## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MB39A123
Embedded in Tomorrow"

## Description

MB39A123 is a 6-channel DC/DC converter IC using pulse width modulation (PWM) , and it is suitable for up conversion, down conversion, and up/down conversion. MB39A123 is built in 6 channels into LQFP-48P package and this IC can control and soft-start at each channel. MB39A123 is suitable for power supply of high performance potable instruments such as a digital still camera (DSC).

## Features

■ Supports for step-down with synchronous rectification (ch.1)
■ Supports for step-down and up/down Zeta conversion (ch. 2 to ch.4)
■ Supports for step-up and up/down Sepic conversion (ch.5, ch.6)
■ Negative voltage output (Inverting amplifier) (ch.4)
■ Low voltage start-up (ch.5, ch.6) : 1.7 V
■ Power supply voltage range : 2.5 V to 11 V
■ Reference voltage : $2.0 \mathrm{~V} \pm 1 \%$
■ Error amplifier reference voltage : $1.0 \mathrm{~V} \pm 1 \%$ (ch.1) , $1.23 \mathrm{~V} \pm$ 1\% (ch. 2 to ch.6)

■ Oscillation frequency range : 200 kHz to 2.0 MHz

■ Standby current : $0 \mu \mathrm{~A}$ (Typ)
■ Built-in soft-start circuit independent of loads
■ Built-in totem-pole type output for MOS FET
■ Short-circuit detection capability by external signal (-INS terminal)

- Package : LQFP-48 pin


## Applications

- Digital still camera (DSC)
- Digital video camera (DVC)

■ Surveillance camera etc.

## Block Diagram



## Contents

Pin Assignments ..... 4
Pin Descriptions ..... 5
Absolute Maximum Ratings ..... 6
Recommended Operating Conditions ..... 7
Electrical Characteristics ..... 8
Typical Characteristics ..... 11
Functional Description ..... 15
DC/DC Converter Function ..... 15
Channel Control Function ..... 15
Protection Function ..... 16
Setting the Output Voltage ..... 17
Setting the Triangular Wave Oscillation Frequency ..... 18
Setting the Soft-Start Time ..... 19
Processing When Not Using CS Terminal ..... 20
Setting the Time Constant for Timer-Latch
Short-Circuit Protection Circuit ..... 21
Processing When Not Using CSCP Terminal ..... 22
Setting the Dead Time (ch. 2 to ch.6) ..... 23
Processing When Not Using ch. 4 INV AMP ..... 25
Operation Explanation when CTL Turns ON and OFF ..... 26
About Low-Voltage Operation ..... 29
I/O Equivalent Circuit ..... 30
Usage Precautions ..... 31
Ordering Information ..... 32
EV Board Ordering Information ..... 32
RoHS Compliance information of Pb-free Version ..... 32
Marking Format (Pb-free Version) ..... 32
Labeling Sample (Pb-free Version) ..... 33
MB39A123PMT Recommended Conditions of
Moisture Sensitivity Level ..... 33
Mounting Conditions ..... 34
Package Dimensions ..... 35
Document History Page ..... 36
Sales, Solutions, and Legal Information ..... 37
Worldwide Sales and Design Support ..... 37
Products ..... 37
PSoC®Solutions ..... 37
Cypress Developer Community ..... 37
Technical Support ..... 37

MB39A123

## Pin Assignments



## Pin Descriptions

| Block Name | Pin No. | Pin Name | I/O | Description |
| :---: | :---: | :---: | :---: | :---: |
| ch. 1 | 37 | FB1 | O | ch.1: Error amplifier output terminal |
|  | 38 | -INE1 | I | ch.1: Error amplifier inverted input terminal |
|  | 39 | CS1 | - | ch.1: Soft-start setting capacitor connection terminal |
|  | 35 | OUT1-1 | O | ch.1: P-ch drive output terminal (External main side FET gate driving) |
|  | 34 | OUT1-2 | O | ch.1: N -ch drive output terminal (External synchronous rectification side FET gate driving) |
| ch. 2 | 43 | DTC2 | 1 | ch.2: Dead time control terminal |
|  | 42 | FB2 | O | ch.2: Error amplifier output terminal |
|  | 41 | -INE2 | 1 | ch.2: Error amplifier inverted input terminal |
|  | 40 | CS2 | - | ch.2: Soft-start setting capacitor connection terminal |
|  | 33 | OUT2 | O | ch.2: P-ch drive output terminal |
| ch. 3 | 44 | DTC3 | 1 | ch.3: Dead time control terminal |
|  | 45 | FB3 | O | ch.3: Error amplifier output terminal |
|  | 46 | -INE3 | I | ch.3: Error amplifier inverted input terminal |
|  | 47 | CS3 | - | ch.3: Soft-start setting capacitor connection terminal |
|  | 32 | OUT3 | O | ch.3: P-ch drive output terminal |
| ch. 4 | 14 | DTC4 | 1 | ch.4: Dead time control terminal |
|  | 15 | FB4 | O | ch.4: Error amplifier output terminal |
|  | 16 | -INE4 | 1 | ch.4: Error amplifier inverted input terminal |
|  | 17 | CS4 | - | ch.4: Soft-start setting capacitor connection terminal |
|  | 31 | OUT4 | O | ch.4: P-ch drive output terminal |
|  | 19 | -INA | 1 | Inverting amplifier input terminal |
|  | 18 | OUTA | O | Inverting amplifier output terminal |
| ch. 5 | 23 | DTC5 | 1 | ch.5: Dead time control terminal |
|  | 22 | FB5 | O | ch.5: Error amplifier output terminal |
|  | 21 | -INE5 | 1 | ch.5: Error amplifier inverted input terminal |
|  | 20 | CS5 | - | ch.5: Soft-start setting capacitor connection terminal |
|  | 30 | OUT5 | O | ch.5: N-ch drive output terminal |
| ch. 6 | 24 | DTC6 | 1 | ch.6: Dead time control terminal |
|  | 25 | FB6 | O | ch.6: Error amplifier output terminal |
|  | 26 | -INE6 | 1 | ch.6: Error amplifier inverted input terminal |
|  | 27 | CS6 | - | ch.6: Soft-start setting capacitor connection terminal |
|  | 29 | OUT6 | O | ch.6: N-ch drive output terminal |
| OSC | 12 | CT | - | Triangular wave frequency setting capacitor connection terminal |
|  | 11 | RT | - | Triangular wave frequency setting resistor connection terminal |

