

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ASSP

Single Serial Input PLL Frequency Synthesizer On-chip 2.5 GHz Prescaler

MB15E07SL

■ DESCRIPTION

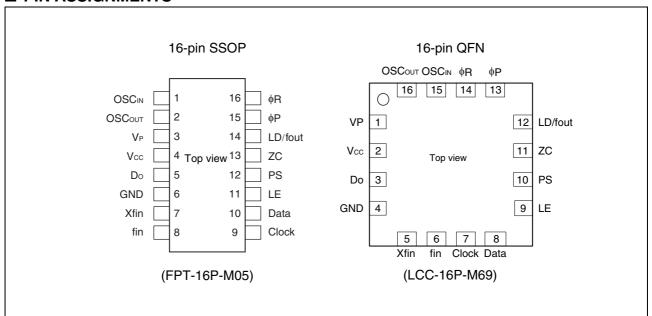
The FUJITSU SEMICONDUCTOR MB15E07SL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 2.5 GHz prescaler. The 2.5 GHz prescaler has a dual modulus division ratio of 32/33 or 64/65 enabling pulse swallowing operation.

The supply voltage range is between 2.4 V and 3.6 V. The MB15E07SL uses the latest BiCMOS process, as a result the supply current is typically 3.5 mA at 2.7 V. A refined charge pump supplies well-balanced output currents of 1.5 mA and 6 mA. The charge pump current is selectable by serial data.

■ FEATURES

- High frequency operation: 2.5 GHz Max
- Low power supply voltage: Vcc = 2.4 to 3.6 V
- Ultra Low power supply current: Icc = 3.5 mA Typ (Vcc = Vp = 2.7 V, Ta = +25°C, in locking state)

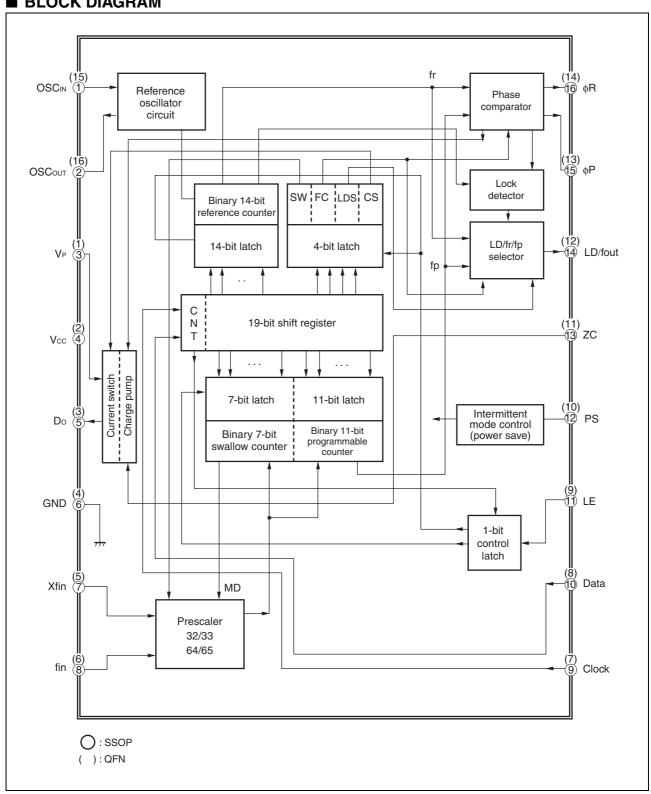
 $Icc = 4.0 \text{ mA Typ (Vcc} = Vp = 3.0 \text{ V, Ta} = +25^{\circ}\text{C, in locking state)}$


• Direct power saving function: Power supply current in power saving mode

Typ 0.1 μ A (Vcc = Vp = 3.0 V, Ta = +25°C), Max 10 μ A (Vcc = Vp = 3.0 V)

- Dual modulus prescaler: 32/33 or 64/65
- Serial input 14-bit programmable reference divider: R = 3 to 16,383
- Serial input programmable divider consisting of:
 - Binary 7-bit swallow counter: 0 to 127
 - Binary 11-bit programmable counter: 3 to 2,047
- Software selectable charge pump current
- On-chip phase control for phase comparator
- Operating temperature: Ta = −40 to +85°C
- Pin compatible with MB15E07, MB15E07L

