imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM[™] and SRAM, Traveo[™] microcontrollers, the industry's only PSoC[®] programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense[®] capacitive touch-sensing controllers, and Wireless BLE Bluetooth[®] Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

ASSP (for Mobile Terminals)

Power Management IC for Mobile Terminals 3ch DC/DC Converter + 4ch LDO

MB39C316

DESCRIPTION

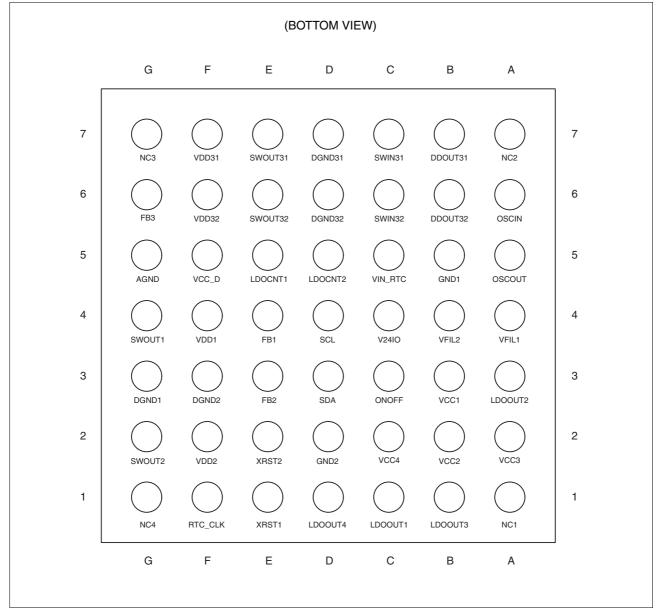
The MB39C316 is equipped with the 3 ch DC/DC converter and the 4 ch linear regulator (LDO), and is the power supply LSI for mobile terminals which operate in the range of power supply voltage with 1-cell Li-ion power by 1ch high efficiency voltage step-up/down DC/DC.

The MB39C316 contains the 2ch synchronous rectification DC/DC converter with current mode system and the 1ch voltage step-up/down DC/DC converter. Detecting load current by each DC/DC converter alternates the Normal mode (PWM) with the ECO mode (PFM) automatically.

MB39C316 has the built-in 4ch LDO which is suitable to supply voltage to the system block and the built-in 1ch LDO which generates stable internal reference voltage.

It is possible to control a notice of internal condition, the power supply and reset in order to support the communication interface which is compliant with the I²C bus standard.

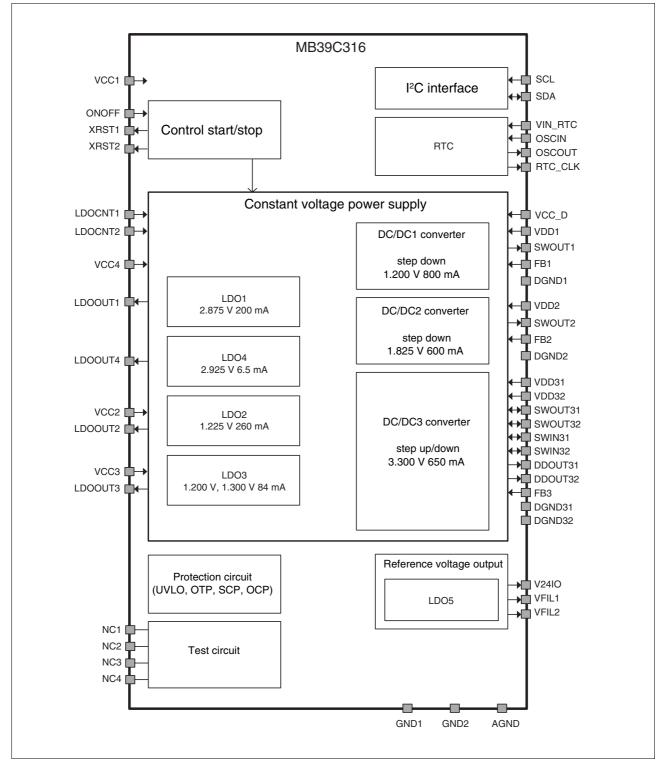
■ FEATURES


- Input voltage range : 2.7 V to 5.5 V
- Step-down regulators : 2 channels
- Step-up/down regulator : 1 channel
- Linear regulator (LDO) : 4 channels
- Possible to select output voltage : LDO3 1.2 V/1.3 V (register setting)
- On/Off control of LDO and DC/DC converter by external signals and register settings
- Compliant with I²C bus standard (Max 400 kbps)
- · Possible to output the 32.768 kHz clock by connecting crystal oscillator
- Protection function: Over current protection (OCP), Output short circuit protection (SCP),
 - Under voltage lock out protection (UVLO), Over temperature protection (OTP)
- Package : 49 pin, WL-CSP (3.14 mm × 3.11 mm × 0.8 mm)

■ APPLICATIONS

- Mobile WiMAX terminals
- Other mobile terminals etc.

