

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAXQ3108 is a low-power microcontroller that features two high-performance MAXQ20 cores: a dedicated core (DSPCore) for intensive data processing and a user core (UserCore) for supervisory functions. The two cores can operate at different clock speeds, allowing lower system power consumption for even processing intensive applications. The UserCore can be configured to run at the lowest clock rate possible for monitoring the peripherals for communication activities, while the DSPCore runs at the highest speed. Each core has access to an independent math accelerator (a multiply/accumulate unit). The UserCore supports SPI™, I²C, two UART channels with one channel supporting IR carrier modulation, a trimmable real-time clock (RTC), battery-backed RTC registers, and data memory. The DSPCore is fully user programmable and configurable. With the standard 32,768Hz crystal, the DSPCore operates at 10.027MHz, while the UserCore runs at 5.014MHz.

Applications

Electricity Meters

Industrial Control

Battery-Powered and Portable Devices

Smart Transmitters

Medical Instrumentation

Features

- ♦ High-Performance, Low-Power, Dual 16-Bit RISC Cores
- ♦ Approaches 1MIPS per MHz
- ♦ System Clock

10.027MHz (DSPCore) 5.014MHz (UserCore)

- ♦ 33 Instructions
- ♦ Approximately 100ns Execution Time at 10.027MHz
- **♦** Three Independent Data Pointers Accelerate Data Movement with Automatic Increment/Decrement
- ♦ 16-Bit Instruction Word, 16-Bit Data Bus

- ♦ 16 x 16-Bit General-Purpose Working Registers for Each Core
- **♦ 16-Level Hardware Stack for Each Core**
- **♦** Hardware Support for Software Stack
- **♦** Memory Features

UserCore

64KB Flash Program Memory

16B Battery-Backed (VBAT) Data SRAM

4KB Utility ROM

2KB Data SRAM; 10KB Total Data SRAM (If

DSPCore Inactive)

DSPCore

8KB User-Loadable SRAM Code Memory

1KB Data SRAM

♦ Peripherals

FLL (10MHz Output with 32kHz Input)

SPI Master, I²C Master

Two UART Channels (One Supports IR Carrier

Modulation)

Math Accelerator for Each Core

Three Manchester Decoder and Cubic Sinc Filter Channels for Interfacing to DS8102 Delta-Sigma

Two 16-Bit Programmable Timer/Counters

RTC with Alarms and Digital Trim, Dedicated

Battery-Backup Pin (VBAT)

Two Programmable Pulse Generators

Independent Watchdog Timer for Each Core

External Interrupts

JTAG Interface

♦ Operating Modes

Stop Mode: 0.1µA typ

Active Current at 10MHz and V_{DD} = 2.0V: 1.0mA typ

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAXQ3108-FFN+	-40°C to +85°C	28 TSSOP

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Pin Configuration appears at end of data sheet.

SPI is a trademark of Motorola, Inc.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, go to: www.maxim-ic.com/errata.

Maxim Integrated Products 1

TABLE OF CONTENTS	
Absolute Maximum Ratings	_
Recommended DC Operating Conditions	
Block Diagram	
Pin Description	
Detailed Description	
Microprocessor	
Memory	
DSP Program RAM	
Registers	
System Registers	
Peripheral Registers—UserCore	
Peripheral Registers—DSPCore	
Special Function Register Bit Descriptions	
Peripherals	
Pins	
Clock	
32,768Hz Crystal Oscillator	
Frequency-Locked Loop (FLL)	
Power Conservation	
Power-Management Mode	
Switchback	
Stop Mode	
Idle Mode	
Reset	
Power-On Reset/Brownout Reset Generation	
Watchdog Timer Reset	
External Reset	
Reset Input Pin Disable	
Peripheral Devices	
GPIO Ports	
UARTs	
Infrared Support	
SPI	
I ² C Interface	
ADC Inputs	
ADC Registers	

TABLE OF CONTENTS (continued)	
Dual-Core Interfaces	
DSP Code Memory	
Intercore Communications	
Timer 2	
Timer B	
Timer B Use-Case Scenarios	
Multiply-Accumulate Unit	
Real-Time Clock	
Programmable Pulse Generators	
In-Application Flash Programming	
Development and Technical Support	
Additional Documentation	
Pin Configuration	64
Package Information	
LIST OF FIGURES	
Figure 1. Memory Map	
Figure 2. IR Option on UART 0	
Figure 3. ADC Bit Stream Decoder	
Figure 4. Connecting the MAXQ3108 to a DS8102 Dual Delta-Sigma Modulator	
LIST OF TABLES	
Table 1. UserCore Peripheral Registers	
Table 2. UserCore Peripheral Register Default Values	
Table 3. DSPCore Peripheral Registers	
Table 4. DSPCore Peripheral Register Default Values	
Table 5. Multipurpose Pin Description	
Table 6. MAXQ3108 Clock Divisors	

ABSOLUTE MAXIMUM RATINGS

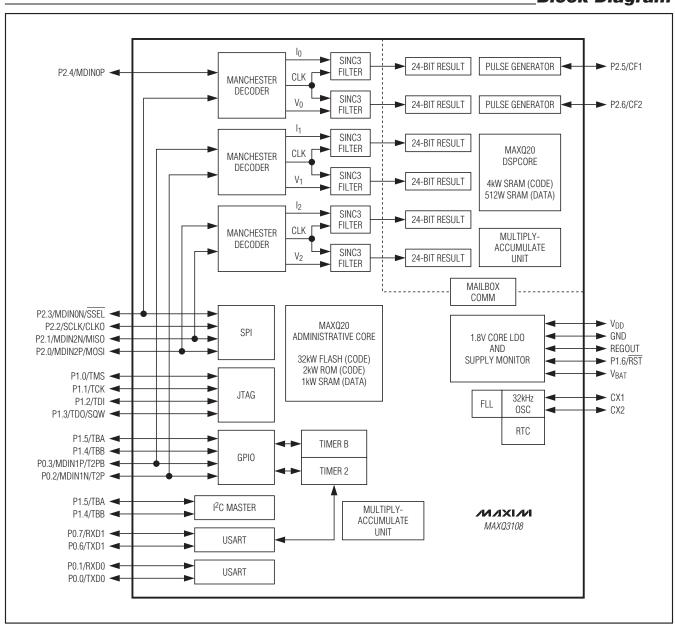
Voltage Range on Any Pin	Storage Temperature Range65°C to +150°C
except V _{DD} with Respect to V _{SS} 0.3V to V _{DD}	Soldering TemperatureRefer to the IPC/JEDEC
Voltage Range on V _{DD} with Respect to V _{SS} 0.3V to +3.6V	J-STD-020 Specification.
Operating Temperature Range40°C to +85°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(V_{DD} = V_{RST} \text{ to } 3.6V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C.}) \text{ (Notes 1, 2)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}		V _{RST}		3.6	V
Power-Fail Reset Voltage	V _{RST}	Monitors V _{DD}	1.875		1.975	V
1.8V Internal Regulator	V _{REG18}		1.71	1.8	1.89	V
1.8V Power-Fail Reset Voltage	VREGRST	Monitors REGOUT	1.62		1.71	V
Battery Supply Voltage	V _{BAT}		1.8		3.6	V
Battery Current (Note 3)	I _{BAT1}	$V_{DD} = 0$, $V_{BAT} = 3.6V$, $32kHz$ oscillator and RTC enabled		0.8		μA
Battery Guirent (Note 3)	IBALL	$V_{DD} = 0$, $V_{BAT} = 2V$, $32kHz$ oscillator and RTC enabled		0.6		μΛ
Active Current with 32.768kHz	IDD_FLL1	/1 mode, V _{DD} = 2.0V		1.3	2.2	
Crystal Connected to CX1, CX2;	IDD_FLL2	/1 mode, V _{DD} = 3.6V		1.5	2.5	^
FLL Selected (10MHz Output); ENDSP = 0; All Decimators and	IDD_FLL9	PMM2 (32kHz), V _{DD} = 2.0V		0.5	0.8	mA
Sinc Filters Off (Note 4)	IDD_FLL10	PMM2 (32kHz), V _{DD} = 3.6V		0.6	1.0	
Active Current with 32.768kHz Crystal Connected to CX1, CX2; FLL Selected (10MHz Output);	I _{DD_FLL14}	V _{DD} = 2.0V		1.0	1.7	
UserCore = /256 PMM; DSPCore = /1; ENDSP = 1; Manchester Decoders On; Decimators On	IDD_FLL15	V _{DD} = 3.6V		1.8	3.0	mA
Cton Mada Current (Note 5)	ISTOP_1	BOD = 1, REGEN = 0, SVMSTOP = 0, RTC off (lowest current stop mode)		0.1	2.4	
Stop-Mode Current (Note 5)	I _{STOP_2}	BOD = 0, REGEN = 0, SVMSTOP = 0, RTC off (adds brownout-reset detection)		30	125	μΑ
Input Low (CX1)	V _{IL1}		V _{SS}	0.2	20 x V _{DD}	V
Input Low (All Other Pins)	V _{IL2}		V _{SS}	0.3	30 x V _{DD}	V
Input High (CX1)	V _{IH1}		0.75 x V _{DE})	V_{DD}	V
Input High (All Other Pins)	V _{IH2}		0.70 x V _{DE})	V_{DD}	V
Input Hysteresis (Schmitt)	VIHYS		0.18			V
Output Low (All Port Pins)	V _{OL}	I _{OL} = 4mA (Note 6)	V_{SS}		0.4	V
Output High (All Port Pins)	VoH	I _{OH} = -4mA (Note 6)	V _{DD} - 0.4			V


