitors (0402)
C10, C11, C12, C19, C20, C21	150 pF	Microwave capacitors (0603)
L1, L2, L4, L5	330 nH	Wire-wound high-Q inductors (0805)
L3, L6	10 nH	Wire-wound high-Q inductors (0603)
R1, R4	$1.21 \mathrm{k} \Omega$	$\pm 1 \%$ resistors (0402)
R2, R5	392Ω	$\pm 1 \%$ resistors (0402)
R3, R6	10Ω	$\pm 1 \%$ resistors (1206)
T1, T2	$4: 1$ $(200: 50)$	IF baluns

Chip Information
PROCESS: SiGe BiCMOS
Lead-Free/RoHS Considerations
http://www.maximintegrated.com/emmi/faq.cfm

Reliability Information:
 http://www.maximintegrated.com/reliability/product/ MAX9995.pdf

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
36 TQFN-EP	$T 3666+2$	$\underline{21-0141}$	$\underline{\underline{90-0049}}$

MAX9995

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

Typical Application Circuit

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

\qquad

REVISION NUMBER	REVISION DATE	PESCRIPTION CHANGES	
0	$8 / 04$	Initial release	-
1	$3 / 11$	Updated the band coverage throughout the data sheet	$1-13$
2	$12 / 12$	Updated the Electrical Characteristic table and Ordering Information; updated Package Thermal Characteristics	$1,2,3$