■ PIN ASSIGNMENTS



■ PIN DESCRIPTIONS

Pin	no.	5.		
SSOP	QFN	Pin name	I/O	Descriptions
1	15	OSCIN	I	Programmable reference divider input. Connection to a TCXO.
2	16	OSCout	0	Oscillator output.
3	1	VP	-	Power supply voltage input for the charge pump.
4	2	Vcc	_	Power supply voltage input.
5	3	Do	0	Charge pump output. Phase of the charge pump can be selected via programming of the FC bit.
6	4	GND	-	Ground.
7	5	Xfin	I	Prescaler complementary input, which should be grounded via a capacitor.
8	6	fin	I	Prescaler input. Connection to an external VCO should be done via AC coupling.
9	7	Clock	I	Clock input for the 19-bit shift register. Data is shifted into the shift register on the rising edge of the clock. (Open is prohibited.)
10	8	Data	I	Serial data input using binary code. The last bit of the data is a control bit. (Open is prohibited.)
11	9	LE	I	Load enable signal input. (Open is prohibited.) When LE is set high, the data in the shift register is transferred to a latch according to the control bit in the serial data.
12	10	PS	I	Power saving mode control. This pin must be set at "L" at Power-ON. (Open is prohibited.) PS = "H"; Normal mode PS = "L"; Power saving mode
13	11	ZC	I	Forced high-impedance control for the charge pump (with internal pull up resistor.) ZC = "H"; Normal Do output. ZC = "L"; Do becomes high impedance.
14	12	LD/fout	0	Lock detect signal output (LD)/phase comparator monitoring output (fout). The output signal is selected via programming of the LDS bit. LDS = "H"; outputs fout (fr/fp monitoring output) LDS = "L"; outputs LD ("H" at locking, "L" at unlocking.)
15	13	φР	0	Phase comparator N-channel open drain output for an external charge pump. Phase can be selected via programming of the FC bit.
16	14	φR	0	Phase comparator CMOS output for an external charge pump. Phase can be selected via programming of the FC bit.

■ BLOCK DIAGRAM

4

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rat	ting	Unit	Remark
raiailletei	Syllibol	Condition	Min	Max	Oilit	neiliaik
Power supply veltage	Vcc	_	-0.5	4.0	V	
Power supply voltage	VP	_	Vcc	6.0	V	
Input voltage	Vı	_	-0.5	Vcc + 0.5	V	
Output voltage	Vo	Except Do	GND	Vcc	V	
Output voltage	Vo	Do	GND	V P	V	
Storage temperature	Tstg	_	- 55	+125	°C	

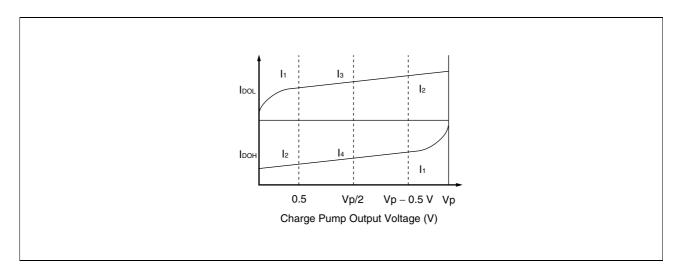
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Cumbal		Value	Unit	Remark	
raiailletei	Symbol	Min	Тур	Max	Oilit	neiliaik
Power supply veltage	Vcc	2.4	3.0	3.6	V	
Power supply voltage	VP	Vcc	_	5.5	V	
Input voltage	Vı	GND	_	Vcc	V	
Operating temperature	Та	-40	_	+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.


■ ELECTRICAL CHARACTERISTICS

 $(Vcc = 2.4 \text{ to } 3.6 \text{ V}, Ta = -40 \text{ to } +85^{\circ}\text{C})$