Embedded in Tomorrow"

| Block Name | Pin No. | Pin Name | I/O | Description |
| :---: | :---: | :---: | :---: | :---: |
| Control | 1 | CTL | 1 | Power supply control terminal |
|  | 2 | CTL1 | I | ch. 1 control terminal |
|  | 3 | CTL2 | 1 | ch. 2 control terminal |
|  | 4 | CTL3 | 1 | ch. 3 control terminal |
|  | 5 | CTL4 | I | ch. 4 control terminal |
|  | 6 | CTL5 | I | ch. 5 control terminal |
|  | 7 | CTL6 | I | ch. 6 control terminal |
|  | 13 | CSCP | - | Short-circuit detection circuit capacitor connection terminal |
|  | 8 | -INS | I | Short-circuit detection comparator inverted input terminal |
| Power | 36 | VCCO | - | Drive output block power supply terminal |
|  | 48 | VCC | - | Power supply terminal |
|  | 9 | VREF | O | Reference voltage output terminal |
|  | 28 | GNDO | - | Drive output block ground terminal |
|  | 10 | GND | - | Ground terminal |

## Absolute Maximum Ratings

| Parameter | Symbol | Conditions |  | Rating |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
|  |  | Unit |  |  |  |
| Power supply voltage | $\mathrm{V}_{\mathrm{CC}}$ |  | - | 12 | V |
| Output current | $\mathrm{I}_{\mathrm{O}}$ | OUT1-1, OUT1-2, OUT2 to OUT6 terminals | - | 20 | mA |
| Peak output current | $\mathrm{I}_{\mathrm{OP}}$ | OUT1-1, OUT1-2, OUT2 to OUT6 terminals <br> Duty $\leq 5 \%$ | - | 400 | mA |
| Power dissipation | $\mathrm{P}_{\mathrm{D}}$ | $\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$ (LQFP-48P) | - | $2000^{1}$ | mW |
| Storage temperature | $\mathrm{T}_{\mathrm{STG}}$ | - | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |

Warning: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Note

1. When mounted on a $117 \mathrm{~mm} \times 84 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ FR- 4 boards.

MB39A123

## Recommended Operating Conditions

| Parameter | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| Start power supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | ch.5, ch.6, VCC, VCCO terminals | 1.7 | - | 11 | V |
| Power supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | VCC, VCCO terminals | 2.5 | 4 | 11 | V |
| Reference voltage output current | $\mathrm{I}_{\text {REF }}$ | VREF terminal | -1 | - | 0 | mA |
| Input voltage | $V_{\text {INE }}$ | -INE1 to -INE6 terminals | 0 | - | $\mathrm{V}_{\mathrm{CC}}-0.9$ | V |
|  |  | -INA terminal | $-0.2$ | - | $\mathrm{V}_{C C}-1.8$ | V |
|  |  | -INS terminal | 0 | - | $\mathrm{V}_{\text {REF }}$ | V |
|  | $\mathrm{V}_{\text {DTC }}$ | DTC2 to DTC6 terminals | 0 | - | $\mathrm{V}_{\text {REF }}$ | V |
| Control input voltage | $\mathrm{V}_{\text {CTL }}$ | CTL, CTL1 to CTL6 terminals | 0 | - | 11 | V |
| Output current | Io | OUT1-1, OUT1-2, OUT2 to OUT6 terminals | -15 | - | +15 | mA |
| Total gate charge of external FET | Qg | OUT1-1, OUT1-2, OUT2 to OUT6 terminals connection FET fosc $=2 \mathrm{MHz}$ | - | 2.6 | 7.5 | nC |
| Oscillation frequency | $\mathrm{f}_{\text {OSC }}$ | - | 0.2 | 1.0 | 2.0 | MHz |
| Timing capacitor | $\mathrm{C}_{\text {T }}$ | - | 27 | 100 | 680 | pF |
| Timing resistor | $\mathrm{R}_{\text {T }}$ | - | 3.0 | 6.8 | 39 | k $\Omega$ |
| Soft-start capacitor | $\mathrm{C}_{\mathrm{S}}$ | CS1 to CS6 terminals | - | 0.1 | 1.0 | $\mu \mathrm{F}$ |
| Short-circuit detection capacitor | $\mathrm{C}_{\text {SCP }}$ | - | - | 0.1 | 1.0 | $\mu \mathrm{F}$ |
| Reference voltage output capacitor | $\mathrm{C}_{\text {REF }}$ | - | - | 0.1 | 1.0 | $\mu \mathrm{F}$ |
| Operating ambient temperature | Ta | - | -30 | +25 | +85 | ${ }^{\circ} \mathrm{C}$ |