RECOMMENDED DC OPERATING CONDITIONS (continued)

 $(V_{DD} = V_{RST} \text{ to } 3.6V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C.}) \text{ (Notes 1, 2)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input/Output Pin Capacitance	CIO	Guaranteed by design			15	pF
Input Low Current All Pins	I _I L	V _{IN} = 0.4V			-30	μΑ
Input-Leakage Current	IL	Internal pullup disabled	-100		+100	nA
Input Pullup Resistor (All Inputs)	R _{PU}			60		kΩ
CLOCK SOURCE						
FLL Output Frequency	fFLL	CX1 = 32.768kHz	9.5	10.0	10.5	MHz
FLL Output Accuracy	Δf_{FLL}	CX1 = 32.768kHz		1.5	±5	%
FLASH MEMORY						
System Clock During Flash Programming/Erase			2			MHz
Flash Erase Time		Mass erase	22.8	24	25.2	
Flash Erase Time 		Page erase	22.8	24	25.2	ms
Flash Programming Time Per Word		(Note 7)	59.5		66.5	μs
Write/Erase Cycles				1000		Cycles
Data Retention		T _A = +25°C	100			Years
SUPPLY VOLTAGE MONITOR						
Set Point	SVTR		2.0		3.5	V
Increment Resolution				0.1		V
Default Set Point				2.7		V
Current Consumption	IsvM				10	μΑ
Start Time	tsvmst				200	μs
Setup Time (Change Set Point)	tsvm_su1	Changing from one set point to another set point			2	μs
Setup Time (Stop Mode Exit)	tsvm_su2	Exit from stop mode			8	μs
REAL-TIME CLOCK						
RTC Input Frequency	f32KIN	32kHz watch crystal		32,768		Hz
RTC Operating Current	Into	V _{DD} = 2.0V		0.6		
NTO Operating Current	IRTC	V _{DD} = 3.6V	_	0.8		μΑ

- Note 1: Results based on simulation data. Characterization data will be available at a later date. All voltages are referenced to ground. Specifications to $T_A = -40$ °C are guaranteed by design and are not production tested.
- **Note 2:** Typical values are not guaranteed. These values are measured at room temperature, $V_{DD} = 3.3V$.
- Note 3: This current is from V_{BAT} only if (V_{DD} < V_{BAT} and V_{DD} < V_{RST}) or (STOP = 1, REGEN = 0, BOD = 1). Otherwise, this current is from V_{DD}.
- Note 4: Measured on the V_{DD} pin and the device not in reset. All inputs are connected to V_{SS} or V_{DD}. Outputs do not source/sink any current. Timer enabled, RTC enabled, part executing JUMP \$ from flash.
- Note 5: If the RTC is on for parameters ISTOP_2, ISTOP_3, and ISTOP_4, a current equal to IBAT1 is added to IDD.
- Note 6: The maximum total current, I_{OH(MAX)} and I_{OL(MAX)}, for all outputs combined should not exceed 35mA to satisfy the maximum specified voltage drop.
- Note 7: The timing listed above is clocked by 63 cycles of the internal 1MHz ±5% clock. There will be ROM code overhead, which is a function of system clock. For data sheet purposes, a better way is to specify the limits that include ROM code execution with specified system clock speed.

Block Diagram

Pin Description

PIN	NAME		FUNC	TION
	I		POWER PINS	
21	V _{DD}	Supply Voltage. Must be capacitor.	e bypassed with a 4.7μF α	capacitor with ESR < 5Ω and a 0.1 μ F ceramic
17	GND	Ground		
20	REGOUT	Regulator Output. 1.8V c capacitor.	output. Must be connected	d to a 1 μ F low-ESR (< 1 Ω) external ceramic chip
19	VBAT	Battery Input for Backin	g Up the RTC	
			CLOCK PINS	
15, 16	CX1, CX2			dz crystal to be connected in order to supply the re included in the circuitry.
		•	I/O PINS	
		master and serial UARTs reset condition of the pir register must be program	s 0 and 1. All pins suppor ns is weakly pulled up (in	nd as a special function interface to the I ² C rt external interrupt functionality. The default put). To drive output, either the port direction the alternate function module must be to the UserCore only.
		PIN	PORT	ALTERNATE FUNCTION
		2	P0.0	TXD0/INT0
2–7, 23, 22	P0.0-P0.7	3	P0.1	RXD0/INT1
		4	P0.2	MDIN1N/T2P/INT2
		5	P0.3	MDIN1P/T2PB/INT3
		6	P0.4	SDA/INT4
		7	P0.5	SCL/INT5
		23	P0.6	TXD1/INT6
		22	P0.7	RXD1/INT7
10, 11, 12, 13, 14, 18,	P1.0-P1.6	compatible test access from timer B. All pins su P1.0–P1.3 is the JTAG for disabled by user code. The Active-Low Reset (RST) an internal pullup resists not required for power-up.	port (TAP), the RTC squar pport external interrupt fur unctions. To use the 4-bit This port is accessible to The RST pin recognizes or to allow for a combination, as this function is provincial that this pin not be	d as a special function interface to the JTAG e-wave output, and as the input/output to and actionality. The default reset condition of pins port as standard GPIO, the TAP must be the UserCore only. external active-low reset inputs and employs on of wired-OR external reset sources. An RC is ded internally. The RST pin function is enabled held low externally after a power-on reset or the
24		PIN	PORT	ALTERNATE FUNCTION
		10	P1.0	TMS/INT8
		11	P1.1	TCK/INT9
		12	P1.2	TDI/INT10
		13	P1.3	TDO/SQW/INT11
		14	P1.4	TBB
		18	P1.5	TBA
		24	P1.6	RST

Pin Description (continued)

PIN	NAME		FUNC	TION
		generator outputs, clock the pins is weakly pulled and default to strong hig	output, and the Manches d up (input), with exceptio h. To drive output, either t alternate function module	d as a special function interface to the CF pulse ster ENDEC or SPI. The default reset condition of on of P2.5 and P2.6, which are always outputs the port direction register must be programmed must be configured to drive the pins. P2.5 and
1 00 07 00		PIN	PORT	ALTERNATE FUNCTION
1, 28, 27, 26, 25, 8, 9	P2.0-P2.6	1	P2.0	MDIN2P/MOSI
20, 0, 0		28	P2.1	MDIN2N/MISO
		27	P2.2	SCLK/CLKO
		26	P2.3	MDIN0N/SSEL
		25	P2.4	MDIN0P
		8	P2.5	CF1
		9	P2.6	CF2

_Detailed Description

The MAXQ3108 microcontroller is an integrated, low-cost solution to simplify the design of electricity metering and industrial control products. Standard features include two highly optimized, single-cycle, MAXQ 16-bit RISC microcontroller cores; 64KB of flash memory, 11KB RAM, and independent hardware stacks; general-purpose registers; and data pointers for each core. Application-specific peripherals include hardware SPI and I²C masters, real-time clock, programmable pulse generators, dual UARTs (one of which that supports IR carrier frequency modulation), and math accelerators.