■ PIN ASSIGNMENT



■ PIN DISCRIPTIONS

Block	Pin No.	Pin name	I/O	Descriptions
	B3	VCC1	I	Power supply input, Power supply input pin for LDO2, LDO3 control
	B2	VCC2	Ι	Power supply input pin for LDO2 power
	A2	VCC3	Ι	Power supply input pin for LDO3 power
External	C2	VCC4	I	Power supply input pin for LDO1, LDO4 control/power
power	F5	VCC_D	I	Power supply input pin for DC/DC converter control
supply	F4	VDD1	I	Power supply input pin for DC/DC1 converter power
	F2	VDD2	I	Power supply input pin for DC/DC2 converter power
	F7	VDD31	I	Power supply input pin 1 for DC/DC3 converter power
	F6	VDD32	I	Power supply input pin 2 for DC/DC3 converter power
	C5	VIN_RTC	I	Power supply input pin for RTC
	E5	LDOCNT1	I	LDO output control input pin 1
	D5	LDOCNT2	I	LDO output control input pin 2
	D1	LDOOUT4	0	LDO4 output pin (+ 2.9 V)
	B1	LDOOUT3	0	LDO3 output pin (+ 1.2 V/1.3 V)
	C1	LDOOUT1	0	LDO1 output pin (+ 2.9 V)
	A3	LDOOUT2	0	LDO2 output pin (+ 1.2 V)
	G4	SWOUT1	0	DC/DC1 converter inductance connection output pin
Constant	E4	FB1	I	DC/DC1 converter output voltage feedback input pin (1.2 V)
voltage	G2	SWOUT2	0	DC/DC2 converter inductance connection output pin
power supply	E3	FB2	I	DC/DC2 converter output voltage feedback input pin (1.8 V)
	E7	SWOUT31		DC/DC3 converter inductance connection pin 1
	E6	SWOUT32		DC/DC3 converter inductance connection pin 2
	C7	SWIN31		DC/DC3 converter inductance connection pin 1
	C6	SWIN32		DC/DC3 converter inductance connection pin 2
	B7	DDOUT31	0	DC/DC3 converter output pin 1
	B6	DDOUT32	0	DC/DC3 converter output pin 2
	G6	FB3	I	DC/DC3 converter output voltage feedback input pin (3.3 V)
I ² C	D4	SCL	I	I ² C interface clock input pin
interface	D3	SDA	I/O	I ² C interface data I/O pin
	A6	OSCIN	I	Input pin for crystal oscillator connection
RTC	A5	OSCOUT	0	Output pin for crystal oscillator connection
	F1	RTC_CLK	0	32.768 kHz Clock output pin
	C3	ONOFF	I	Enable pin for the MB39C316
Start/Stop	E1	XRST1	0	Reset output pin 1
	E2	XRST2	0	Reset output pin 2
	C4	V24IO	0	Power supply output pin for internal 2.4 V I/O
Reference	A4	VFIL1	0	Reference voltage output pin 1 (0.47 µF connected)
voltage	B4	VFIL2	0	Reference voltage output pin 2 (0.47 µF connected)

Block	Pin No.	Pin name	I/O	Descriptions
	A1	NC1		Pin for TEST (Set to Non Connect. Prohibited to connect to others.)
TEST	A7	NC2		Pin for TEST (Set to Non Connect. Prohibited to connect to others.)
1231	G7	NC3		Pin for TEST (Set to Non Connect. Prohibited to connect to others.)
	G1	NC4		Pin for TEST (Set to Non Connect. Prohibited to connect to others.)
	B5	GND1		Ground pin (COMMON, RTC)
	D2	GND2		Ground pin (LDO, INPUT_IF, OUTPUT_IF)
	G5	AGND		Ground pin (DC/DC converter control block)
GND	G3	DGND1		DC/DC1 converter ground pin
	F3	DGND2		DC/DC2 converter ground pin
	D7	DGND31		DC/DC3 converter ground pin 1
	D6	DGND32		DC/DC3 converter ground pin 2

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rat	ing	Unit
Parameter	Symbol	Condition	Min	Max	Onit
	Vmax1	VCC1, VCC_D, VDD1, VDD2, VDD31, VDD32	- 0.3	+ 6.0	V
Power supply voltage	Vmax2	VCC2, VCC3	- 0.3	+ 6.0	V
	Vmax3	VCC4	- 0.3	+ 6.0	V
	Vmax4	VIN_RTC	- 0.3	+ 3.6	V
	Vinmax1	LDOCNT1, LDOCNT2, SCL, SDA	- 0.3	Vvcc3 + 0.3	V
Input voltage	Vinmax2	ONOFF, FB1, FB2, FB3	- 0.3	Vvcc1 + 0.3	V
	Vinmax3	OSCIN	- 0.3	Vrtc	V
Storage temperature range	Tstg		- 55	+ 125	°C
ESD	Vesdh	Human Body Model (100 pF, 1.5 kΩ)	- 1000	+ 1000	V
withstand voltage	Vesdm	Machine Model (200 pF, 0 Ω)	- 100	+ 100	V
latch-up withstand voltage	Vlatchup	EIA/JEDEC Standard	– 150	+ 150	mA

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATION CONDITIONS

their representatives beforehand.

Parameter	Symbol	Condition		Value		Unit
Farameter	Symbol	Condition	Min	Тур	Max	Unit
	Vvcc1	VCC1, VCC_D, VDD1, VDD2, VDD31, VDD32	2.7	3.3	5.5	V
Power supply voltage	Vvcc2	VCC2, VCC3	1.75	_	1.90	V
	Vvcc3	VCC4	3.2	_	5.5	V
	Vrtc	VIN_RTC	2.325		2.475	V
	VIvcc1	ONOFF	0.0	_	Vvcc1	V
	VIvcc3	LDOCNT1, LDOCNT2, SCL, SDA	0.0		Vvcc3	V
Input voltage	VIdd1	FB1	0.0		Voutdd1	V
	VIdd2	FB2	0.0		Voutdd2	V
	VIdd3	FB3	0.0	_	Voutdd3	V
	VIrtc	OSCIN	0.0		Vrtc	V
Operating temperature range	Та		- 30		+ 85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact

