: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Memory FRAM

256 K (32 K $\times 8$) Bit I²C

MB85RC256V

- DESCRIPTION

The MB85RC256V is an FRAM (Ferroelectric Random Access Memory) chip in a configuration of 32,768 words $\times 8$ bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells.
Unlike SRAM, the MB85RC256V is able to retain data without using a data backup battery.
The read/write endurance of the nonvolatile memory cells used for the MB85RC256V has improved to be at least 10^{12} cycles, significantly outperforming other nonvolatile memory products in the number.
The MB85RC256V does not need a polling sequence after writing to the memory such as the case of Flash memory or E2PROM.

■ FEATURES

- Bit configuration
- Two-wire serial interface
- Operating frequency
- Read/write endurance
- Data retention
- Operating power supply voltage
- Low-power consumption
- Operation ambient temperature range

$$
:-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

- Package : 8-pin plastic SOP (FPT-8P-M02)

8-pin plastic SOP (FPT-8P-M08)
Both are RoHS compliant
: 32,768 words $\times 8$ bits
: Fully controllable by two ports: serial clock (SCL) and serial data (SDA).
: 1 MHz (Max)
: 10^{12} times / byte
$: 10$ years $\left(+85^{\circ} \mathrm{C}\right)$, 95 years $\left(+55^{\circ} \mathrm{C}\right)$, over 200 years $\left(+35^{\circ} \mathrm{C}\right)$
: 2.7 V to 5.5 V
: Operating power supply current $200 \mu \mathrm{~A}(\mathrm{Max} @ 1 \mathrm{MHz})$ Standby current $27 \mu \mathrm{~A}$ (Typ)

PIN ASSIGNMENT

■ PIN FUNCTIONAL DESCRIPTIONS

Pin Number	Pin Name	Functional Description
1 to 3	A0 to A2	Device Address pins The MB85RC256V can be connected to the same data bus up to 8 devices. Device addresses are used in order to identify each of these devices. Connect these pins to VDD pin or VSS pin externally. Only if the combination of VDD and VSS pins matches Device Address Code inputted from the SDA pin, the device operates. In the open pin state, A0, A1, and A2 pins are internally pulled-down and recognized as the "L" level.
4	VSS	Ground pin
5	SDA	Serial Data I/O pin This is an I/O pin which performs bidirectional communication for both memory address and writing/reading data. It is possible to connect multiple devices. It is an open drain output, so a pull- up resistor is required to be connected to the ex- ternal circuit.
6	SCL	Serial Clock pin This is a clock input pin for input/output timing serial data. Data is sampled on the rising edge of the clock and output on the falling edge.
7	Write Protect pin When the Write Protect pin is the "H" level, the writing operation is disabled. When the Write Protect pin is the "L" level, the entire memory region can be overwritten. The reading operation is always enabled regardless of the Write Protect pin input level. The write protect pin is internally pulled down to VSS pin, and that is recognized as the "L" level (write enabled) when the pin is the open state.	
8	VDD	Supply Voltage pin

BLOCK DIAGRAM

- I ${ }^{2} \mathrm{C}$ (Inter-Integrated Circuit)

The MB85RC256V has the two-wire serial interface; the $I^{2} \mathrm{C}$ bus, and operates as a slave device.
The $I^{2} \mathrm{C}$ bus defines communication roles of "master" and "slave" devices, with the master side holding the authority to initiate control. Furthermore, the $I^{2} \mathrm{C}$ bus connection is possible where a single master device is connected to multiple slave devices in a party-line configuration. In this case, it is necessary to assign a unique device address to the slave device, the master side starts communication after specifying the slave to communicate by addresses.

- ${ }^{2}$ C Interface System Configuration Example

MB85RC256V

- I²C COMMUNICATION PROTOCOL

The $I^{2} C$ bus is a two wire serial interface that uses a bidirectional data bus (SDA) and serial clock (SCL). A data transfer can only be initiated by the master, which will also provide the serial clock for synchronization. The SDA signal should change while SCL is the "L" level. However, as an exception, when starting and stopping communication sequence, SDA is allowed to change while SCL is the " H " level.

- Start Condition

To start read or write operations by the $\mathrm{I}^{2} \mathrm{C}$ bus, change the SDA input from the " H " level to the " L " level while the SCL input is in the " H " level.

- Stop Condition

To stop the ${ }^{2} \mathrm{C}$ bus communication, change the SDA input from the " L " level to the " H " level while the SCL input is in the "H" level. In the reading operation, inputting the stop condition finishes reading and enters the standby state. In the writing operation, inputting the stop condition finishes inputting the rewrite data and enters the standby state.

- Start Condition, Stop Condition

Note: At the write operation, the FRAM device does not need the programming wait time (twc) after issuing the Stop Condition.