Warning: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

## Electrical Characteristics

$$
\left(\mathrm{VCC}=\mathrm{VCCO}=4 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)
$$

| Parameter |  | Symbol | Pin No. | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  |  | Typ | Max |  |
| Reference Voltage Block [VREF] | Output voltage |  | $\mathrm{V}_{\text {REF1 }}$ | 9 | $\mathrm{VREF}=0 \mathrm{~mA}$ | 1.98 | 2.00 | 2.02 | V |
|  |  | $\mathrm{V}_{\text {REF2 }}$ | 9 | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to 11 V | 1.975 | 2.000 | 2.025 | V |
|  |  | $\mathrm{V}_{\text {REF3 }}$ | 9 | VREF $=0 \mathrm{~mA}$ to -1 mA | 1.975 | 2.000 | 2.025 | V |
|  | Input stability | Line | 9 | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to $11 \mathrm{~V}^{2}$ | - | 2 | - | mV |
|  | Load stability | Load | 9 | VREF $=0 \mathrm{~mA}$ to $-1 \mathrm{~mA}^{2}$ | - | 2 | - | mV |
|  | Temperature stability | $\underset{\mathrm{EF}}{\Delta \mathrm{~V}_{\mathrm{REF}} / \mathrm{V}_{\mathrm{R}}}$ | 9 | $\mathrm{Ta}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{2}$ | - | 0.20 | - | \% |
|  | Short-circuit output current | los | 9 | VREF $=0 \mathrm{~V}^{2}$ | - | -130 | - | mA |
| Under voltage lockout protection circuit block (ch. 1 to ch.4) [UVLO1] | Threshold voltage | $\mathrm{V}_{\text {TH1 }}$ | 35 | $\mathrm{V}_{\mathrm{CC}}=\uparrow$ | 1.7 | 1.8 | 1.9 | V |
|  | Hysteresis width | $\mathrm{V}_{\mathrm{H} 1}$ | 35 | - | 0.05 | 0.1 | 0.2 | V |
|  | Reset voltage | $\mathrm{V}_{\mathrm{RST} 1}$ | 35 | $\mathrm{V}_{\mathrm{CC}}=\downarrow$ | 1.55 | 1.7 | 1.85 | V |
| Under voltage lockout protection circuit Block (ch.5, ch.6) [UVLO2] | Threshold voltage | $\mathrm{V}_{\text {TH2 }}$ | 30 | $\mathrm{V}_{\mathrm{CC}}=\uparrow$ | 1.35 | 1.5 | 1.65 | V |
|  | Hysteresis width | $\mathrm{V}_{\mathrm{H} 2}$ | 30 | - | 0.02 | 0.05 | 0.1 | V |
|  | Reset voltage | $\mathrm{V}_{\mathrm{RST} 2}$ | 30 | $\mathrm{V}_{\mathrm{CC}}=\downarrow$ | 1.27 | 1.45 | 1.63 | V |
| Short-circuit detection Block [SCP] | Threshold voltage | $\mathrm{V}_{\text {TH }}$ | 13 | - | 0.65 | 0.70 | 0.75 | V |
|  | Input source current | $\mathrm{I}_{\text {CSCP }}$ | 13 | - | -1.4 | -1.0 | -0.6 | $\mu \mathrm{A}$ |
| Triangular Wave Oscillator Block [OSC] | Oscillation frequency | fosc1 | 29 to 35 | $\begin{aligned} & \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=6.8 \mathrm{k} \Omega \end{aligned}$ | 0.95 | 1.0 | 1.05 | MHz |
|  |  | fosc2 | 29 to 35 | $\begin{aligned} & \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=6.8 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 11 \mathrm{~V} \end{aligned}$ | 0.945 | 1.0 | 1.055 | MHz |
|  | Frequency Input stability | $\Delta \mathrm{f}_{\mathrm{Osc}} /$ ${ }^{f} \mathrm{f}$ © | 29 to 35 | $\begin{aligned} & \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=6.8 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 11 \mathrm{~V}^{2} \end{aligned}$ | - | 1.0 | - | \% |
|  | Frequency temperature stability | $\Delta \mathrm{f}_{\mathrm{Osc}}{ }^{\prime}$ $f_{\mathrm{OSC}}$ | 29 to 35 | $\begin{aligned} & \mathrm{C}_{\top}=100 \mathrm{pF}, \mathrm{R}_{\top}=6.8 \mathrm{k} \Omega \\ & \mathrm{Ta}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}^{2} \end{aligned}$ | - | 1.0 | - | \% |
| Soft-Start Block (ch. 1 to ch.6) [CS1 to CS6] | Charge current | $\mathrm{I}_{\mathrm{CS}}$ | $\begin{aligned} & 17,20,27, \\ & 39,40,47 \end{aligned}$ | CS1 to CS6 = 0 V | $-1.45$ | -1.1 | $-0.75$ | $\mu \mathrm{A}$ |