At the heart of the MAXQ3108 are two MAXQ20 16-bit RISC microcontrollers. The dual-core approach allows one core (DSPCore) to be entirely dedicated to collection and processing of AFE samples for the metering function, while the second core handles any communication and user-specific administrative functions. The MAXQ3108 DSPCore operates at 10.027MHz with the default crystal and almost all instructions execute in a single clock cycle (100ns), while the UserCore runs at half that frequency (5.014MHz).

The dual-core strategy promotes flexibility by allowing the update of metering routines and parameters separately in DSPCore code and data memory. Furthermore, an independent DSPCore solely responsible for accurate metering introduces a measure of safety and reliability since all administrative/communication functions and interruptions are handled by the UserCore. Both cores feature standard MAXQ power-saving system

clock-divide modes and independently implement low-power stop (UserCore) and idle (DSPCore) modes. The DSPCore implements an idle mode that allows CPU execution to be halted while awaiting an ADC sample. The UserCore implements an ultra-low-power stop mode that automatically disables the DSPCore and results in a quiescent current consumption of less than 1.5 μ A. The combination of high performance and corespecific low-power mode implementation provides increased power efficiency and capability over competitive microcontrollers.

Microprocessor

The MAXQ20 is a low-power implementation of the new 16-bit MAXQ family of RISC cores. The core supports the Harvard memory architecture with separate 16-bit program and data address buses, but also provides pseudo-Von Neumann support through utility ROM functions. A fixed 16-bit instruction is standard, but data can be arranged in 8 or 16 bits. The MAXQ20 core is implemented as a nonpipelined processor with single clock-cycle instruction execution. The data path is implemented around register modules, and each register module contributes specific functions to the core. The accumulator module consists of sixteen 16-bit registers and is tightly coupled to the arithmetic logic unit (ALU). Program flow is supported by a dedicated 16-level-deep hardware stack.

Execution of instructions is triggered by data transfer between functional register modules, or between a functional register module and memory. Since data

8 ________/N/XI/M

movement involves only source and destination modules, circuit switching activities are limited to active modules only. For power-conscious applications, this approach localizes power dissipation and minimizes switching noise. The modular architecture also provides maximum flexibility and reusability, which are important for a microprocessor used in embedded applications.

The MAXQ instruction set is designed to be highly orthogonal. All arithmetical and logical operations can use any register along with the accumulator. Data movement is supported from any register to any other register. Memory is accessed through specific data pointer registers with auto increment/decrement support.

Memory

The MAXQ3108 supports a pseudo-Von Neumann memory structure that can merge program and data into a linear memory map. This is accomplished by mapping the data memory into the program space or mapping the program memory segment into the data space. Memory access is under the control of the memory management unit (MMU). During flash programming, the MMU maps the flash memory into data space, and the built-in firmware provides necessary controls to the

embedded flash memory for all read/erase/write operations when the ROM loader is invoked. Additionally, when the DSPCore is disabled, all its code SRAM (8KB) is mapped into the data SRAM space of the UserCore. This allows streamlined reconfiguration of the DSP code memory or a larger data SRAM for applications not employing DSPCore operation.

The MAXQ3108 incorporates the following:

- 4KB utility ROM
- 64KB program flash
- 2KB SRAM data memory
- 8KB program SRAM (DSPCore)
- 1KB SRAM data memory (DSPCore)

The MMU operates automatically and maps data memory as a function of the contents of the instruction pointer; that is, the execution location controls the structure of the data memory map. The only constraint is that no memory region is available as data when code is being fetched from that region. For example, when executing from flash, flash cannot be read as data. But changing the execution location to the utility ROM through a subroutine call allows the flash memory to be read as data.

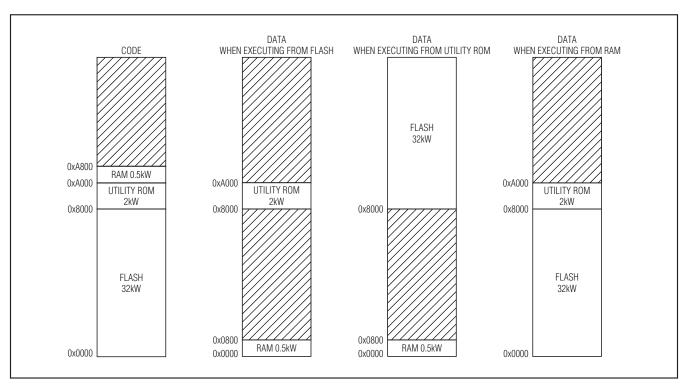


Figure 1. Memory Map

DSP Program RAM

A 4K Word (8KB) section of memory is available to the DSPCore as code memory. When the DSPCore is disabled (as it is immediately following a reset event) that block of memory appears in the UserCore data memory map at location 0x1000. Thus, a typical startup sequence to operate both cores might include:

- 1) Low-level initialization of the UserCore.
- Copy DSP code from program flash to DSPCore code RAM at 0x1000.
- 3) Enable DSPCore.
- 4) Poll mailbox registers to verify that DSPCore is correctly running.

For more information, see the *Dual-Core Interfaces* section.

Registers

The MAXQ family of microcontrollers uses a bank of registers to access memory and peripherals and to perform basic CPU activities. These registers are organized into as many as 16 register modules, each of which can have as many as 32 registers, giving a system maximum of 512 registers. The registers are divided into two sections: system registers (modules 7 to 15) and peripheral registers (modules 0 to 5).

Since the MAXQ3108 contains two MAXQ core processors, each has a set of system registers and a set of peripheral registers.

System Registers

The MAXQ3108 UserCore implements the standard set of system registers as described in the *MAXQ Family User's Guide*. The exceptions are listed below:

 In the IMR register, bit IM5 is not implemented since there is no module 5 implemented in the MAXQ3108.

- In the SC register, bits CDA1 and UPM are not implemented since the size of the memory in the device does not require their implementation.
- In the IIR register, bit II5 is not implemented since there is no module 5 implemented in the MAXQ3108.
- In the CKCN register, bits XT/RC, RGSL, and RGMD are not implemented. Instead, bits 5 and 6 are FLLMD and FLLSL, respectively. These bits support the frequency-locked loop (FLL) that forms a core part of the MAXQ3108 clocking scheme. More information is given in the *Clock* section.

The MAXQ3108 DSPCore system register complement is identical to that found in the UserCore, with these exceptions:

- In the IMR register, only IMO is implemented.
- The system control (SC) register is not implemented.
- In the IIR register, only the II0 bit is implemented.
- The WDCN register is not implemented because there is no watchdog timer in the DSPCore. Watchdog functionality can be implemented in the UserCore by determining if the DSPCore is responding to messages.
- In the CKCN register, the STOP, RGSL, and SWB bits are not implemented because the corresponding functions do not exist in the DSPCore. The FLLMD and FLLSL bits are not implemented because a common clock block is shared with the UserCore, and the control bits here would be redundant.

Peripheral Registers—UserCore

The MAXQ3108 UserCore exposes its peripheral complement in five modules numbered 0 to 4. Table 1 describes the functions associated with the peripheral registers, and Table 2 shows the default values of these registers.