■ ELECTRICAL CHARACTERISTICS

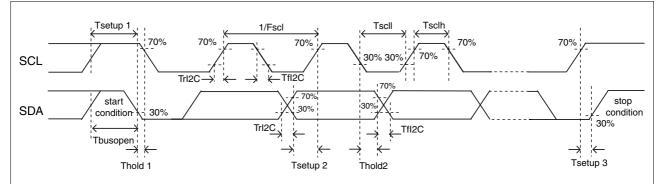
1. DC characteristics

	Devenueter	Quanta d		$cc2 = 1.75 \text{ V}^{-1}$		Value		Unit
	Parameter	Symbol	Symbol Condition		Min	Тур	Max	Unit
	Output voltage	Voutld1	lout = 0 to lomax		2.800	2.875	3.000	V
	Maximum output current	loutId1	_		200			mA
	Input stability	Vlineld1	lout = -10 mA			5		mV
	Load stability	Vloadld1	lout = 0 to lomax		_	20		mV
	Ripple removal	RR1kld1	Vinput = 0.2 Vpp,	f = 1 kHz	_	60		dB
	ratio		Vvcc1 = 3.3 V, lout = lomax/2	f = 10 kHz	_	40	_	dB
	Output noise voltage	Vnoiseld1	f = 10 Hz to 100 kHz, lout = 10 mA to lomax			30	45	μVrms
	Rise time	Trld1	Vvcc1 = 3.3 V, lout = 0 mA, Vout = 90%			200		μs
	Fall time	Tfld1	Vvcc1 = 3.3 V, lout = 0 mA, Vout = 10%			70	_	μs
	Output voltage	Voutld2	lout = 0 to lomax		1.150	1.225	1.300	V
	Maximum output current	loutld2	_	—		_	_	mA
	Input stability	Vlineld2	lout = - 10mA			5		mV
	Load stability	Vloadld2	lout = 0 to lomax			25		mV
	Ripple removal	RR1kld2	Vinput = 0.2 Vpp,	f = 1 kHz		60		dB
LDO2	ratio	RR10kld2	Vvcc1, lout = 1 mA to lomax	f = 10 kHz		40	_	dB
	Output noise voltage	Vnoiseld2		f = 10 Hz to 100 kHz, lout = 10 mA to lomax		30	45	μVrms
	Rise time	Trld2	Vvcc1, lout = 0 mA, Vout = 90%			70		μs
	Fall time	Tfld2	Vvcc1, lout = 0 mA, Vout = 10%			150		μs

 $(Ta = -30 \ ^{\circ}C \ to + 85 \ ^{\circ}C, \ Vvcc1 = 2.7 \ V \ to 5.5 \ V, \ Vvcc3 = 3.2 \ V \ to 5.5 \ V, \ Vvcc2 = 1.75 \ V \ to 1.90 \ V, \ Vrcc = 2.325 \ V \ to 2.475 \ V)$

	Deveryorker	Ormahal	0 an diti an			Value		11
	Parameter	Symbol	Condition		Min	Тур	Max	Unit
	Output voltage	Voutld3	lout = 0 to lomax, VSE "0" (register 02⊦[0])	L_SYN =	1.100	1.200	1.300	V
	Output voltage	Voulids	lout = 0 to lomax, VSEI "1" (register 02⊦[0])	lout = 0 to lomax, VSEL_SYN = "1" (register 02 _H [0])		1.300	1.400	V
	Maximum output current	loutld3		_		_	_	mA
	Input stability	Vlineld3	lout = -10 mA		_	5	_	mV
	Load stability	Vloadld3	lout = 0 to lomax			20		mV
LDO3	Ripple removal	RR1kld3	Vinput = 0.2 Vpp,	f = 1 kHz		60		dB
	ratio	RR10kld3	Vvcc1, lout = 1mA to lomax	f = 10 kHz		40		dB
	Output noise voltage	Vnoiseld3	f = 10 Hz to 100 kHz, lout = 10 mA to lomax		30	40	μVrms	
	Rise time	Trld3	Vvcc1, lout = 0 mA, Vout = 90%			60	_	μs
	Fall time	Tfld3	Vvcc1, lout = 0 mA, Vout = 10%			150		μs
	Output voltage	Voutld4	lout = 0 to lomax		2.850	2.925	3.000	V
	Maximum output current	loutld4	_		6.5			mA
	Input stability	Vlineld4	lout = -6.5 mA		_	5	_	mV
	Load stability	Vloadld4	lout = 0 to lomax			5		mV
	Ripple removal	RR1kld4	Vinput = 0.2 Vpp,	f = 1 kHz		60		dB
LDO4	ratio	RR10kld4	Vvcc1 = Vvcc3 = 3.3 V, lout = 1 mA to lomax	f = 10 kHz		40		dB
	Output noise voltage	Vnoiseld4	f = 10 Hz to 100 kHz, lout = 1 mA to lomax			30	40	μVrms
	Rise time	Trld4		Vvcc1 = Vvcc3 = 3.3 V, lout = 0 mA, Vout = 90%		130		μs
	Fall time	Tfld4	Vvcc1 = Vvcc3 = 3.3 V, lout = 0 mA, Vout = 10%			70		μs