## Note

2. Standard design values

| Parameter |  | Symbol | Pin No. | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  |  | Typ | Max |  |
| Error Amp Block (ch.1) <br> [Error Amp1] | Reference voltage |  | $\mathrm{V}_{\text {TH1 }}$ | 38 | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 11 \mathrm{~V} \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$ | 0.990 | 1.000 | 1.010 | V |
|  |  | $\mathrm{V}_{\text {TH2 }}$ | 38 | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 11 \mathrm{~V} \\ & \mathrm{Ta}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}^{2} \end{aligned}$ | 0.988 | 1.000 | 1.012 | V |
|  | Temperature stability | $\Delta \mathrm{V}_{\mathrm{TH}} / \mathrm{V}_{\mathrm{TH}}$ | 38 | $\mathrm{Ta}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}{ }^{2}$ | - | 0.1 | - | \% |
|  | Input bias current | $\mathrm{I}_{\mathrm{B}}$ | 38 | $-\mathrm{INE} 1=0 \mathrm{~V}$ | -120 | -30 | - | nA |
|  | Voltage gain | $A_{V}$ | 37 | DC ${ }^{2}$ | - | 100 | - | dB |
|  | Frequency bandwidth | BW | 37 | $\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB}^{2}$ | - | 1.4 | - | MHz |
|  | Output voltage | $\mathrm{V}_{\mathrm{OH}}$ | 37 | - | 1.7 | 1.9 | - | V |
|  |  | $\mathrm{V}_{\mathrm{OL}}$ | 37 | - | - | 40 | 200 | mV |
|  | Output source current | $I_{\text {SOURCE }}$ | 37 | FB1 $=0.65 \mathrm{~V}$ | - | -2 | -1 | mA |
|  | Output sink current | ISINK | 37 | FB1 $=0.65 \mathrm{~V}$ | 150 | 200 | - | $\mu \mathrm{A}$ |
| Error Amp Block (ch. 2 to ch.6) [Error Amp2 to Error Amp6] | Reference voltage | $\mathrm{V}_{\text {TH3 }}$ | $\begin{gathered} 16,21,26, \\ 41,46 \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 11 \mathrm{~V} \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$ | 1.217 | 1.230 | 1.243 | V |
|  |  | $\mathrm{V}_{\text {TH4 }}$ | $\begin{gathered} 16,21,26, \\ 41,46 \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 11 \mathrm{~V} \\ & \mathrm{Ta}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}^{2} \end{aligned}$ | 1.215 | 1.230 | 1.245 | V |
|  | Temperature stability | $\Delta \mathrm{V}_{\mathrm{TH}} / \mathrm{V}_{\mathrm{TH}}$ | $\begin{gathered} 16,21,26, \\ 41,46 \end{gathered}$ | $\mathrm{Ta}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}{ }^{2}$ | - | 0.1 | - | \% |
|  | Input bias current | $\mathrm{I}_{\mathrm{B}}$ | $\begin{gathered} 16,21,26, \\ 41,46 \end{gathered}$ | -INE2 to -INE6 = 0 V | -120 | -30 | - | nA |
|  | Voltage gain | $A_{V}$ | $\begin{gathered} 15,22,25, \\ 42,45 \end{gathered}$ | $D C^{2}$ | - | 100 | - | dB |
|  | Frequency bandwidth | BW | $\begin{gathered} 15,22,25 \\ 42,45 \end{gathered}$ | $A_{V}=0 \mathrm{~dB}^{2}$ | - | 1.4 | - | MHz |
|  | Output voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{gathered} 15,22,25 \\ 42,45 \end{gathered}$ | - | 1.7 | 1.9 | - | V |
|  |  | $\mathrm{V}_{\mathrm{OL}}$ | $\begin{gathered} 15,22,25, \\ 42,45 \end{gathered}$ | - | - | 40 | 200 | mV |
| Error Amp Block(ch.2 to ch.6)[Error Amp2 to ErrorAmp6] | Output source current | $I_{\text {SOURCE }}$ | $\begin{gathered} 15,22,25 \\ 42,45 \end{gathered}$ | FB2 to FB6 $=0.65 \mathrm{~V}$ | - | -2 | -1 | mA |
|  | Output sink current | $\mathrm{I}_{\text {SINK }}$ | $\begin{gathered} 15,22,25, \\ 42,45 \end{gathered}$ | FB2 to FB6 $=0.65 \mathrm{~V}$ | 150 | 200 | - | $\mu \mathrm{A}$ |
| Inverting Amp Block (ch.4) [Inv Amp] | Input offset voltage | $\mathrm{V}_{1 \mathrm{O}}$ | 18 | OUTA $=1.23 \mathrm{~V}$ | -10 | 0 | +10 | mV |
|  | Input bias current | $\mathrm{I}_{\mathrm{B}}$ | 19 | $-\mathrm{INA}=0 \mathrm{~V}$ | -120 | -30 | - | nA |
|  | Voltage gain | $\mathrm{A}_{V}$ | 18 | $D C^{2}$ | - | 100 | - | dB |
|  | Frequency bandwidth | BW | 18 | $\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB}^{2}$ | - | 1.0 | - | MHz |
|  | Output voltage | $\mathrm{V}_{\mathrm{OH}}$ | 18 | - | 1.7 | 1.9 | - | V |
|  |  | $\mathrm{V}_{\mathrm{OL}}$ | 18 | - | - | 40 | 200 | mV |
|  | Output source current | $\mathrm{I}_{\text {SOURCE }}$ | 18 | OUTA $=1.23 \mathrm{~V}$ | - | -2 | -1 | mA |
|  | Output sink current | $\mathrm{I}_{\text {SINK }}$ | 18 | OUTA $=1.23 \mathrm{~V}$ | 150 | 200 | - | $\mu \mathrm{A}$ |
| PWM Comparator Block (ch.1) [PWM Comp.1] | Threshold voltage | $\mathrm{V}_{\text {T0 }}$ | 34, 35 | Duty cycle $=0 \%$ | 0.35 | 0.4 | 0.45 | V |
|  |  | $\mathrm{V}_{\text {T100 }}$ | 34, 35 | Duty cycle $=100 \%$ | 0.85 | 0.9 | 0.95 | V |