Table 1. UserCore Peripheral Registers

REGISTER	MOD:								В	IT							
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD0	0:0							AD	C0 Outp	ut Regis	ster						
AD1	0:1							AD	C1 Outp	ut Regis	ster						
AD2	0:2		ADC2 Output Register														
AD3	0:3							AD	C3 Outp	ut Regis	ster						
AD4	0:4							AD	C4 Outp	ut Regis	ster						
AD5	0:5							AD	C5 Outp	ut Regis	ster						
SRSP0	0:6											RSPSDV	REQE		RSF	PST	
SRSP1	0:7							Slave	Respon	se Regi	ister 1						
AD0LSB	0:8											ADC	Output	Registe	r LSB		

Table 1. UserCore Peripheral Registers (continued)

	MOD:								В	iT										
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	gister LSB REQCM BF3 ABF2 ABF1 MD2SNC MD1SN Register out Register graph Register graph Register out 1 Interrupt Flag Fort 1 Interrupt Fnable Register tion Register pt Edge Select ort 1 External Interru Select //MI SVMIE SVMRD FC ECLKO FLOCK BRM USY ASE ADE I Counter d Alarm RTC Seconds Alarm RTC Seconds Alarm	0				
AD1LSB	0:9											ADC	1 Output	Registe	er LSB					
AD2LSB	0:10											ADC	2 Output	Registe	er LSB					
AD3LSB	0:11											ADC	3 Output	Registe	er LSB					
AD4LSB	0:12											ADC	4 Output	Registe	er LSB					
AD5LSB	0:13											ADC	5 Output	Registe	er LSB					
MREQ0	0:14											REQCDV	RSPIE		RE	QCM				
MREQ1	0:15							Mast	er Reque	est Reg	ister 1									
MREQ2	0:16							Mast	er Reque	est Reg	ister 2									
ADCN	0:17	IFCSEL	IF54E	IF32E	IF10E	MDCKS	MD2E	MD1E	MD0E	0	SR	ABF5	ABF4	ABF3	ABF2	ABF1	ABF0			
ADCC	0:18							ADC C	lock Cor	rection	Registe	r								
MSTC	0:19											C	CSL		MD2SNC	MD1SNC	MDOSNO			
PO0	1:0											Po	rt 0 Outp	ut Regi	ster					
PO1	1:1												Port 1 (Output F	Register					
PI0	1:2											Р	ort 0 Inpu	ut Regis	ter					
PI1	1:3												Port 1	Input Re	egister		-			
EIF0	1:4											Port 0	Interrupt	t Flag R	egister					
EIE0	1:5											Port 0 I	nterrupt	Enable f	Register					
EIF1	1:6													Port 1	Interrup	t Flag R	egister			
EIE1	1:7													Port 1	Interrupt	Enable I	Register			
PD0	1:8											Por	0 Direct	ion Reg	ister					
PD1	1:9												Port 1 D	irection	Registe	r				
EIES0	1:10										F	Port 0 Ext	ernal Int	Register LSB Register LSB Register LSB Register LSB Register LSB REQCM ABF3 ABF2 ABF1 ABF1 ABF3 ABF1 ABF1 ABF3 ABF2 ABF1 ABF1 ABF3 ABF1 ABF1 ABF1 ABF3 ABF1 ABF1 ABF1 ABF3 ABF1 ABF1 ABF1 ABF3 ABF1						
EIES1	1:11													Port 1			pt Edge			
SVM	1:12						SV	/TH					SVMSTOP	SVMI	SVMIE	SVMRDY	SVMEN			
FCNTL	1:13									FBUSY										
FDATA	1:14							F	lash Dat	a Regis	ter						-			
PWCN	1:15						ENDSP			BOD	_	RSTD			ECLKO	FLOCK	FLLEN			
BB0	1:16						Batte	ery-Back	ed Gene	ral-Purp	ose Sto	rage 0			-					
BB1	1:17								ed Gene											
BB2	1:18								ed Gene											
BB3	1:19						Batte	ery-Back	ed Gene	eral-Purp	ose Sto	rage 3								
BB4	1:20								ed Gene											
BB5	1:21								ed Gene											
BB6	1:22								ed Gene											
BB7	1:23							,	ed Gene											
RTRM	1:24								1					TRM						
RCNT	1:25	WE	X32D	32KRDY	32KBYP	32K	MD	FT	SQE	ALSF	ALDF	RDYE	RDY		ASE	ADF	RTCE			
RTSS	1:26									<u> </u>	1						1 22			
RTSH	1:27							RTC S	Seconds	Reaiste	er MSW				BUSY ASE ADE R					
RTSL	1:28								Seconds											
RSSA	1:29											RT	C Subse	cond Al	arm					
RASH	1:30															s Alarm	MSW			
RASL	1:31							RTS	Second	s Alarm	LSW					- /				
T2CNA	2:0							I	5555110	ET2	_	T2POLC	TR2L	TR2	CPRI 2	SS2	G2EN			
T2H	2:1									- ' -	1.2020	1.2. 020			10.1122	1 302	1 0			
	'		I.							I			1.111101	_ 17.00						

Table 1. UserCore Peripheral Registers (continued)

DECICTED	MOD:						Phase Register 0										
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T2RH	2:2											Time	r 2 MSB	Reload	Value		
T2CH	2:3										Tir	mer 2 M	SB Capt	ure/Com	pare Va	lue	
PO2	2:4												Port 2	Output R	legister		
PI2	2:5												Port 2	Input Re	egister		
SCON0	2:6										SM1	SM2	REN	TB8	RB8	TI	RI
SBUF0	2:7											S	erial Dat	ta Buffer	0		
SMD0	2:8									EPWM	OFS				ESI	SMOD	FEDE
PR0	2:9								Phase R	egister ()						
PD2	2:10												Port 2 D	irection	Registe	r	
T2CNB	2:11									ET2L	T20E1			_		1	T2CL
T2V	2:12							Tim	ner 2 Val	ue Regi	ster			•		ı	
T2R	2:13							Tim	er 2 Relo	oad Reg	ister						
T2C	2:14						Т	imer 2 C	Capture/0	Compare	Reaiste	er					
T2CFG	2:15									1				T2MD	С	CF	C/T2
MCNT	3:0										MCW		SQU	_			SUS
MA	3:1							Multipli	er Opera		_	1	000	0.00		1	
MB	3:2							<u> </u>	<u> </u>								
MC2	3:3					N/	lultinlier						2)				
MC1	3:4					IV							2)				
MC0	3:5))				
SPIB	3:7					·	viuitipiie	er Accum			U (LSB, I	טונט וס-נ))				
							N 4 I & i.e.	ilian Dan			2D 1:4-	01.10\					
MC1R	3:8																
MC0R	3:9						Multi	ipiler Re	ad Regi:	· `			I WOOL	Luore	LAODEE	LACTA	LODIENI
SPICN	3:13										SPIC	ROVR	WCOL	MODE		_	SPIEN
SPICF	3:14									ESPII					l	CKPHA	CKPOL
SPICK	3:15										.0-				er		
I2CBUF	4:0													1		1	
I2CST	4:1	I2CBUS	I2CBUSY			I2CSPI	I2CSCL							-	_	1	I2CSRI
I2CIE	4:2					12CSPIE						12CAMIE	12CTOIE	12CSTRIE	12CRXIE	12CTXIE	12CSRIE
TB0R	4:4																
TB0C	4:5							Tim	er B Cor	npare V	alue						
SCON1	4:6										SM1	SM2	REN	TB8	RB8	TI	RI
SBUF1	4:7											S	erial Dat	ta Buffer	1		
SMD1	4:8														ESI	SMOD	FEDE
PR1	4:9		•			•	•		Phase R	egister '	1		•		•		
TB0CN	4:10	C/TB			TBCS	TBCR		TBPS		TFB	EXFB	TBOE	DCEN	EXENB	TRB	ETB	CP/ RLB
TB0V	4:11					1	I .	Tim	ner B Val	ue Reai	ster	l .	1	1	l .	1	1
I2CCN	4:12	I2CRST										I2CACK	I2CSTRS		I2CMODF	I2CMST	I2CEN
I2CCK	4:13			120	Clock I	L High Per	iod				1					1	
I2CTO	4:14				3.00K												
12010	4:15									I	10		Addres				