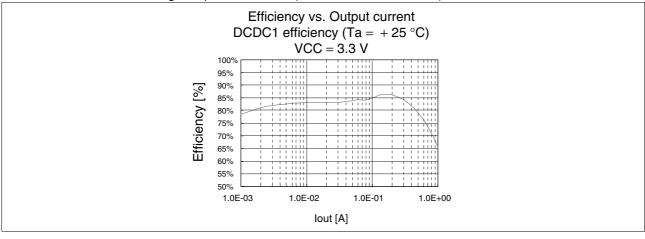
Parameter		Ourse had	O a u diti a u		Value		Unit
Pa	irameter	Symbol	Condition	Min	Тур	Max	Unit
	Output voltage	Voutdd1	lout = 0 to lomax	1.100	1.200	1.300	V
	Maximum output current	loutdd1		800		_	mA
	Output ripple voltage	Vrpldd11	lout = 0 to Iomax		15	_	mV
DC/DC1	Input stability	Vlinedd1	Vvcc1 = 2.7 V to 5.5 V		10		mV
converter	Load stability	Vloaddd1	lout = -1 mA to lomax			20	mV
	Oscillation frequency	Fdd1	PWM mode		1.7	_	MHz
	Efficiency	ηdd1	Vvcc1 = 3.3 V, lout = - 200 mA	75	85	_	%
	Rise time	Trdd1	Vvcc1 = 3.3 V, lout = 0 mA		50	_	μs
	Fall time	Tfdd1	Vvcc1 = 3.3 V, lout = 0 mA		200	_	μs
	Output voltage	Voutdd2	lout = 0 to lomax	1.750	1.825	1.900	V
	Maximum output current	loutdd2		600		_	mA
	Output ripple voltage	Vrpldd21	lout = 0 to lomax		15	_	mV
DC/DC2	Input stability	Vlinedd2	Vvcc1 = 2.7 V to 5.5 V		10		mV
converter	Load stability	Vloaddd2	lout = -1 mA to lomax			20	mV
	Oscillation frequency	Fdd2	PWM mode		1.7	_	MHz
	efficiency	ηdd2	Vvcc1 = 3.3 V, lout = - 200 mA	80	90		%
	Rise time	Trdd2	Vvcc1 = 3.3 V, lout = 0 mA		50	_	μs
	Fall time	Tfdd2	Vvcc1 = 3.3 V, lout = 0 mA		200	_	μs
	Output voltage	Voutdd3	lout = 0 to lomax	3.200	3.300	3.400	V
	Maximum output current	loutdd3		650		_	mA
	Output ripple voltage	Vrpldd31	lout = 0 to lomax		60	_	mV
DC/DC3	Input stability	Vlinedd3	Vvcc1 = 2.7 V to 5.5 V		10		mV
converter	Load stability	Vloaddd3	lout = -1 mA to lomax			30	mV
	Oscillation frequency	Fdd3	PWM mode	_	1.7		MHz
	efficiency	ηdd3	Vvcc1 = 3.3 V, lout = - 200 mA	80	90		%
	Rise time	Trdd3	Vvcc1 = 3.3 V, lout = 0 mA		100		μs
	Fall time	Tfdd3	Vvcc1 = 3.3 V, lout = 0 mA		120		μs

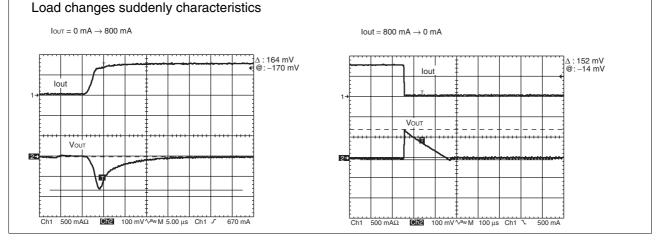

Pai	rameter	Symbol	Condition		Value		Unit
I di		Symbol	Condition	Min	Тур	Max	Onit
		Vil1	ONOFF	0.0	—	0.3 imes Vvcc1	V
	land the set	Vih1	UNOFF	0.7 × Vvcc1		Vvcc1	V
	Input voltage	Vil2		0.0		0.3 × Vvcc3	V
		Vih2	LDOCNT1, LDOCNT2	0.7 × Vvcc3		Vvcc3	V
Start/stop control block	Output	Vol1	XRST1, XRST2, lout = 1 mA	0.0		0.15 × Vvcc3	V
	voltage	Voh1	XRST1, XRST2, lout = -1 mA	$0.85 \times Vvcc3$		Vvcc3	V
	VCC1 power supply detection voltage	Vdetvon	VCC1 rise = 0.1 V/10 μs	2.55	2.6	2.65	V
	VCC1 Voltage for power supply cut-off detection	Vdetvoff	VCC1 fall = 0.3 V/10 μs	2.3	2.4	2.5	V
		Vol32k	RTC_CLK, lout = 0.5 mA	0.0		0.15 × Vrtc	V
	Output voltage	Voh32k	RTC_CLK, lout = - 0.5 mA	0.85 × Vrtc		Vrtc	V
RTC block	Internal oscillation capacitance 1	Cg	OSCIN		10		pF
	Internal oscillation capacitance 2	Cd	OSCOUT		10		pF
	Input voltage	Vil14	SCL, SDA (for input)	0.0		0.3 × Vvcc3	V
I ² C interface	input voltage	Vih14		0.7 × Vvcc3		Vvcc3	V
	Output voltage	Vol18	SDA (for output) lout = 3 mA	0.0		0.4	V
VFIL1,	Output voltage	Vovfil1	VFIL1	1.175	1.225	1.275	V
VFIL2		Vovfil2	VFIL2	0.575	0.60	0.625	V
LDO5	Output voltage	Voutld5	lout = 0 to lomax	2.325	2.40	2.475	V
UVLO	UVLO release voltage	Vuvlod		2.1	2.2	2.3	V
•	UVLO detection voltage	Vuvlor	_	2.0	2.1	2.2	V
Over tem- perature	Detection temperature	Totpd		+ 135	+ 150	+ 165	°C
protection (OTP)	Release temperature	Totpr	_	+ 105	+ 120	+ 135	°C
Output short circuit protection (SCP)	Detection protection time	Tshort	Output = 0.6 V \pm 0.2 V or less	75	100	125	ms