| Parameter |  | Symbol | Pin No. | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  |  | Typ | Max |  |
| PWM Comparator Block (ch. 2 to ch.6) [PWM Comp. 2 to PWM Comp.6] | Threshold voltage |  | $\mathrm{V}_{\text {T0 }}$ | 29 to 33 | Duty cycle $=0 \%$ | 0.35 | 0.4 | 0.45 | V |
|  |  | $\mathrm{V}_{\text {T100 }}$ | 29 to 33 | Duty cycle $=100 \%$ | 0.85 | 0.9 | 0.95 | V |
|  | Maximum duty cycle | Dtr | 29 to 33 | $\begin{aligned} & \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=6.8 \mathrm{k} \Omega \end{aligned}$ | 87 | 92 | 97 | \% |
| Output Block (ch. 1 to ch.6) [Drive1 to Drive6] | Output source current | $\mathrm{I}_{\text {SOURCE }}$ | 29 to 35 | $\begin{aligned} & \text { Duty } \leq 5 \% \\ & \text { OUT }=0 \mathrm{~V} \end{aligned}$ | - | -130 | -75 | mA |
|  | Output sink current | $\mathrm{I}_{\text {SINK }}$ | 29 to 35 | $\begin{aligned} & \text { Duty } \leq 5 \% \\ & \text { OUT }=4 \mathrm{~V} \end{aligned}$ | 75 | 130 | - | mA |
|  | Output on resistor | $\mathrm{R}_{\mathrm{OH}}$ | 29 to 35 | OUT $=-15 \mathrm{~mA}$ | - | 18 | 27 | $\Omega$ |
|  |  | $\mathrm{R}_{\mathrm{OL}}$ | 29 to 35 | OUT $=15 \mathrm{~mA}$ | - | 18 | 27 | $\Omega$ |
|  | Dead time | $t_{\text {D1 }}$ | 34, 35 | OUT2 を - OUT1 飞 ${ }^{2}$ | - | 50 | - | ns |
|  |  | $\mathrm{t}_{\mathrm{D} 2}$ | 34, 35 | OUT1 $\uparrow$ - OUT2 $\wedge^{2}$ | - | 50 | - | ns |
| Short-Circuit <br> Detection Comparator Block [SCP Comp.] | Threshold voltage | $\mathrm{V}_{\text {TH }}$ | 35 | - | 0.97 | 1.00 | 1.03 | V |
|  | Input bias current | $\mathrm{I}_{\mathrm{B}}$ | 8 | -INS $=0 \mathrm{~V}$ | -25 | -20 | -17 | $\mu \mathrm{A}$ |
| Control Block (CTL, CTL1 to CTL6) [CTL, CHCTL] | Output on condition | $\mathrm{V}_{\text {IH }}$ | 1 to 7 | CTL, CTL1 to CTL6 | 1.5 | - | 11 | V |
|  | Output off condition | $\mathrm{V}_{\mathrm{IL}}$ | 1 to 7 | CTL, CTL1 to CTL6 | 0 | - | 0.5 | V |
|  | Input current | $\mathrm{I}_{\text {CTLH }}$ | 1 to 7 | CTL, CTL1 to CTL6 $=3 \mathrm{~V}$ | 5 | 30 | 60 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{I}_{\text {CTLL }}$ | 1 to 7 | CTL, CTL1 to CTL6 $=0 \mathrm{~V}$ | - | - | 1 | $\mu \mathrm{A}$ |
| General | Standby current | ICcs | 48 | CTL, CTL1 to CTL6 $=0 \mathrm{~V}$ | - | 0 | 2 | $\mu \mathrm{A}$ |
|  |  | I ccso | 36 | CTL $=0 \mathrm{~V}$ | - | 0 | 1 | $\mu \mathrm{A}$ |
|  | Power supply current | $\mathrm{I}_{\mathrm{CC}}$ | 48 | $\mathrm{CTL}=3 \mathrm{~V}$ | - | 4.5 | 6.8 | mA |

## Typical Characteristics




MB39A123


MB39A123


Maximum Power Dissipation vs.
Operating Ambient Temperature (for LQFP-48P)


## Functional Description

## DC/DC Converter Function

Reference voltage block (VREF)
The reference voltage circuit uses the voltage supplied from VCC terminal (pin 48) to generate a temperature compensated reference voltage ( 2.0 V Typ) used as the reference voltage for the internal circuits of the IC. It is also possible to supply the load current of up to 1 mA to external circuits as a reference voltage through the VREF terminal (pin 9) .