Table 2. UserCore Peripheral Register Default Values

DECICTED	MOD:								В	IT							
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD0	0:0								0xF	FFF							
AD1	0:1								0xF	FFF							
AD2	0:2								0xF	FFF							
AD3	0:3			OXFFFF OXFFFF OXFFFF OXFFFF OXFFFF OXFFFF OXFFFF OXFFFF OXFFF OXFFF OXFF OXF													
AD4	0:4			OXFFFF OXFFF OXFFF OXFFF OXFFF OXFFF OXFFF OXFFF OXFF													
AD5	0:5								0xF	FFF							
SRSP0	0:6											0	0		0	x0	
SRSP1	0:7								0x0	0000							
AD0LSB	0:8												0>	ĸFF			
AD1LSB	0:9												0>	ĸFF			
AD2LSB	0:10												0>	ĸFF			
AD3LSB	0:11												0>	ĸFF			
AD4LSB	0:12												0>	ĸFF			
AD5LSB	0:13												0>	ĸFF			
MREQ0	0:14											0	0		0	x0	
MREQ1	0:15								0x0	0000							
MREQ2	0:16								0x0	0000							
ADCN	0:17	0	0	0	0	0	0	0	0	C)x0	0	0	0	0	0	0
ADCC	0:18		•					•	0x0	0000		•					
MSTC	0:19											0	хЗ		0	0	0
PO0	1:0										•		0>	kFF			
PO1	1:1													0x7F			
PI0	1:2										_		0>	«ΧΧ			
PI1	1:3													0xXX			
EIF0	1:4										_		0>	<00			
EIE0	1:5												0>	<00			
EIF1	1:6														0	x0	
EIE1	1:7														0	x0	
PD0	1:8										•	•	0>	<00			
PD1	1:9													0x00			
EIES0	1:10												0>	<00			
EIES1	1:11														0	x0	
SVM	1:12						0:	x7					0	0	0	0	0
FCNTL	1:13									1						0x0	
FDATA	1:14								0x0	0000							
PWCN	1:15						0			0	0	0			0	0	0
BB0	1:16						•		0xX	XXX	•	•			•		•
BB1	1:17								0xX	XXX							
BB2	1:18								0xX	XXX							
BB3	1:19									XXX							
BB4	1:20									XXX							
BB5	1:21								0xX	XXX							
BB6	1:22									XXX							
BB7	1:23									XXX							
RTRM	1:24									Х				Χ			

Table 2. UserCore Peripheral Register Default Values (continued)

REGISTER	MOD:								В	IT							
	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RCNT	1:25	0	Х	Х	Х	0>	κX	0	0	0	0	0	0	1	0	0	Х
RTSS	1:26												0×	XX			
RTSH	1:27									XXX							
RTSL	1:28								0xX	XXX							
RSSA	1:29												0xX	XXX			
RASH	1:30														0:	xΧ	
RASL	1:31								0xX	XXX			1				
T2CNA	2:0									0	0	0	0	0	0	0	0
T2H	2:1													:00			
T2RH	2:2													:00			
T2CH	2:3												0×	:00			
PO2	2:4													1Fh			
PI2	2:5												1	0xXX			
SCON0	2:6									0	0	0	0	0	0	0	0
SBUF0	2:7												0×	:00			
SMD0	2:8									0	0				0	0	0
PR0	2:9								0x0	0000							
PD2	2:10													0x00			
T2CNB	2:11									0	0	0		0	0	0	0
T2V	2:12									0000							
T2R	2:13									0000							
T2C	2:14			1			1		0x0	0000							
T2CFG	2:15									0		0x0	1	0		x0	0
MCNT	3:0									0	0	0	0	0	0	0	0
MA	3:1									0000							
MB	3:2									0000							
MC2	3:3									0000							
MC1	3:4									0000							
MC0	3:5									0000							
SPIB	3:7									0000							
MC1R	3:8									0000							
MC0R	3:9								0x0	0000	1 .		Ι .	Ι	Ι		Т -
SPICN	3:13									0	0	0	0	0	0	0	0
SPICE	3:14									0				-00	0	0	0
SPICK	3:15													:00			
I2CBUF	4:0	_							T ^		1 0	1	0000			1 ^	Τ ^
I2CST	4:1	0	0			0	0	0	0	0	0	0	0	0	0	0	0
I2CIE	4:2					0		0	0	0	0	0	0	0	0	0	0
TB0R	4:4									0000							
TB0C	4:5								UxU	0000							Τ .
SCON1	4:6									0	0	0	0	0	0	0	0
SBUF1	4:7												UxC	0000			Τ _
SMD1	4:8									1000					0	0	0
PR1	4:9				l ,		l	0.0	UxC	0000	1 0	1 ^				1 ^	Τ _
TB0CN	4:10	0			0	0		0x0		0	0	0	0	0	0	0	0

Table 2. UserCore Peripheral Register Default Values (continued)

REGISTER	MOD:					BIT											
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TB0V	4:11		0x0000														
I2CCN	4:12	0						0	0	0	0	0	0		0	0	0
I2CCK	4:13				0x	02							0x	04			
I2CTO	4:14												0x	00			
I2CSLA	4:15	0x000															

Peripheral Registers—DSPCore

The MAXQ3108 DSPCore exposes its peripheral complement in modules numbered 0 and 1. Table 3

describes the functions associated with the peripheral registers, and Table 4 shows the default values of these registers.

Table 3. DSPCore Peripheral Registers

REGISTER	MOD:								В	IT							
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD0	0:0							AD	C0 Outp	ut Regi	ster			•			
AD1	0:1		ADC1 Output Register														
AD2	0:2							AD	C2 Outp	ut Regi	ster						
AD3	0:3							AD	C3 Outp	ut Regi	ster						
AD4	0:4							AD	C4 Outp	ut Regi	ster						
AD5	0:5							AD	C5 Outp	ut Regi	ster						
SRSP0	0:6											RSPSDV	REQE		RSI	PST	
SRSP1	0:7							Slave	Respon	se Reg	ister 1						
AD0LSB	0:8											ADC	Output	Registe	r LSB		
AD1LSB	0:9											ADC:	1 Output	Registe	r LSB		
AD2LSB	0:10		ADC2 Output Register LSB														
AD3LSB	0:11		ADC3 Output Register LSB														
AD4LSB	0:12		ADC4 Output Register LSB														
AD5LSB	0:13												5 Output	Registe	r LSB		
MREQ0	0:14											REQCDV	RSPIE		REC	QCM	
MREQ1	0:15								er Reque								
MREQ2	0:16								er Reque	est Regi	ster 2						
ADCN	0:17	IFCSEL	IF45E	IF23E	IF10E	MDCKS	MD2E	MD1E	MD0E	03	SRI	ABF5	ABF4	ABF3	ABF2	ABF1	ABF0
ADCC	0:18							ADC CI	ock Corr	rection F	Register						
MSTC	0:19											CC	SL		MD2SNC	MD1SNC	MD0SNC
MCNT	1:0									OF	MCW	CLD	SQU	OPCS	MSUB	MMAC	SUS
MA	1:1		Multiplier Operand "A" Register														
MB	1:2		Multiplier Operand "B" Register														
MC2	1:3		Multiplier Accumulator Register 2 (MSB, bits 47-32)														
MC1	1:4		Multiplier Accumulator Register 1 (bits 31-16)														
MC0	1:5		Multiplier Accumulator Register 0 (LSB, bits 15-0)														

Table 3. DSPCore Peripheral Registers (continued)

	MOD:								В	IT							
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PO2	1:7		Port 2 Output Register														
MC1R	1:8		Multiplier Read Register 1 (MSB, bits 31-16)														
MC0R	1:9						Multi	plier Re	ad Regis	ster 0 (L	SB, bits	15-0)					
CF1D	1:12		CF1 Delay Register														
CF2D	1:13							С	F2 Delay	/ Regist	er						

Table 4. DSPCore Peripheral Register Default Values

DEGIGTED	MOD:								В	IT							
REGISTER	REG	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD0	0:0		•		•				0xF	FFF						•	
AD1	0:1								0xF	FFF							
AD2	0:2								0xF	FFF							
AD3	0:3								0xF	FFF							
AD4	0:4								0xF	FFF							
AD5	0:5								0xF	FFF							
SRSP0	0:6											0	0		0	x0	
SRSP1	0:7		•	•	•	•	•	•	0x0	000	•						
AD0LSB	0:8												0x	:FF			
AD1LSB	0:9												0×	:FF			
AD2LSB	0:10												0×	:FF			
AD3LSB	0:11												0×	:FF			
AD4LSB	0:12								0xFF								
AD5LSB	0:13								0xFF								
MREQ0	0:14								0 0 0x0								
MREQ1	0:15			•			•		0x0	000		•					
MREQ2	0:16								0x0	000							
ADCN	0:17	0	0	0	0	0	0	0	0	0:	x0	0	0	0	0	0	0
ADCC	0:18			•		•		•	0x0	000		•		•			
MSTC	0:19											0:	к З		0	0	0
MCNT	1:0									0	0	0	0	0	0	0	0
MA	1:1								0x0	000							
MB	1:2								0x0	000							
MC2	1:3								0x0	000							
MC1	1:4		0x0000														
MC0	1:5		0x0000														
PO2	1:7								0x0	000							
MC1R	1:8								0x0	000							
MC0R	1:9								0x0	000							
CF1D	1:12		0x0000														
CF2D	1:13		0x0000														