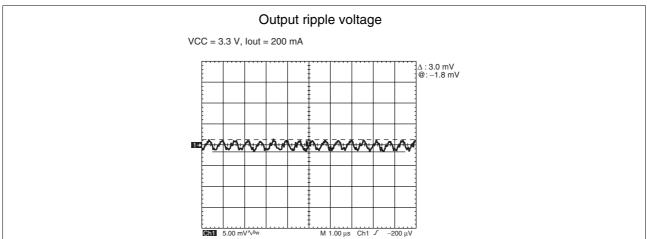
2. AC characteristics

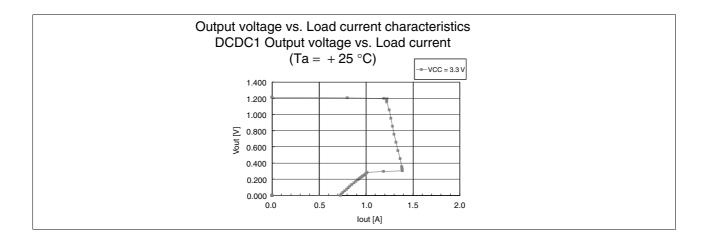
	Parameter	Symbol	Condition		Value		Unit
	Farameter	Symbol	Condition	Min	Тур	Max	Unit
RTC block	Clock frequency	Fck	When using RTC_CLK, and FC_12M (manufac- tured by Epson Toyo- com Corporation) for external crystal.		32.768		kHz
	Clock duty	Rck	When using RTC_CLK, and FC_12M (manufac- tured by Epson Toyo- com Corporation) for external crystal.	25	50	75	%
	Margin for oscillation	Rfm	Rmax = 90 k Ω	10 × Rmax			kΩ
	Clock frequency	Fscl	SCL	_		400	kHz
	Start condition hold time	Thold1	SCL, SDA	0.6	—		μs
	SCL clock L cycle	Tscll	SCL	1.3			μs
	SCL clock H cycle	Tsclh	SCL	0.6			μs
	Start condition set up time	Tsetup1	SCL, SDA	0.6			μs
I²C	Data hold time	Thold2	SCL, SDA	0	—	0.9	μs
interface	Data set up time	Tsetup2	SCL, SDA	0.1			μs
	Stop condition set up time	Tsetup3	SCL, SDA	0.6			μs
	Bus open time between stop condition-start condition	Tbusopen	SDA	1.3	_		μs
	Rise time	Trl2C	SCL, SDA			300	ns
	Fall time	Tfl2C	SCL, SDA			300	ns