		T		($V_{CC} = 2.4 \text{ t}$	•	a = -40 to -	+85°C)
Parameter		Symbol	Condi	tion		Value	r	Unit
rarameter		Cymbol	Oonai		Min	Тур	Max	Oilit
Power supply current*1		Icc*1	$\begin{array}{l} \text{fin} = 2500 \; \text{MHz} \\ \text{Vcc} = \text{Vp} = 2.7 \\ \text{(Vcc} = \text{Vp} = 3.0 \\ \end{array}$	V	_	3.5 (4.0)	_	mA
Power saving current		IPS	ZC = "H" or ope	en	_	0.1*2	10	μΑ
Operating frequency	fin	fin	_		700	-	2500	MHz
Operating frequency	OSCIN	OSCIN	_	-		-	40	MHz
	fin*³	Pfin	50Ω system (Refer to the measurement	-15	_	+2	dBm	
Input sensitivity	OS-		circuit.)	QFN	-12	_	+2	
	CIN*3	Vosc	_		0.5	_	Vcc	Vp-p
"H" level input voltage	Data, Clock,	ViH	_		Vcc × 0.7	-	_	V
"L" level input voltage	LE, PS, ZC	VIL	_		_	_	$Vcc \times 0.3$	-
"H" level input current	Data,	I IH*4	_		-1.0	_	+1.0	
"L" level input current	Clock, LE, PS	I IL*4	_	-1.0	_	+1.0	μA	
"H" level input current	OSCIN	Іін	_		0	-	+100	^
"L" level input current	OSCIN	I _{IL} *4	_	-100	_	0	μA	
"H" level input current	ZC	I _{IH} *4	_		-1.0	_	+1.0	μA
"L" level input current	20	I _{IL} *4	Pull up input		-100	-	0	μΑ
"L" level output voltage	φР	Vol	Open drain out	put	_	_	0.4	٧
"H" level output voltage	φR,	Vон	$V_{CC} = V_P = 3.0 \text{ V}$	∕, Іон = −1 mA	Vcc - 0.4	_	-	V
"L" level output voltage	LD/fout	Vol	$V_{CC} = V_P = 3.0$	V, IoL = 1 mA	_	_	0.4	V
"H" level output voltage	_	V _{DOH}	$V_{CC} = V_P = 3.0$ $I_{DOH} = -0.5 \text{ mA}$	V,	V _P - 0.4	-	_	
"L" level output voltage	Do	VDOL	$V_{CC} = V_P = 3.0$ $I_{DOL} = 0.5 \text{ mA}$	V,	_	_	0.4	V
High impedance cutoff current	Do	loff		$V_{CC} = V_P = 3.0 \text{ V},$ $V_{OFF} = 0.5 \text{ V to } V_P - 0.5 \text{ V}$			2.5	nA
"L" level output current	φР	loL	Open drain output		1.0	_	_	mA
"H" level output current	φR,	Іон	–		_		-1.0	
"L" level output current	LD/fout	loL	_		1.0	_	_	mA
·			CS bit = "H"		_	-6.0	_	
"H" level output current	Do	DOH*4	$V_{P} = 3 V$, $CS bit = "L"$		_	-1.5	_	mA
"L" level output current	20	IDOL	$V_{DO} = V_P/2$		_	6.0	_	111/
•				CS bit = "L"	_	1.5	_	
Charge pump current	Ірог/Ірон	IDOMT*5	$V_{DO} = V_P/2$		_	3	_	%
rate	vs V _{DO}	IDOVD*6	0.5 V ≤ V _{DO} ≤ V	_	10	_	%	
	vs Ta	IDOTA*7	- 40°C ≤ Ta ≤ -	+85°C	_	10	_	%

- *1 : Conditions; fosc = 12 MHz, Ta = +25°C, in locking state.
- *2 : $V_{CC} = V_P = 3.0 \text{ V}$, fosc = 12.8 MHz, Ta = +25°C, in power saving mode
- *3 : AC coupling. 1000 pF capacitor is connected under the condition of Min operating frequency.
- *4 : The symbol "-" (minus) means direction of current flow.
- *5 : $V_{CC} = V_P = 3.0 \text{ V}$, $T_a = +25^{\circ}C (|I_3| |I_4|) / [(|I_3| + |I_4|) /2] \times 100(\%)$
- *6 : Vcc = VP = 3.0 V, Ta = +25°C [(|I2| |I1|) /2] / [(|I1| + |I2|) /2] × 100(%) (Applied to each IDOL, IDOH)
- *7: $V_{CC} = V_P = 3.0 \text{ V}, V_{DO} = V_P/2 \left(\left| \text{Ido}(85^{\circ}\text{C}) \text{Ido}(-40^{\circ}\text{C}) \right| / 2 \right) / \left(\left| \text{Ido}(85^{\circ}\text{C}) + \text{Ido}(-40^{\circ}\text{C}) \right| / 2 \right) \times 100(\%) \text{ (Applied to each Idol, Idoh)}$

■ FUNCTIONAL DESCRIPTION

1. Pulse Swallow Function

The divide ratio can be calculated using the following equation:

 $fvco = [(M \times N) + A] \times fosc \div R (A < N)$

fvco: Output frequency of external voltage controlled oscillator (VCO)

N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)

A : Preset divide ratio of binary 7-bit swallow counter ($0 \le A \le 127$)

fosc: Output frequency of the reference frequency oscillator

R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)

M : Preset divide ratio of modulus prescaler (32 or 64)

2. Serial Data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider and the programmable divider separately.

Binary serial data is entered through the Data pin.