Special Function Register Bit Descriptions

REGISTER	DESCRIPTION
AD0 (00h, 00h)	Analog-to-Digital Converter 0 Output Register
Initialization:	This register is reset to 0xFFFF on all forms of reset.
Read/Write Access:	Unrestricted read access.
AD0.[15:0]:	Analog-to-Digital Converter 0 Output Register. This register contains the most significant 16 bits of the current ADC0 data sample that was acquired from the respective sinc3 filter. Reading from the ADC0 register(s) results in the ABF0 flag being cleared by hardware (when set), unless the read operation is performed simultaneously with a write. Reading a disabled ADC returns the data last acquired if the associated buffer full flag is set and returns FFFFh if the flag is clear.
AD1 (01h, 00h)	Analog-to-Digital Converter 1 Output Register
AD2 (02h, 00h)	Analog-to-Digital Converter 2 Output Register
AD3 (03h, 00h)	Analog-to-Digital Converter 3 Output Register
AD4 (04h, 00h)	Analog-to-Digital Converter 4 Output Register
AD5 (05h, 00h)	Analog-to-Digital Converter 5 Output Register

SRSP0 (06h, 00h)	Slave Response Register 0
Initialization:	This register is reset to 00h on all forms of reset.
Read/Write Access:	Unrestricted read access only to the UserCore (except RSPSDV; see the bit description). Unrestricted read/write access to the DSPCore (except RSPSDV and RSPST[3:0]; see the bit descriptions).
SRSP0.[3:0]: RSPST[3:0]	Response Status Bits 3:0. These bits can be used to report acknowledgement and status of the current command being processed by the slave and to report slave system conditions (e.g., watchdog timeout) that are not related to a master command. To notify the master that status is ready to be read, the RSP0DV bit should be set to 1 either by software (in the case of command status) or, in some cases, by hardware (as for the watchdog). In cases where slave hardware sets the status bits, these bits are not writable by slave software until the status condition has been cleared.
	When the DSPCore watchdog timer reaches FFFFh, a system interrupt from the DSPCore is signaled by the setting of the SRSP0.5 status flag along with the SRSP0.[3:0] status code of 0000b. This hardware condition for the SRSP0 register persists (preventing software writes of these bits by the DSPCore) until a reset of the DSPCore is executed (UserCore may disable the DSPCore through ENDSP = 0 to force the reset).
SRSP0.4: REQE	Request Registers Interrupt Enable. Setting this bit to 1 enables an interrupt for the master request-command data valid (interrupt) flag (REQCDV). The master request-command data valid flag is reported in MREQ0.5 (and the associated command code is contained in MREQ0.[3:0]). Clearing this bit to 0 disables the interrupt associated with the master request-command data valid flag.
SRSP0.5: RSPSDV	Response Status Data Valid Flag. This flag can only be set by the slave (DSPCore) or slave hardware once a valid status or system interrupt condition is supplied in the RSPST[3:0] field of the SRSP0 register to notify the master that valid status is ready for reading. Status information or data could also be contained in SRSP1, so the slave should only set this flag when all data has been loaded (included any that is loaded to SRSP1). This flag can only be cleared by the master (UserCore) software unless the status condition that caused hardware to set the flag persists (e.g., slave watchdog counter timeout). If made available by the slaveCPU, more information can be ascertained about the status by additional master request read commands.
SRSP0.[7:6]: Reserved	Reserved. Reads return 0.

Special Function Register Bit Descriptions (continued)

SRSP1 (07h, 00h)	Slave Response Register 1
Initialization:	This register is reset to 0000h on all forms of reset.
Read/Write Access:	Unrestricted read access only to the UserCore.
	Unrestricted read/write access to the DSPCore.
SRSP1.[15:0]:	Slave Response Register 1 Bits 15:0. These bits are used to supply output data to the master. To notify the master that data is ready to be read, the RSPCDV bit should be set to 1 by software. The slave should not write further data to SRSP1 until the valid condition (RSPSDV = 1) is cleared by the master software.

AD0LSB (08h, 00h)	Analog-to-Digital Converter 0 L	east Significant Byte Output Registe	r							
Initialization:	This register is reset to FFh on	all forms of reset.								
Read/Write Access:	Unrestricted read access.									
	read access to the least significa-	ast Significant Byte Output Register. Tant byte of the most current ADC0 data elow table for the least significant byte	sample acquired from the							
AD0LSB.[7:0]:	Reading from the AD0 register results in the ABF0 flag being cleared by hardware (when set) unless the read operation is performed simultaneously with a write. What this means is that when OSR > 32, AD0LSB should be read first if the clearing of ABF0 is intended to indicate that the full result (AD0LSB and AD0) was read. Reading a disabled ADC returns the data last acquired if the associated buffer full flag is set and returns FFFFh if the flag is clear.									
	OSR	AD0LSB FORMAT								
	32	16	0000000b							
	64	19	d2-d0, 00000b							
	128	22	d5-d0, 00b							
	256	24	d7-d0							
AD1LSB (09h, 00h)	Analog-to-Digital Converter 1 L	east Significant Byte Output Registe	r							
AD2LSB (0Ah, 00h)	Analog-to-Digital Converter 2 Least Significant Byte Output Register									
AD3LSB (0Bh, 00h)	Analog-to-Digital Converter 3 Least Significant Byte Output Register									
AD4LSB (0Ch, 00h)	Analog-to-Digital Converter 4 Least Significant Byte Output Register									
AD5LSB (0Dh, 00h)	Analog-to-Digital Converter 5 Least Significant Byte Output Register									

MREQ0 (0Eh, 00h)	Master Request Register 0
Initialization:	This register is reset to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write access to the UserCore (except REQCDV; see the bit description). Unrestricted read access only to the DSPCore (except REQCDV; see the bit description).
MREQ0.[3:0]: REQCM[3:0]	Request Command Bits 3:0. These bits are written by the master to supply a command request to the slave. To notify the slave that a command is ready to be read, the REQODV bit should be set to 1.
MREQ0.4: RSPIE	Response Registers Interrupt Enable. Setting this bit to 1 enables an interrupt for the slave response status data valid flag (which is associated with Response Registers 0 and 1). The status data valid (interrupt) flag is reported in SRSP0.5. Clearing this bit to 0 disables the interrupt associated with the response status data valid flag.
MREQ0.5: REQCDV	Request Command Data Valid Flag. This flag can only be set by the master (UserCore). This flag should be set once a valid command is supplied in the REQCM[3:0] field of the MREQ0 and/or data supplied in the MREQ1, MREQ2 registers to notify the slave that these registers are ready for reading. This flag can only be cleared by slave (DSPCore) software.
MREQ0.[7:6]: Reserved	Reserved. Reads return 0.

MREQ1 (0Fh, 00h)	Master Request Register 1
Initialization:	This register is reset to 0000h on all forms of reset.
Read/Write Access:	Unrestricted read/write access only to the UserCore. Unrestricted read access only to the DSPCore.
MREQ1.[15:0]:	Master Request Register 1 Bits 15:0. These bits are used to supply follow-on address and data information for commands issued by the master. To notify the slave that data is ready to be read, the REQCDV bit should be set to 1. The master should poll the REQCDV bit to know when the slave has read MREQ1 and when it is safe to write further data to MREQ1.

MREQ2 (10h, 00h)	Master Request Register 2
Initialization:	This register is reset to 0000h on all forms of reset.
Read/Write Access:	Unrestricted read/write access only to the UserCore. Unrestricted read access only to the DSPCore.
MREQ2.[15:0]:	Master Request Register 2 Bits 15:0. These bits are used to supply follow-on address and data information for commands issued by the master. To notify the slave that data is ready to be read, the REQCDV bit should be set to 1. The master should poll the REQCDV bit to know when the slave has read MREQ2 and when it is safe to write further data to MREQ2.