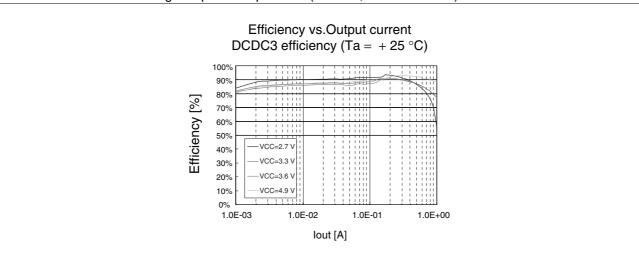
• I²C interface

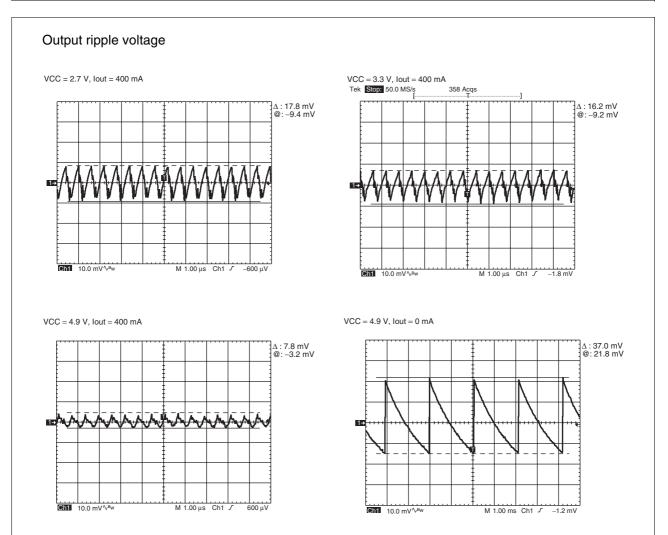


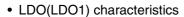

3. Current dissipation

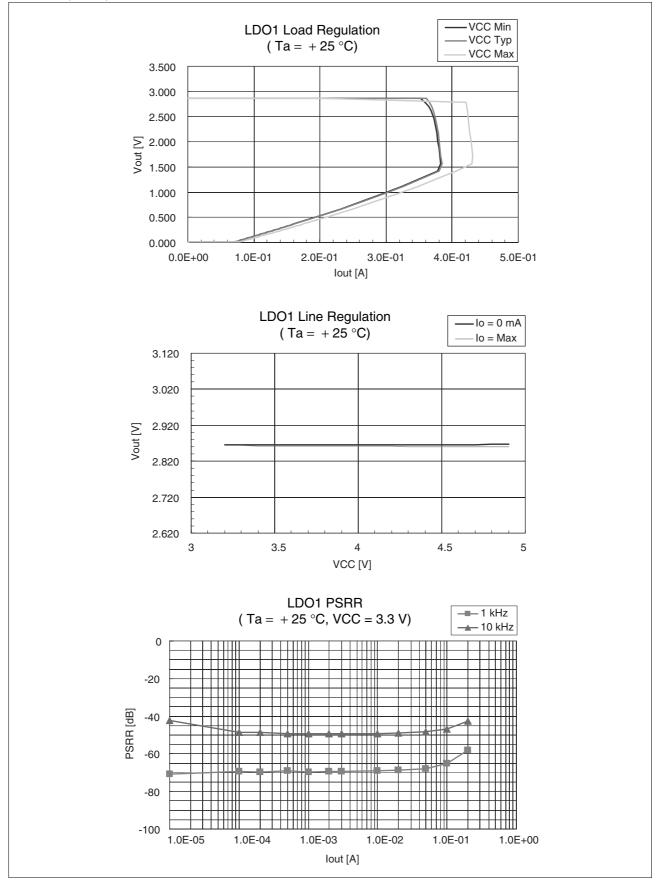

Parameter	Condition	Va	Unit	
	Condition	Тур	Мах	Onit
Standby current	ONOFF : L	150	250	μA
ON current	DC/DC1 converter, DC/DC2 converter : ON (no load) LDO1, LDO2, LDO3, LDO4 : ON (no load)	650	850	μA


■ TYPICAL CHARACTERISTICS


For the reference of design, typical characteristics are shown below.
Characteristics of Voltage step-down DCDC (DCDC1, Vout = 1.200 V)







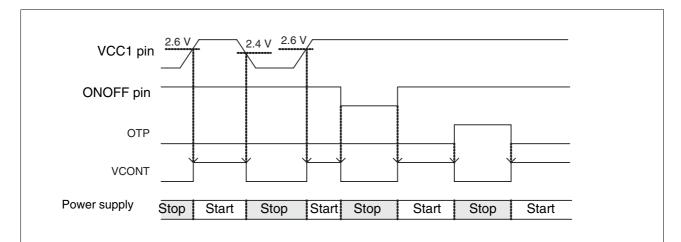
• Characteristics of Voltage step-down/up DCDC (DCDC3, Vout = 3.300 V)

■ START/STOP CONTROL FUNCTION

Conditions of the VCC1 power supply pin and ONOFF, LDOCNT1 and LDOCNT2 pins and the setting of the REON register control the output of the LDO, the DC/DC converter and reset signals (XRST1 and XRST2). Also, the setting of the HRST register controls the output of the reset signal.

1. Conditions for start and stop

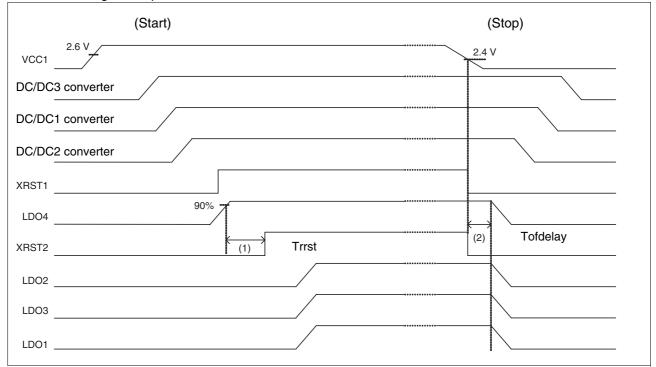
• Conditions for start


When all conditions mentioned below are completed, the LDO and the DC/DC converter will start.

- VCC1 pin input voltage 2.6 V or more
- ONOFF pin input "H"

• Conditions for stop

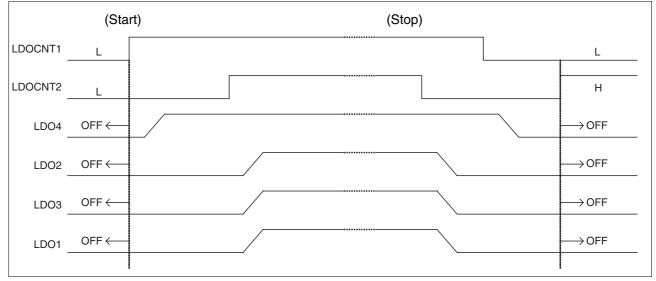
When one of conditions mentioned below occurs, the LDO and the DC/DC converter will stop.


- VCC1 pin input voltage 2.4 V or less
- ONOFF pin input "L"
- When the REON bit in the REON register changes "0" to "1"
- OTP (Over temperature protection) detection

The start and stop status in the constant voltage power supply block by the VCC1 pin input voltage and the ONOFF pin input is reflected to the VCONT bit (address 05_H [0]) in the STATE register.

2. Start/stop sequence by VCC1 power supply pin and ONOFF pin

• When using VCC1 pin

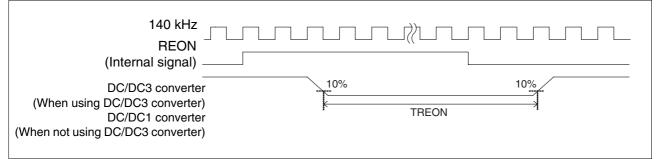

When using ONOFF pin

(Start)	(Stop)
ONOFF	
DC/DC3 converter	
DC/DC1 converter	
DC/DC2 converter	
XRST1	
LDO24	
XRST2 Trrst	(2) Tofdelay
LD02	
LDO3	
LD01	

Parameter	Symbol			Unit	
	Symbol	Min	Тур	Max	Unit
(1)	Trrst	4	5	6	ms
(2)	Tofdelay	150	200	250	μs

3. Start/stop by LDOCNT1 and LDOCNT2 pins (intermittent control)

When the XRST1 and the XRST2 pins are in "H", the LDO starts and stops depending on the conditions of the LDOCNT1 and the LDOCNT2 pins.