One bit of data is shifted into the shift register on the rising edge of the Clock. When the LE signal pin is taken high, stored data is latched according to the control bit data as follows:

Table 1. Control Bit

Control bit (CNT)	Destination of serial data
Н	For the programmable reference divider
L	For the programmable divider

(1) Shift Register Configuration

			CICIC	iice c	ount	er											
LSB ▼							Data	a Flow	ı —		•	•				İ	MSB
1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C F N 1 T		R 3	R 4	R 5	R 6	R 7	R 8	R 9	R 10	R 11	R 12	R 13	R 14	sw	FC	LDS	CS

CNT : Control bit [Table 1] R1 to R14: Divide ratio setting bit for the programmable reference counter (3 to 16,383) [Table 2] : Divide ratio setting bit for the prescaler (32/33 or 64/65) SW [Table 5] : Phase control bit for the phase comparator FC [Table 8] LDS : LD/fout signal select bit [Table 7] CS : Charge pump current select bit [Table 6]

Note: Start data input with MSB first.

(Continued)

Programmable Counter

LSB		Data Flow ——►												MSB ↓				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C N T	A 1	A 2	A 3	A 4	A 5	A 6	A 7	N 1	N 2	N 3	N 4	N 5	N 6	N 7	N 8	N 9	N 10	N 11

CNT : Control bit

[Table 1]

N1 to N11 : Divide ratio setting bits for the programmable counter (3 to 2,047)

[Table 3]

A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)

[Table 4]

Note: Data input with MSB first.

Table 2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio (R)	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
		•	•		•		•		•	•	•		•	•
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.

Table 3. Binary 11-bit Programmable Counter Data Setting

Divide ratio (N)	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.

Table 4. Binary 7-bit Swallow Counter Data Setting

			•				
Divide ratio (A)	A7	A 6	A 5	A 4	А3	A2	A1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
		•	•	•	•	•	
127	1	1	1	1	1	1	1

Table 5. Prescaler Data Setting

SW	Prescaler divide ratio
Н	32/33
L	64/65

Table 6. Charge Pump Current Setting

CS	Current value
Н	±6.0 mA
L	±1.5 mA

Table 7. LD/fout Output Select Data Setting

LDS	LD/fouт output signal
Н	fout signal
L	LD signal

(2) Relation between the FC Input and Phase Characteristics

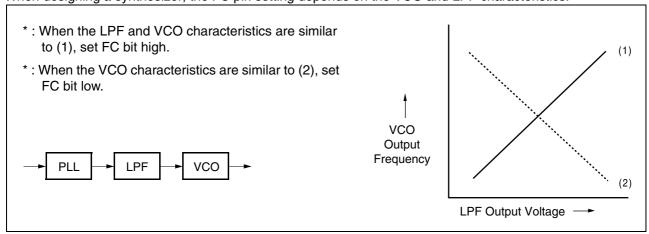

The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level (Do) and the phase comparator output (ϕ R, ϕ P) are reversed according to the FC bit. Also, the monitor pin (fout) output is controlled by the FC bit. The relationship between the FC bit and each of Do, ϕ R, and ϕ P is shown below.

Table 8. FC Bit Data Setting (LDS = "H")

	FC = High				FC = Low			
	Do	φR	φР	LD/fout	Do	φR	φР	LD/fout
fr > f⊦	Н	L	L		L	Н	Z*	
fr < f₽	L	Н	Z*	fout = fr	Н	L	L	fout = fp
fr = f₽	Z*	L	Z*		Z*	L	Z*	

^{*:} High-Z

When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.

3. Do Output Control

Table 9. ZC Pin Setting

ZC pin	Do output
Н	Normal output
L	High impedance

4. Power Saving Mode (Intermittent Mode Control Circuit)

Table 10. PS Pin Setting

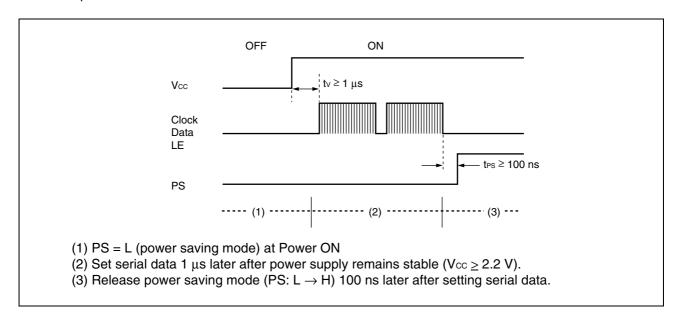
PS pin	Status
Н	Normal mode
L	Power saving mode

The intermittent mode control circuit reduces the PLL power consumption.