ADCN (11h, 00h)	Analog-to-Digital Converter Control Register
Initialization:	This register is cleared to 0000h on all forms of reset.
Read/Write Access:	UserCore: Unrestricted read/write access except bits 0:5 are read only and 6:7 have hardware restricted write access. DSPCore: Read-only.
ADCN.0: ABF0	ADC0 Buffer Full Flag. This bit is set by hardware to indicate that a sample is available from ADC0. An interrupt request is generated to a CPU if IF01E = 1 and interrupts are not otherwise masked globally or modularly. This bit is cleared by hardware by a CPU read (either the UserCore or the DSPCore) of the AD0 output register. The ABF0 and ABF1 flags are set in the same clock cycle.
ADCN.1: ABF1	ADC1 Buffer Full Flag. This bit is set by hardware to indicate that a sample is available from ADC1. An interrupt request is generated to a CPU if IF01E = 1 and interrupts are not otherwise masked globally or modularly. This bit is cleared by hardware by a CPU read (either the UserCore or the DSPCore) of the AD1 output register. The ABF0 and ABF1 flags are set in the same clock cycle.
ADCN.2: ABF2	ADC2 Buffer Full Flag. This bit is set by hardware to indicate that a sample is available from ADC2. An interrupt request is generated to a CPU if IF23E = 1 and interrupts are not otherwise masked globally or modularly. This bit is cleared by hardware by a CPU read (either the UserCore or the DSPCore) of the AD2 output register. The ABF2 and ABF3 flags are set in the same clock cycle.
ADCN.3: ABF3	ADC3 Buffer Full Flag. This bit is set by hardware to indicate that a sample is available from ADC3. An interrupt request is generated to a CPU if IF23E = 1 and interrupts are not otherwise masked globally or modularly. This bit is cleared by hardware by a CPU read (either the UserCore or the DSPCore) of the AD3 output register. The ABF2 and ABF3 flags are set in the same clock cycle.
ADCN.4: ABF4	ADC4 Buffer Full Flag. This bit is set by hardware to indicate that a sample is available from ADC4. An interrupt request is generated to a CPU if IF45E = 1 and interrupts are not otherwise masked globally or modularly. This bit is cleared by hardware by a CPU read (either the UserCore or the DSPCore) of the AD4 output register. The ABF4 and ABF5 flags are set in the same clock cycle.

Special Function Register Bit Descriptions (continued)

ADCN.5: ABF5		
		s control the oversampling rate applied by all of the elow). These bits are writable only when all
	OSR[1:0]	OVERSAMPLING RATE
ADCN.[7:6]: OSR[1:0]	00b	32
	01b	64
	10b	128
	11b	256
ADCN.8: MD0E	where enabling the special function input (Mand (single-ended or differential) based upon the PO decoder positive input (e.g., PO2.4 controls the	abled. When MD0E is configured to logic 1, c sinc filters are enabled. This is a special case chester decoder input) forces a specific input mode bit for the port pin corresponding to the Manchester single-ended or differential configuration for he PO bit = 0, single-ended mode is in effect. When MD0E is configured to logic 0, these hardware
ADCN.9: MD1E	where enabling the special function input (Mand (single-ended or differential) based upon the PO decoder positive input (e.g., PO0.3 controls the	abled. When MD1E is configured to logic 1, c sinc filters are enabled. This is a special case chester decoder input) forces a specific input mode bit for the port pin corresponding to the Manchester single-ended or differential configuration for he PO bit = 0, single-ended mode is in effect. When MD1E is configured to logic 0, these hardware
ADCN.10: MD2E	where enabling the special function input (Mand (single-ended or differential) based upon the PO decoder positive input (e.g., PO2.0 controls the	abled. When MD2E is configured to logic 1, c sinc filters are enabled. This is a special case chester decoder input) forces a specific input mode bit for the port pin corresponding to the Manchester single-ended or differential configuration for he PO bit = 0, single-ended mode is in effect. When MD2E is configured to logic 0, these hardware
ADCN.11: MDCKS		
ADCN.12: IF10E	ADC Interrupt Flags 1 and 0 Enable. This bit se sinc filter output buffers 1 and 0.	erves as the local interrupt enable for the ADC cubic

ADCN.13: IF32E	ADC Interrupt Flags 3 and 2 Enable. This bit serves as the local interrupt enable for the ADC cubic sinc filter output buffers 3 and 2.
ADCN.14: IF54E	ADC Interrupt Flags 5 and 4 Enable. This bit serves as the local interrupt enable for the ADC cubic sinc filter output buffers 5 and 4.
ADCN.15: IFCSEL	ADC Interrupt Flag Core Select. This bit controls the routing and the ability to clear the ADC interrupt flags. When this bit is configured to 0, the ADC interrupt capability and the ability to clear the associated flags belongs to the UserCore. When this bit is configured to 1, only the DSPCore can be interrupted and has the ability to clear the interrupt flags. This bit is write accessible only to the UserCore.

ADCC (12h, 00h)	Analog-to-Digital Clock Correction Register
Initialization:	This register is reset to 0000h.
Read/Write Access:	Unrestricted read access.
ADCC.[15:0]:	ADC Clock Correction Value 15:0. This value reflects the count (measurement) of decoder sync bits during the predefined duration of 32kHz x 2 ⁹ clocks for the decoder selected by CCSL[1:0]. The clock correction facility is enabled on any write to the CCSL[1:0] bits (other than the 11b disable request). The ADCC register reads 0000h to indicate a busy (measuring) condition until the measurement completes, at which point, the ADCC register is updated.

MSTC (13h, 00h)	Manchester Decoder Status Register
Initialization:	This register is reset to 30h.
Read/Write Access:	Unrestricted read access. Unrestricted write access to bits 5:4 (see description).
MSTC.0: MD0SNC	Manchester Decoder 0 Synchronization Status Bit. This bit reflects the synchronization status of Manchester decoder 0. When the decoder has achieved synchronization, this bit is set to 1. When the decoder cannot or has not yet detected the required alternating synchronization bit in the Manchester bit stream, this bit is cleared to 0. Once synchronized, loss of synchronization is signaled (i.e., bit is cleared) once three sync bit errors are detected in 10 frames. If fewer than three errors are detected in 10 frames, the synchronization bit error counter restarts on the next sync bit error.
MSTC.1: MD1SNC	Manchester Decoder 1 Synchronization Status Bit. This bit reflects the synchronization status of Manchester decoder 1. When the decoder has achieved synchronization, this bit is set to 1. When the decoder cannot or has not yet detected the required alternating synchronization bit in the Manchester bit stream, this bit is cleared to 0. Once synchronized, loss of synchronization is signaled (i.e., bit is cleared) once three sync bit errors are detected in 10 frames. If fewer than three errors are detected in 10 frames, the synchronization bit error counter restarts on the next sync bit error.
MSTC.2: MD2SNC	Manchester Decoder 2 Synchronization Status Bit. This bit reflects the synchronization status of Manchester decoder 2. When the decoder has achieved synchronization, this bit is set to 1. When the decoder cannot or has not yet detected the required alternating synchronization bit in the Manchester bit stream, this bit is cleared to 0.
MSTC.3: Reserved	Reserved. Reads return 0.

	the clock measurement utility is disabled. Writing measurement interval. When the clock measure is cleared to 0000h to indicate a busy (measuring the clock measuring is cleared to 0000h to indicate a busy (measuring the clock measuring the clock measurement utility is disabled. Writing the clock measurement utility is disabled. Writing measurement in the clock measurement utility is disabled. Writing measurement interval.	e Manchester decoders. When these bits are 11b, ing these bits to any other state enables one clock ement interval is enabled, the ADCC output registering) condition. No hardware protection is in place to er, which would result in seeing a persistent busy
MSTC.[5:4]: CCSL[1:0]	Separate physical implementations of these two control bits exist for the UserCore and the DSPCore. The ENDSP bit controls which bits are used to control the clock correction measurement hardware. When ENDSP = 0, the UserCore CCSL[1:0] bits control the hardware. When ENDSP = 1, the DSPCore CCSL[1:0] bits control the hardware. The bits not being used by the hardware are still write accessible but have no effect on the hardware. Once a clock measurement is requested, a second request should not be issued from the other core. There is no need for hardware protection against this possibility; the ADCC register can be polled to ascertain the busy status.	
	CCSL[1:0]	CLOCK MEASUREMENT (SYNC BIT FREQUENCY)
	00b	Decoder 0
	01b	Decoder 1
	10b	Decoder 2
	11b	Disabled
MSTC.[7:6]: Reserved	Reserved. Reads return 0.	