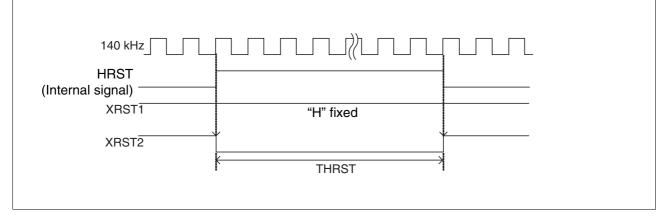


Input co	Input condition		LDO2	LDO3	LDO4	
LDOCNT1	LDOCNT2	LDO1	LDOZ	LDO3	LDO4	
Н	Н	ON	ON	ON	ON	
Н	L	OFF	OFF	OFF	ON	
L	L	OFF	OFF	OFF	OFF	
L	Н	OFF	OFF	OFF	OFF	

4. Start/stop by REON register (Restart power supply)

When "1" is written to the REON bit in the REON register (address 04_{H} [0]), the power supply stops following the sequence and starts again after a fixed period has passed.

The STOPTIMEB bit (address 04_{H} [5:4]) can set the time between the stop of the power supply and the restart of the power supply (calculated by the 140 kHz internal clock). The REON bit is automatically cleared after the time set by the STOPTIMEB bit has passed.


Parameter	STOPTIMEB bit [1:0]			Unit	
		Min	Тур	Max	Unit
	00в	0.8	1.0	1.2	ms
TREON	01в	3.4	4.0	5.2	ms
TREON	10в	6.8	8.0	9.8	ms
	11в	13.6	16.0	19.0	ms

5. Reset control by HRST register

When "1" is written to the HRST bit in the HRST register (address 03_{H} [0]), the output of XRST2 remains at "L" level for a fixed period.

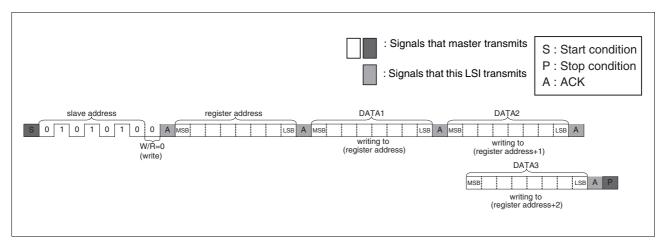
The STOPTIMEA bit (address 03_{H} [5:4]) can set the time for remaining on XRST2 = "L". The HRST bit is automatically cleared after the time set by the STOPTIMEA bit has passed.

Parameter	STOPTIMEA bit		Unit		
	[1:0]	Min	Тур	Max	Omit
	00в	0.8	1.0	1.2	ms
THRST	01в	3.4	4.0	5.2	ms
	10в	6.8	8.0	9.8	ms
	11в	13.6	16.0	19.0	ms

■ 32.768 kHz OUTPUT (CMOS output)

If the crystal oscillator is connected to the OSCIN and the OSCOUT pins, the 32.768 kHz clock can be output from the RTC_CLK pin.

■ I²C INTERFACE

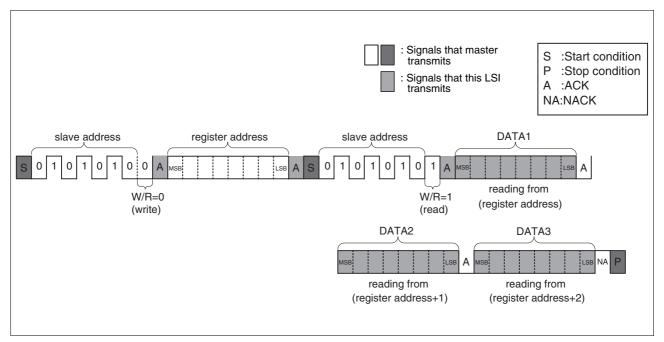

This is the interface which is compliant with the I²C bus standard. The internal register data are read and write to the internal register data via two bidirectional bus lines which are the serial data line (SDA) and the serial clock line (SCL).

The MB39C316 has the following features.

- This LSI is set as slave, so the LSI cannot be set to master.
- The slave address is "2AH".
- Supports high speed mode (Max 400 kbps)

1. Writing flow

- (1) Detect start condition
- (2) Receive slave address ("2AH") and W/R bit ("0")
- (3) Transmit ACK
- (4) Receive register address
- (5) Transmit ACK
- (6) Receive write data
- (7) Transmit ACK
- (8) Increase the register address and then go back to (6), when a stop condition is not detected.*
- (9) Communication stops after detecting a stop condition.
- * : Increment stops at address FF_H and keeps at FF_H. The flow does not go back to 00_H.



Notes : • If the register address which does not exist or the bit which are not assigned is specified, ACK will be returned, but data will not be written.

• If writing is set to the Read Only address, ACK will not be returned, but data will not be written.

2. Reading flow

- (1) Detect start condition
- (2) Receive slave address (" $2A_H$ ") and W/R bit ("0")
- (3) Transmit ACK
- (4) Receive register address
- (5) Transmit ACK
- (6) Detect start condition
- (7) Receive slave address ("2AH") and W/R bit ("1")
- (8) Transmit ACK
- (9) Transmission of read data
- (10) Increase the register address and then go back to (9).* If [1] ACK is received. Release the bus if [2] NACK is received.
- (11) Communication stops after detecting a stop condition.
- * : Increment stops at address FFH and keeps FFH. Increment does not go back to 00H.

Note : If the register address which does not exist and the bit which does not execute the bit assign are specified, read data becomes "0".