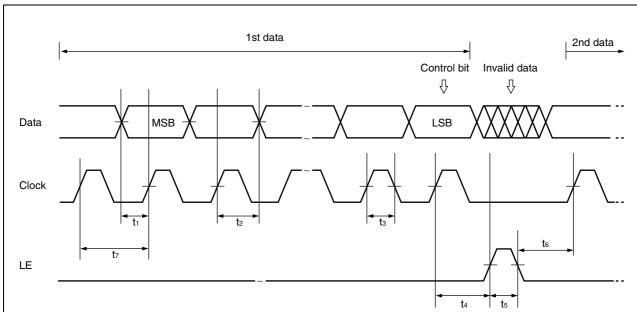
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.

The phase detector output, Do, becomes high impedance.

For the signal PLL, the lock detector, LD, remains high, indicating a locked condition.


Setting the PS pin high, releases the power saving mode, and the device works normally.

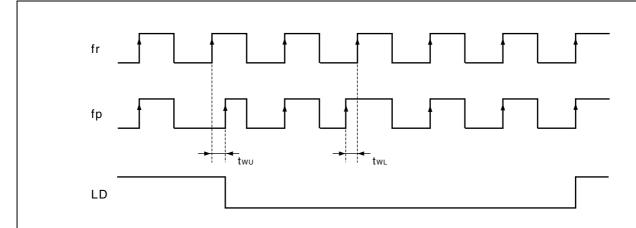
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time.


To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.

When power (V_{CC}) is first applied, the device must be in standby mode, PS = Low, for at least 1 μ s.

Note: PS pin must be set "L" for Power-ON.

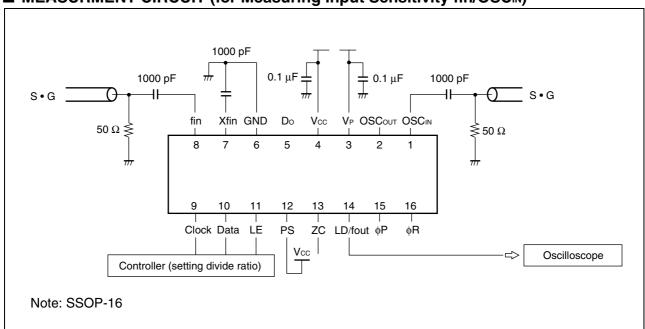
■ SERIAL DATA INPUT TIMING


On the rising edge of the clock, one bit of data is transferred into the shift register.

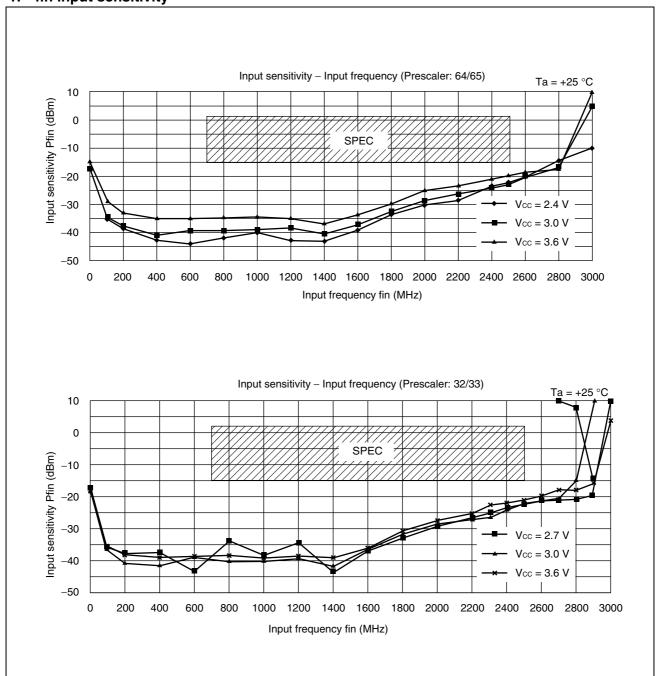
Parameter	Min	Тур	Max	Unit
t ₁	20	_	ı	ns
t 2	20	_	1	ns
t 3	30	_	-	ns
t ₄	30	_	_	ns

Parameter	Min	Тур	Max	Unit
t 5	100	-	-	ns
t 6	20	_	_	ns
t ₇	100	_	_	ns

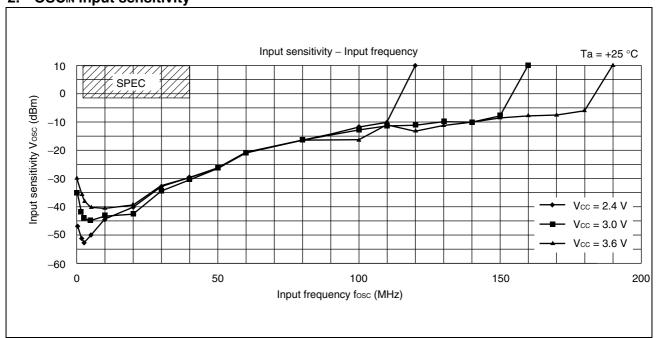
Note: LE should be "L" when the data is transferred into the shift register.