## Triangular wave oscillator block (OSC)

The triangular wave oscillator block generates the triangular wave oscillation waveform width of 0.4 V lower limit and 0.5 V amplitude by the timing resistor ( $\mathrm{R}_{\mathrm{T}}$ ) connected to the RT terminal (pin 11), and the timing capacitor $\left(\mathrm{C}_{\mathrm{T}}\right)$ connected to the CT terminal (pin 12) . The triangular wave is input to the PWM comparator circuits on the IC.

## Error amplifier block (Error Amp1 to Error Amp6)

The error amplifier detects output voltage of the DC/DC converter and outputs PWM control signals. An arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the output terminal to inverted input terminal of the error amplifier, enabling stable phase compensation for the system.
You can prevent surge currents when the IC is turned on by connecting soft-start capacitors to the CS1 terminal (pin 39) to CS6 terminal (pin 27) which are the noninverting input terminals of the error amplifier. The IC is started up at constant soft-start time intervals independent of the output load of the DC/DC converter.

## PWM comparator block (PWM Comp. 1 to PWM Comp.6)

The PWM comparator block is a voltage-pulse width converter that controls the output duty depending on the input/output voltage.
An output transistor is turned on, during intervals when the error amplifier output voltage and DTC voltage (ch. 2 to ch. 6 ) are higher than the triangular wave voltage.

## Output block (Drive1 to Drive6)

The output circuit uses a totem-pole configuration and is capable of driving an external P-ch MOS FET (main side of ch.1, ch.2, ch. 3 and ch.4) and N -ch MOS FET (synchronous rectification side of ch.1, ch. 5 and ch.6).

## Channel Control Function

Use the CTL terminal (pin 1), CTL1 terminal (pin 2), CTL2 terminal (pin 3), CTL3 terminal (pin 4), CTL4 terminal (pin 5), CTL5 terminal (pin 6), and CTL6 terminal (pin 7) to set ON/OFF to the main and each channels.

Table 1. ON/OFF setting conditions for each channel

| CTL | CTL1 | CTL2 | CTL3 | CTL4 | CTL5 | CTL6 | Power | ch. $\mathbf{1}$ | ch. $\mathbf{2}$ | ch. $\mathbf{3}$ | ch. $\mathbf{4}$ | ch. $\mathbf{5}$ | ch. 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | X | X | X | X | X | X | OFF |
| H | L | L | L | L | L | L | ON | OFF | OFF | OFF | OFF | OFF | OFF |
| H | H | L | L | L | L | L | ON | ON | OFF | OFF | OFF | OFF | OFF |
| H | L | H | L | L | L | L | ON | OFF | ON | OFF | OFF | OFF | OFF |
| H | L | L | H | L | L | L | ON | OFF | OFF | ON | OFF | OFF | OFF |
| H | L | L | L | H | L | L | ON | OFF | OFF | OFF | ON | OFF | OFF |
| H | L | L | L | L | H | L | ON | OFF | OFF | OFF | OFF | ON | OFF |
| H | L | L | L | L | L | H | ON | OFF | OFF | OFF | OFF | OFF | ON |
| H | H | H | H | H | H | H | ON |

Note that current which is over standby current flows into VCC terminal when the CTL terminal is in "L" level and one of the terminals between CTL1 to CTL6 terminals is set to "H" level. (Refer to the following circuit)

Figure 1. CTL1 to CTL6 terminals equivalent circuit


## Protection Function

Timer-latch short-circuit protection circuit (SCP, SCP Comp.)
The short-circuit detection comparator (SCP) detects the output voltage level of each channel. If the output voltage of any channel is lower than the short-circuit detection voltage, the timer circuit is actuated to start charging to the capacitor (Cscp) externally connected to the CSCP terminal (pin 13).
When the capacitor (Cscp) voltage becomes about 0.7 V , the output transistor is turned off and the dead time is set to $100 \%$.
The short-circuit detection from external input is capable by using -INS terminal (pin 8) on short-circuit detection comparator (SCP Comp.) .
When the protection circuit is actuated, the power supply is rebooted or the CTL terminal (pin 1) is set to "L" level, resetting the latch as the voltage at the VREF terminal (pin 9) becomes $1.27 \mathrm{~V}(\mathrm{Min})$ or less (Refer to Setting the Time Constant for Timer-Latch Short-Circuit Protection Circuit on page 21) .

## Under voltage lockout protection circuit block (UVLO)

The transient state or a momentary decrease in the power supply voltage, which occurs when the power supply is turned on, may cause the control IC to malfunction, resulting in the breakdown or degradation of the system. To prevent such malfunctions, under voltage lockout protection circuit detects a decrease in internal reference voltage level with respect to the power supply voltage, turns off the output transistor, and sets the dead time to $100 \%$ while holding the CSCP terminal (pin 13) at the "L" level.

The system returns to the normal state when the power supply voltage reaches the reference voltage of the under voltage lockout protection circuit.