REGISTERS

1. Address allocation

Ad- dress	Turne	Register name	W/R				Register	Contents				Default
(hex)	Туре	(function)	W/n	D7	D6	D5	D4	D3	D2	D1	D0	value
00	Reset	SRST (Soft reset control)	*	RSTDET	—	—	—	—	—	—	SRST	0000 0000
01	Version	VERSION (Information about versions)	R	_	_		_	VER3	VER2	VER1	VER0	0000 0011
02	Constant voltage power supply	VSEL_SYN (LDO voltage setting)	WR	_	_	_	_	_	_	_	VSEL_SYN	0000 0000
03	Reset	HRST (Hard reset control)	WR	HRDET	_	STOPTI MEA1	STOPTI MEA0	_	—	—	HRST	0000 0000
04	Power supply control	REON (Control of re-starting power supply)	WR	REDET	_	STOPTI MEB1	STOPTI MEB0	_	_	_	REON	0000 0000
05	Notice of state	STATE (Notice of state)	R	—	_	_	_	CUR_lim	OTP	RTC_OSC	VCONT	0000 0000
06	General	GP (General-purpose register)	WR	GP7	GP6	GP5	GP4	GP3	GP2	GP1	GP0	0000 0000
07-7F		—				_		_				_
80-8B	TEST	reserved (reserved bytes)	_	reserved	reserved	reserved	reserved	reserved	reserved	reserved	reserved	_
8C	—		_	_	_	_	—	_	_	—	—	_

 * : 00_H [D0] is Write only, [D7] is Write/Read.

- Although data which "_" is shown is accessible to read and write, writing is invalid and reading data becomes "0".
- All registers are initialized to the default value by power-on reset.
- Executing the soft reset control initializes all Write registers to the default value. There is a possibility that written data during execution of the soft reset control is not reflected correctly.

'SU

Note : Address 80_{H} to $8B_{\text{H}}$ is mapped on the registers for this LSI test. It is prohibited to write to 80_{H} to $8B_{\text{H}}$ when using this LSI.

2. Functional description

• Soft reset control (Address 00H)

	D7	D6	D5	D4	D3	D2	D1	D0
At Write	RSTDET	—	—	—		—	—	SRST
At Read	RSTDET	0	0	0	0	0	0	0
Default	0	0	0	0	0	0	0	0

bit [7] RSTDET : Register reset history bit

RSTDET	Operation
0	No execution of soft reset control (Read)/RSTDET clear bits (Write)
1	Execution of register reset by soft reset control (Read)

This bit saves the execution history of the reset operation by the soft reset control. If the reset operation by the soft reset control is executed, this bit is set to "1".

When clearing this bit, write "00H" to this register.

Writing RSTDET = "1" is ignored.

bit [0] SRST : Register reset bit

SRST	Operation
0	Normal operation
1	Reset the Write register for other than address 00 _H .

If writing "1" to this bit, all Write registers are reset, and the read value for address 00_{H} is " 80_{H} ". The reset state will be remained for about 15 µs after writing SRST = "1". This bit is for the write only and the read value is always "0".

- Notes : If RSTDET = "0" and SRST = "1" are written simultaneously, RSTDET = "0" is ignored. The reset operation by SRST = "1" is executed and the RSTDET bit is set to "1".
 - There is a possibility that written data during the soft reset control execution is not written correctly.

• Information about versions (Address 01H)

	D7	D6	D5	D4	D3	D2	D1	D0	
At Write	_	_		_	_	_		—	
At Read	0	0	0	0	VER3	VER2	VER1	VER0	
Default	0	0	0	0	Fixed value for each version				

bit [3:0] VER : Version display bit

VER	Operation
0000	—
0001	1
0010	2
0011	3
:	:

This register reads information about device's versions.

• LDO voltage setting (Address 02_H)

	D7	D6	D5	D4	D3	D2	D1	D0
At Write	_	—	—	_	—	_	—	VSEL_SYN
At Read	0	0	0	0	0	0	0	VSEL_SYN
Default	0	0	0	0	0	0	0	0

bit [0] VSEL_SYN : Selection bit of LDO3 voltage

VSEL_SYN	Operation				
0	1.2 V (Typ)				
1	1.3 V (Typ)				

This bit switches output voltage of LDO3.

• Hard reset control (Address 03H)

	D7	D6	D5	D4	D3	D2	D1	D0
At Write	HRDET	—	STOPTIMEA1	STOPTIMEA0				HRST
At Read	HRDET	0	STOPTIMEA1	STOPTIMEA0	0	0	0	HRST
Default	0	0	0	0	0	0	0	0

bit [7] HRDET : HRST history bit

HRDET	Operation	
0	No execution of hard reset control (Read)/HRDET clear bits (Write)	
1	Execution of XRST2 reset by hard reset control (Read)	

This bit saves the execution history of the reset operation by the hard reset control. The reset operation by the hard reset control sets this bit to "1" (same time as re-writing of the HRST bit). Write " 00_{H} " to this register when clearing this bit. Writing HRDET = "1" is ignored.

bit [5:4] STOPTIMEA : XRST2 = "L" time setting bit

STOPTIMEA	Operation
00	1 ms (Typ)
01	4 ms (Typ)
10	8 ms (Typ)
11	16 ms (Typ)

This bit selects the time of XRST2 = "L" by the hard reset control.

bit [0] HRST : HRST Control bit

HRST	Operation
0	Normal operation (Read)
1	Instructions of hard reset control start (Write)

When writing "1" to this bit, the output of the XRST2 pin will remain in "L" for the time set by the STOPTIMEA bit.

This bit is automatically cleared after the time set has passed.

Note : If HRDET = "0" and HRST = "1" are written at the same time, HRDET = "0" is ignored. The reset operation is executed by HRST = "1" and the HRDET bit is set to "1".