■ PHASE COMPARATOR OUTPUT WAVEFORM

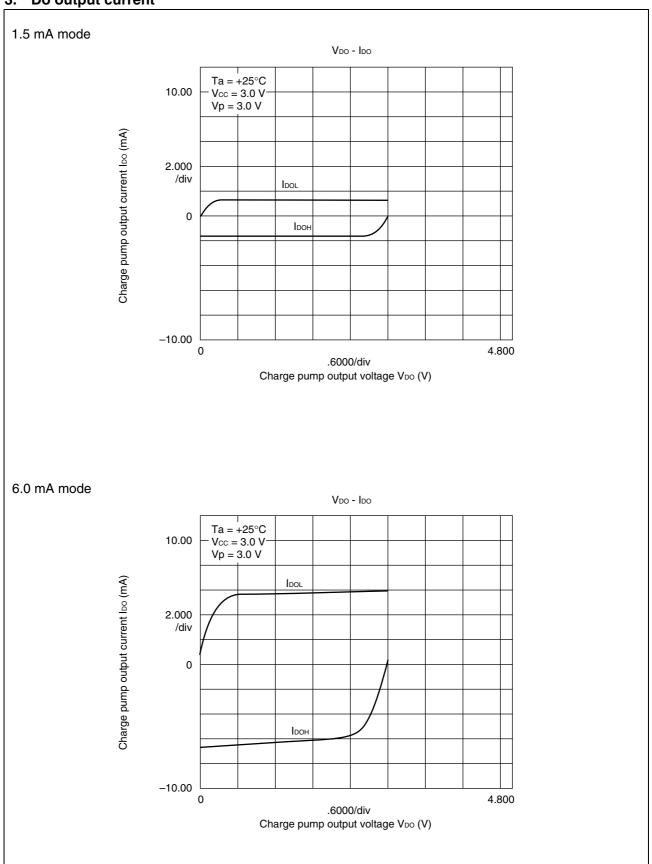
Notes : • Phase error detection range: -2π to $+2\pi$

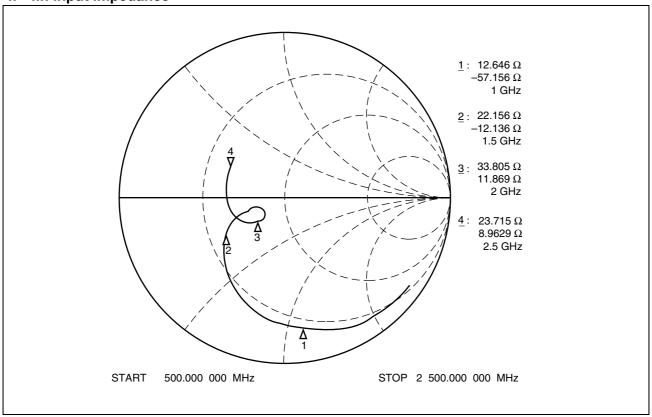

- Pulses on Do signal during locked state are output to prevent dead zone.
- LD output becomes low when phase is two or more. LD output becomes high when phase error is two or less and continues to be so for three cycles or more.
- twu and twL depend on OSC_{IN} input frequency.
 twu ≥ 2/fosc (s) (e. g. twu ≥ 156.3 ns, fosc = 12.8 MHz)
 twu ≤ 4/fosc (s) (e. g. twL ≤ 312.5 ns, fosc = 12.8 MHz)
- LD becomes high during the power saving mode (PS = "L").

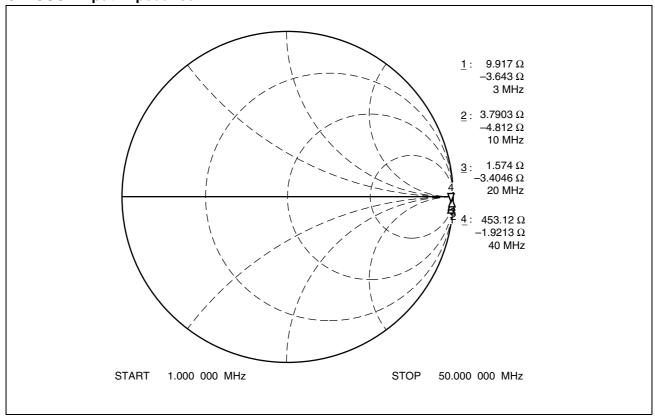
■ MEASURMENT CIRCUIT (for Measuring Input Sensitivity fin/OSC_{IN})