PO0 (00h, 01h)	Port 0 Output Register (8-Bit Register)
Initialization:	This register is set to 0FFh on all forms of reset.
Read/Write Access:	Unrestricted read/write.
PO0.[7:0]:	Port 0 Output Register Bits 7:0. The PO0 register stores output data for port 0 when it is defined as an output port and controls whether the internal weak p-channel pullup transistor is enabled/disabled if a port pin is defined as an input. The contents of this register can be modified by a write access. Reading from the register returns the contents of the register. Changing the direction of port 0 does not change the data contents of the register.

PO1 (01h, 01h)	Port 1 Output Register (8-Bit Register)
Initialization:	This register is set to 07Fh on all forms of reset.
Read/Write Access:	Unrestricted read/write.
PO1.[6:0]:	Port 1 Output Register Bits 6:0. The PO1 register stores output data for port 1 when it is defined as an output port and controls whether the internal weak p-channel pullup transistor is enabled/disabled if a port pin is defined as an input. The contents of this register can be modified by a write access. Reading from the register returns the contents of the register. Changing the direction of port 1 does not change the data contents of the register.
	Special note about P1.6: The \overline{RST} input function remains enabled on P1.6 unless it is explicitly disabled (RSTD = 1). This means that the ports control bits (PD, PO) can be used to generate a reset (e.g., by driving the pin low).
PO1.7: Reserved	Reserved. Reads return 0.

PI0 (02h, 01h)	Port 0 Input Register
Initialization:	The reset value for this register is dependent on the logical states of the pins.
Read/Write Access:	Unrestricted read-only.
PI0.[7:0]:	Port 0 Input Register Bits 7:0. The PIO register always reflects the logic state of its pins when read. Note that each port pin has a weak pullup circuit when functioning as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the port pin into three-state.

PI1 (03h, 01h)	Port 1 Input Register	
Initialization:	The reset value for this register is 0sssssssb, where "s" depends on the logical state of the pin.	
Read/Write Access:	Unrestricted read.	
PI1.[6:0]:	Port 1 Input Register Bits 6:0. The PI1 register always reflects the logic state of its pins when read. Note that each port pin has a weak pullup circuit when functioning as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the port pin into three-state.	
PI1.7: Reserved	Reserved. Read returns 0.	

EIF0 (04h, 01h)	External Interrupt Flag 0 Register
Initialization:	EIF0 is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
EIF0.[7:0]: IE[7:0]	Interrupt Edge Detect Bits 7:0. These bits are set when a negative edge ($ITx = 1$) or a positive edge ($ITx = 0$) is detected on the interrupt x pin. Setting any of the bits to 1 generates an interrupt to the CPU if the corresponding interrupt is enabled. This bit remains set until cleared by software or a reset. It must be cleared by software before exiting the interrupt source routine or another interrupt is generated as long as the bit remains set.

EIE0 (05h, 01h)	External Interrupt Enable 0 Register
Initialization:	EIE0 is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
EIE0.[7:0]: EX[7:0]	Enable External Interrupt Bits 7:0. Setting any of these bits to 1 enables the corresponding external interrupt. Clearing any of the bits to 0 disables the corresponding interrupt function.

EIF1 (06h, 01h)	External Interrupt Flag 1 Register
Initialization:	EIF1 is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
EIF1.[3:0]: IE[11:8]	Interrupt Edge Detect Bits 11:8. These bits are set when a negative edge ($ITx = 1$) or a positive edge ($ITx = 0$) is detected on the interrupt x pin. Setting any of the bits to 1 generates an interrupt to the CPU if the corresponding interrupt is enabled. This bit remains set until cleared by software or a reset. It must be cleared by software before exiting the interrupt source routine or another interrupt is generated as long as the bit remains set.
EIF1.[7:4]: Reserved	Reserved. Reads return 0.

Special Function Register Bit Descriptions (continued)

EIE1 (07h, 01h)	External Interrupt Enable 1 Register
Initialization:	EIE1 is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
EIE1.[3:0]: EX[11:8]	Enable External Interrupt Bits 11:8. Setting any of these bits to 1 enables the corresponding external interrupt. Clearing any of the bits to 0 disables the corresponding interrupt function.
EIE1.[7:4]: Reserved	Reserved. Reads return 0.

PD0 (08h, 01h)	Port 0 Direction Register
Initialization:	This register is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
PD0.[7:0]:	Port 0 Direction Register Bits 7:0. PD0 is used to determine the direction of the Port 0 function. The port pins are independently controlled by their direction bits. When a bit is set to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin. When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set to 1, the weak pullup is on; if the PO bit is cleared to 0, the weak pullup is off and forces the port pin into three-state.

PD1 (09h, 01h)	Port 1 Direction Register
Initialization:	This register is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
PD1.[6:0]:	Port 1 Direction Register Bits 6:0. PD1 is used to determine the direction of the port 1 function. The port pins are independently controlled by their direction bit. When a bit is set to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin. When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set to 1, the weak pullup is on; if the PO bit is cleared to 0, the weak pullup is off and forces the port pin into three-state. Special note about P1.6: The RST input function remains enabled on P1.6 unless it is explicitly disabled (RSTD = 1). This means that the ports control bits (PD, PO) can be used to generate a reset (e.g., by driving the pin low).
PD1.7: Reserved	Reserved. Reads return 0.

EIES0 (0Ah, 01h)	External Interrupt Edge Select 0 Register
Initialization:	EIES0 is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
	Edge Select for External Interrupt Bits 7:0
EIES0.[7:0]: IT[7:0]	ITx = 0: External interrupt x is positive-edge triggered.
	ITx = 1: External interrupt x is negative-edge triggered.

EIES1 (0Bh, 01h)	External Interrupt Edge Select 1 Register
Initialization:	EIES1 is cleared to 00h on all forms of reset.
Read/Write Access:	Unrestricted read/write.
EIES1.[3:0]: IT[11:8]	External Interrupt Edge Select Bits 11:8 ITx = 0: External interrupt x is positive-edge triggered. ITx = 1: External interrupt x is negative-edge triggered.
EIES1.[7:4]: Reserved	Reserved. Reads return 0.

SVM (0Ch, 01h)	Supply Voltage Monitor Register (16-Bit Register)
Initialization:	This register is set to 0700h on all forms of reset.
Read/Write Access:	Unrestricted read/write except SVMRDY and SVMTH. The supply voltage monitor ready (SVMRDY) bit is set and cleared by hardware only. SVMTH can only be written to when the supply voltage monitor is disabled (SVMEN = 0).
SVM.0: SVMEN	Supply Voltage Monitor Enable. Setting this bit to 1 enables the monitoring of supply voltage according to SVMTH settings. Clearing this bit to 0 disables the supply voltage monitoring circuitry.
SVM.1: SVMRDY	Supply Voltage Monitor Ready. This bit is set to 1 to indicate that the supply voltage monitor is ready for use. This bit is cleared to 0 when SVMEN = 0 or on entrance to stop mode if SVMSTOP = 0.
SVM.2: SVMIE	Supply Voltage Monitor Interrupt Enable. Setting this bit to 1 generates an interrupt to the CPU when SVMI is set to 1. Clearing this bit to 0 disables the interrupt from generating.
SVM.3: SVMI	Supply Voltage Monitor Interrupt. This bit is set to 1 when the supply voltage falls below the set point defined by SVTH. Clearing this bit to 0 clears the interrupt. However, if the supply voltage is still below the set point, this flag is set again. Setting this bit to 1 causes an interrupt to the CPU when SVMIE = 1.
SVM.4: SVMSTOP	Supply Voltage Monitor Stop Mode Enable. Setting this bit to 1 enables the supply voltage monitor circuit to operate during stop mode if SVMEN = 1. Clearing this bit to 0 disables the supply voltage monitor when stop mode is enabled.
SVM.[7:5]: Reserved	Reserved. Reads return 0.
SVM.[11:8]: SVTH[3:0]	Supply Voltage Threshold Bits [3:0]. These bits are used to select a user-defined supply voltage threshold under which an interrupt is generated to the CPU if enabled. The level can be adjusted from 2.0V to 3.5V in a 0.1V increment. The supply voltage monitor is enabled by setting SVMEN = 1. The default value is 07h (2.7V).
	Supply Voltage Monitor Threshold = 2.0V + SVMTH[3:0] x 0.1V
	Note that the SVTH bits can only be modified when SVMEN = 0. Writing to these bits is ignored if SVMEN = 1.
SVM.[15:12]: Reserved	Reserved. Reads return 0.