Protection circuit operating function table
The following table shows the output state that the protection circuit is operating.

| Operation circuit | OUT1-1 | OUT1-2 | OUT2 | OUT3 | OUT4 | OUT5 | OUT6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Short-circuit protection circuit | H | L | H | H | H | L | L |
| Under voltage lockout protection circuit | H | L | H | H | H | L | L |

## Setting the Output Voltage



Set R1 and R3 to prevent the error amp's response from decreasing by using above formula.


$$
\begin{aligned}
& V_{O}=\frac{1.23 V}{R 2}(R 1+R 2) \\
& (R 1+R 3) \geq \frac{V_{O}}{100 \mu A}
\end{aligned}
$$

$X$ : Each channel number

Set R1 and R3 to prevent the error amp's response from decreasing by using above formula.
ch. 4 (Negative voltage output)


## Setting the Triangular Wave Oscillation Frequency

The triangular wave oscillation frequency can be set by connecting a timing resistor ( $\mathrm{RT}_{\mathrm{T}}$ ) to the RT terminal (pin 11) and a timing capacitor $\left(\mathrm{C}_{\mathrm{T}}\right)$ to the CT terminal (pin 12).
Triangular wave oscillation frequency : fosc

$$
\mathrm{f}_{\mathrm{OSC}}(\mathrm{kHz}) \doteqdot \frac{680000}{\mathrm{C}_{\mathrm{T}}(\mathrm{pF}) \times \mathrm{R}_{\mathrm{T}}(\mathrm{k} \Omega)}
$$

## Setting the Soft-Start Time

To prevent rush currents when the IC is turned on, you can set a soft-start by connecting soft-start capacitors ( $\mathrm{C}_{\mathrm{S} 1}$ to $\mathrm{C}_{\mathrm{S} 6}$ ) to the CS1 terminal (pin 39) to CS6 terminal (pin 27) respectively.
As illustrated below, when each CTLX is set to "H" from "L", the soft-start capacitors ( $\mathrm{C}_{\mathrm{S} 1}$ to $\mathrm{C}_{\mathrm{S} 6}$ ) externally connected to the CS1 to CS6 terminals are charged at about $1.1 \mu \mathrm{~A}$.
The error amplifier output (FB1 to FB6) is determined by comparison between the lower voltage of the two non-inverted input terminal voltage ( 1.23 V (ch. $1: 1.0 \mathrm{~V}$ ), CS terminal voltage) and the inverted input terminal voltage ( -INE 1 to -INE 6 ). The FB terminal voltage is decided for the soft-start period (CS terminal voltage $<1.23 \mathrm{~V}(c h .1: 1.0 \mathrm{~V})$ ) by the comparison between -INE terminal voltage and CS terminal voltage. The DC/DC converter output voltage rises in proportion to the CS terminal voltage as the soft-start capacitor externally connected to the CS terminal is charged. The soft-start time is obtained from the following formula :
Soft-start time : ts (time until output voltage $100 \%$ )

$$
\begin{array}{ll}
\text { ch. } 1 & : \text { ts }(\mathrm{s}) \doteqdot 0.91 \times \mathrm{C}_{\mathrm{S} 1}(\mu \mathrm{~F}) \\
\text { ch. } 2 \text { to ch. } 6 & : \text { ts }(\mathrm{s}) \doteqdot 1.12 \times \mathrm{C}_{\mathrm{SX}}(\mu \mathrm{~F})
\end{array}
$$

$X$ : Each channel number


MB39A123

## Processing When Not Using CS Terminal

When soft-start function is not used, leave the CS1 terminal (pin 39), the CS2 terminal (pin 40), the CS3 terminal (pin 47), the CS4 terminal (pin 17), the CS5 terminal (pin 20) and the CS6 terminal (pin 27) open.

Figure 2. When not setting soft-start time


## Setting the Time Constant for Timer-Latch Short-Circuit Protection Circuit

Each channel uses the short-circuit detection comparator (SCP) to always compare the error amplifier's output level to the reference voltage.
While DC/DC converter load conditions are stable on all channels, the short-circuit detection comparator output remains at " $\llcorner$ " level, and the CSCP terminal (pin 13) is held at " L " level.
If the load condition on a channel changes rapidly due to a short-circuit of the load, causing the output voltage to drop, the output of the short-circuit detection comparator on that channel goes to "H" level.
This causes the external short-circuit protection capacitor $\mathrm{C}_{\text {SCP }}$ connected to the CSCP terminal (pin 13) to be charged at $1 \mu \mathrm{~A}$.
Short-circuit detection time : $\mathrm{t}_{\mathrm{CSCP}}$
$\mathrm{t}_{\mathrm{CSCP}}(\mathrm{s}) \doteqdot 0.70 \infty \mathrm{C}_{\text {SCP }}(\mu \mathrm{F})$
When the capacitor $\mathrm{C}_{\mathrm{SCP}}$ is charged to the threshold voltage $\left(\mathrm{V}_{\mathrm{TH}} \div 0.70 \mathrm{~V}\right)$, the latch is set to and the external FET is turned off (dead time is set to $100 \%$ ). At this time, the latch input is closed and CSCP terminal (pin 13) is held at " $L$ " level.

The short-circuit detection from external input is capable by using -INS terminal (pin 8). In this case, the short-circuit detection operates when the -INS terminal voltage becomes the level of the threshold voltage ( $\mathrm{V}_{\mathrm{TH}} \div \mathrm{IV}$ ) or less.
Note that the latch is reset as the voltage at the VREF terminal (pin 9) is decreased to 1.27 V (Min) or less by either recycling the power supply or setting the CTL terminal (pin 1) to "L" level.