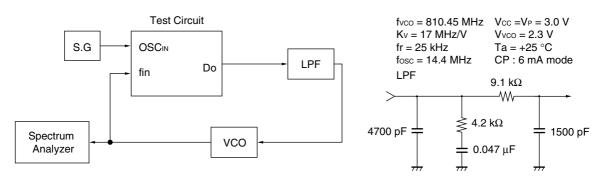


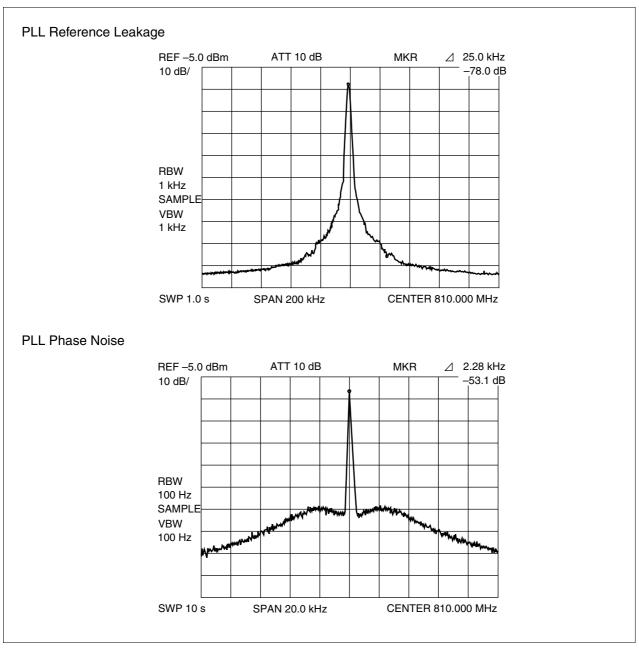
■ TYPICAL CHARACTERISTICS

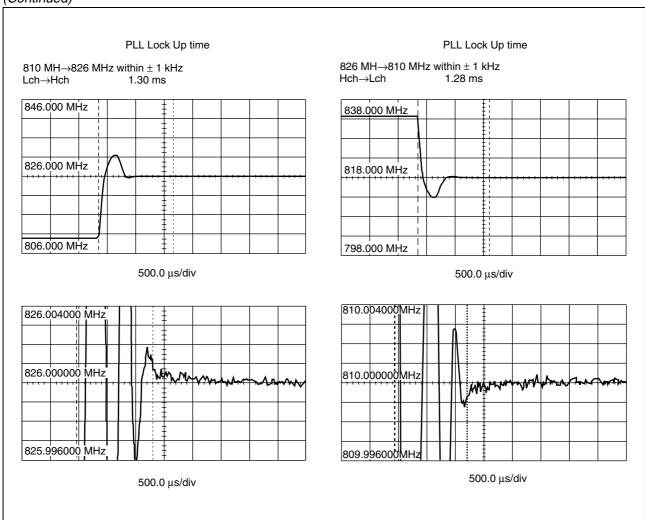

1. fin input sensitivity

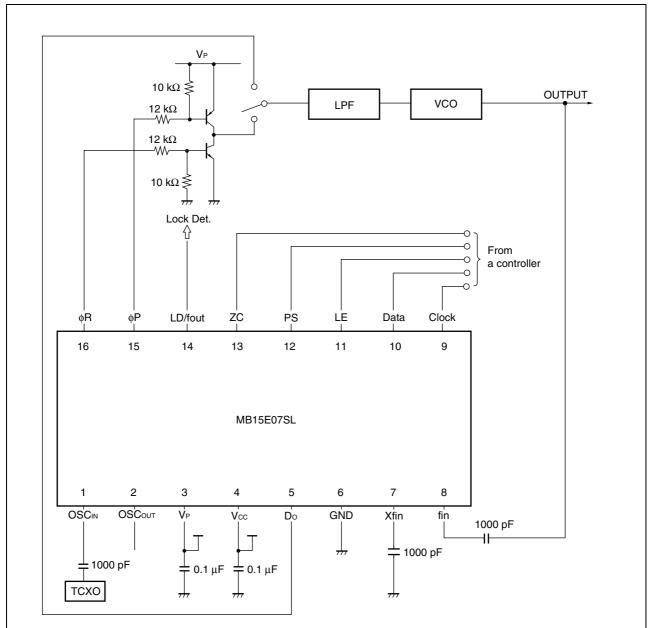

2. OSC_{IN} input sensitivity


3. Do output current


4. fin input impedance




5. OSC_{IN} input impedance


■ REFERENCE INFORMATION

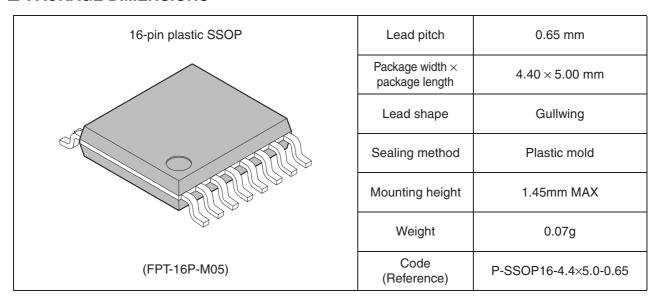
■ APPLICATION EXAMPLE

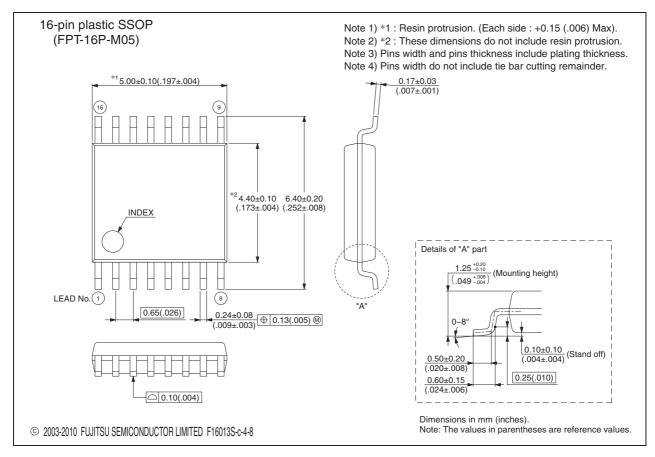
V_P: 5.5 V Max

Notes: • SSOP-16

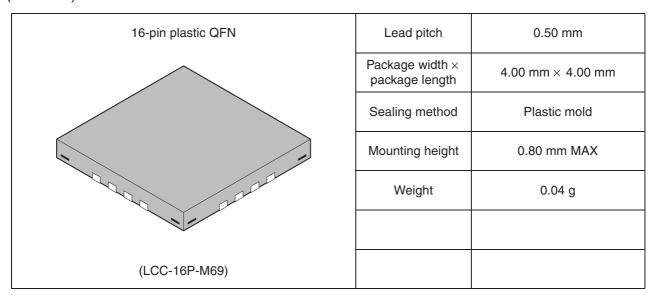
• In case of using a crystal resonator, it is necessary to optimize matching between the crystal and this LSI, and perform detailed system evaluation. It is recommended to consult with a supplier of the crystal resonator. (Reference oscillator circuit provides its own bias, feedback resistor is $100 \text{ k}\Omega$ (Typ).)

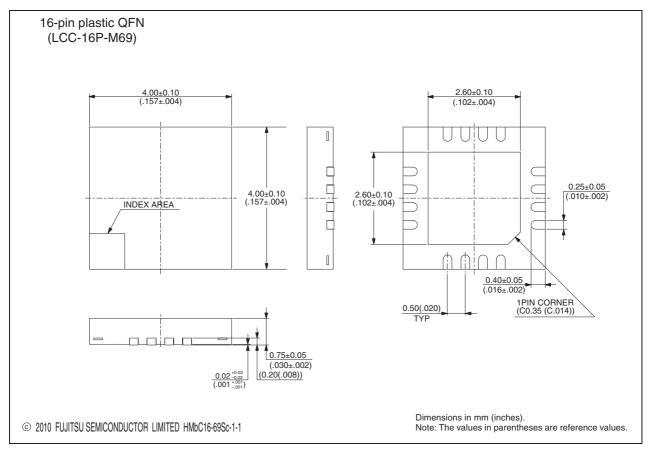
■ USAGE PRECAUTIONS


To protect against damage by electrostatic discharge, note the following handling precautions:


- -Store and transport devices in conductive containers.
- -Use properly grounded workstations, tools, and equipment.
- -Turn off power before inserting device into or removing device from a socket.
- -Protect leads with a conductive sheet when transporting a board-mounted device.

■ ORDERING INFORMATION


Part number	Package	Remarks
MB15E07SLPFV1	16-pin, Plastic SSOP (FPT-16P-M05)	
MB15E07SLWQN	16-pin plastic QFN (LCC-16P-M69)	


■ PACKAGE DIMENSIONS

(Continued)

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/