Figure 3. Timer-latch short-circuit protection circuit


MB39A123

## Processing When Not Using CSCP Terminal

To disable the timer-latch short-circuit protection circuit, connect the CSCP terminal (pin 13) to GND in the shortest distance.
Figure 4. Processing when not using the CSCP terminal


## Setting the Dead Time (ch. 2 to ch.6)

When the device is set for step-up or inverted output based on the step-up, step-up/down Zeta method, step up/down Sepic method, or flyback method, the FB terminal voltage may reach and exceed the triangular wave voltage due to load fluctuation. If this is the case, the output transistor is fixed to a full-ON state (ON duty $=100 \%$ ). To prevent this, set the maximum duty of the output transistor. When the DTC terminal is opened, the maximum duty is $92 \%$ (Typ) because of this IC built-in resistor which sets the DTC terminal voltage. This is based on the following setting: $1 \mathrm{MHz}\left(R_{T}=6.8 \mathrm{k} \Omega / \mathrm{C}_{T}=100 \mathrm{pF}\right)$.
To disable the DTC terminal, connect it to the VREF terminal (pin 9) as illustrated below (when dead time is not set).


To change the maximum duty using external resistors, set the DTC terminal voltage by dividing resistance using the VREF voltage. Refer to Figure 6.
It is possible to set without regard for the built-in resistance value (including tolerance) when setting the external resistance value to $1 / 10$ of the built-in resistance or less.
Note that the VREF load current must be set such that the total current for all the channels does not exceed 1 mA .
When the DTC terminal voltage is higher than the triangular wave voltage, the output transistor is turned on. The formula for calculating the maximum duty is as follows, assuming that the triangular wave amplitude and triangular wave lower limit voltage are about 0.5 V and 0.4 V , respectively.

$$
\begin{aligned}
& \text { DUTY }(\mathrm{ON}) \mathrm{Max} \div \frac{\mathrm{Vdt}-0.4 \mathrm{~V}}{0.5 \mathrm{~V}} \times 100(\%) \\
& \mathrm{Vdt}=\frac{\mathrm{Rb}}{\mathrm{Ra}+\mathrm{Rb}} \times \operatorname{VREF}(\mathrm{V})\left(\text { condition }: \mathrm{Ra}<\frac{\mathrm{R} 1}{10}, \mathrm{Rb}<\frac{\mathrm{R} 2}{10}\right. \text { ) }
\end{aligned}
$$

Note: DUTY obtained by the above-mentioned formula is a calculated value. For setting, refer to "ON Duty cycle vs. DTC terminal voltage".
The maximum duty varies depending on the oscillation frequency, regardless of settings in built-in or external resistors.
(This is due to the dependency of the peak value of a triangular wave on the oscillation frequency and $R_{T}$. Therefore, if $R_{T}$ is greater, the maximum duty decreases, even when the same frequency is used.)
Furthermore, the maximum duty increases when the power supply voltage and the temperature are high. It is therefore recommended to set the duty, based on the Typical Characteristics on page 11 data, so that it does not exceed $95 \%$ under the worst conditions.

Figure 5. ON duty cycle vs. DTC terminal voltage


Figure 6. When dead time is set (Setting by external resistors)


Setting example (for an aim maximum ON duty of $80 \%(\mathrm{Vdt}=0.8 \mathrm{~V}$ ) with $\mathrm{Ra}=13.7 \mathrm{k} \Omega$ and $\mathrm{Rb}=9.1 \mathrm{k} \Omega$ )

- Calculation using external resistors Ra and Rb only

$$
\begin{align*}
& \mathrm{Vdt}=\frac{\mathrm{Rb}}{\mathrm{Ra}+\mathrm{Rb}} \times \mathrm{VREF} \doteqdot 0.80 \mathrm{~V} \\
& \text { DUTY }(\mathrm{ON}) \mathrm{Max} \doteqdot \frac{\mathrm{Vdt}-0.4 \mathrm{~V}}{0.5 \mathrm{~V}} \times 100(\%) \doteqdot 80 \% \ldots \tag{1}
\end{align*}
$$

■ Calculation taking account of the built-in resistor (tolerance $\pm 20 \%$ ) also

$$
\begin{align*}
& \text { Vdt }=\frac{(\mathrm{Rb}, \mathrm{R} 2 \text { Combined resistance })}{(\mathrm{Ra}, \mathrm{R} 1 \text { Combined resistance })+(\mathrm{Rb}, \mathrm{R} 2 \text { Combined resistance })} \times \mathrm{VREF} \div 0.80 \mathrm{~V} \pm 0.13 \% \\
& \text { DUTY }(\mathrm{ON}) \mathrm{Max} \div \frac{\mathrm{Vdt}-0.4 \mathrm{~V}}{0.5 \mathrm{~V}} \times 100(\%) \doteqdot 80 \% \pm 0.2 \% \cdots \text { (2) }
\end{align*}
$$

Based on (1) and (2) above, selecting external resistances to $1 / 10$ th or less of the built-in resistance enables the built-in resistance to be ignored.
As for the duty dispersion, please expect $\pm 5 \%$ at ( $f 0 s c=1 \mathrm{MHz}$ ) due to the dispersion of a triangular wave amplitude.

## Processing When Not Using ch. 4 INV AMP

Short-circuit the - INA terminal (pin 19) and OUTA terminal (pin 18) in the shortest distance when not using ch. 4 INV Amp.
Figure 7. When not using ch. 4 INV Amp