ACKNOWLEDGE (ACK)

In the ${ }^{2} \mathrm{C}$ bus, serial data including address or memory information is sent in units of 8 bits. The acknowledge signal indicates that every 8 bits of the data is successfully sent and received. The receiver side usually outputs the "L" level every time on the 9th SCL clock after each 8 bits are successfully transmitted and received. On the transmitter side, the bus is temporarily released to $\mathrm{Hi}-\mathrm{Z}$ every time on this 9th clock to allow the acknowledge signal to be received and checked. During this $\mathrm{Hi}-\mathrm{Z}$ released period, the receiver side pulls the SDA line down to indicate the " L " level that the previous 8 bits communication is successfully received.

In case the slave side receives Stop condition before sending or receiving the ACK "L" level, the slave side stops the operation and enters to the standby state. On the other hand, the slave side releases the bus state after sending or receiving the NACK "H" level. The master side generates Stop condition or Start condition in this released bus state.

- Acknowledge timing overview diagram

The transmitter side should always release SDA on the
9th bit. At this time, the receiver side outputs a pull-down
if the previous 8 bits data are received correctly (ACK re-
sponse).

MB85RC256V

■ DEVICE ADDRESS WORD (Slave address)

Following the start condition, the master inputs the 8 bits device address word to start $\mathrm{I}^{2} \mathrm{C}$ communication. The device address word (8 bits) consists of a device Type code (4 bits), device address code (3 bits), and a read/write code (1 bit).

- Device Type Code (4 bits)

The upper 4 bits of the device address word are a device type code that identifies the device type, and are fixed at "1010" for the MB85RC256V.

- Device Address Code (3 bits)

Following the device type code, the 3 bits of the device address code are input in order of A2, A1, and A0. The device address code identifies one device from up to eight devices connected to the bus.
Each MB85RC256V is given a unique 3 bits code on the device address pin (external hardware pin A2, A1, and $A 0$). The slave only responds if the received device address code is equal to this unique 3 bits code.

- Read/Write Code (1 bit)

The 8th bit of the device address word is the R/W (read/write) code. When the R/W code is " 0 ", a write operation is enabled, and the R/W code is " 1 ", a read operation is enabled for the MB85RC256V.

It turns to a stand-by state if the device code is not "1010" or device address code does not equal to pins A2, A1, and A0.

- Device Address Word

\square Access from master
\square Access from slave
S Start Condition
A ACK (SDA is the "L" level)

■ DATA STRUCTURE

In the $I^{2} \mathrm{C}$ bus, the acknowledge " L " level is output on the 9th bit by a slave, after the 8 bits of the device address word following the start condition are input by a master. After confirming the acknowledge response by the master, the master outputs 8 bits $\times 2$ memory address to the slave. When the each memory address input ends, the slave again outputs the acknowledge "L" level. After this operation, the I/O data follows in units of 8 bits, with the acknowledge "L" level output after every 8 bits.

It is determined by the R/W code whether the data line is driven by the master or the slave. However, the clock line shall be driven by the master. For a write operation, the slave will accept 8 bits from the master, then send an acknowledge. If the master detects the acknowledge, the master will transfer the next 8 bits. For a read operation, the slave will place 8 bits on the data line, then wait for an acknowledge from the master.

■ FRAM ACKNOWLEDGE -- POLLING NOT REQUIRED

The MB85RC256V performs the high speed write operations, so any waiting time for an ACK polling* does not occur.
*: In E²PROM, the Acknowledge Polling is performed as a progress check whether rewriting is executed or not. It is normal to judge by the 9th bit of Acknowledge whether rewriting is performed or not after inputting the start condition and then the device address word (8 bits) during rewriting.

■ WRITE PROTECT (WP)

The entire memory array can be write protected using the Write Protect pin. When the Write Protect pin is set to the "H" level, the entire memory array will be write protected. When the Write Protect pin is the " L " level, the entire memory array will be rewritten. Reading is allowed regardless of the WP pin's "H" level or "L" level.

Note : The Write Protect pin is pulled down internally to the VSS pin, therefore if the Write Protect pin is open, the pin status is detected as the " L " level (write enabled).

- COMMAND

- Byte Write

If the device address word (R/W "0" input) is sent following the start condition, the slave responds with an ACK. After this ACK, write addresses and data are sent in the same way, and the write ends by generating a stop condition at the end.

\square Access from slave

S Start Condition
Pr Stop Condition
A ACK (SDA is the "L" level)
Note : In the MB85RC256V, input " 0 " to the most significant bit of the higher address byte because the address is expressed with 15 bits.

- Page Write

If additional 8 bits are continuously sent after the same command (except stop condition) as Byte Write, a page write is performed. The memory address rolls over to first memory address $\left(000 \mathrm{OH}_{\mathrm{H}}\right)$ at the end of the address. Therefore, if more than 32 Kbytes are sent, the data is overwritten in order starting from the start of the memory address that was written first. Because FRAM performs the high-speed write operations, the data will be written to FRAM right after the ACK response finished.

Note: It is not necessary to take a period for internal write operation cycles from the buffer to the memory after the stop condition is generated.

- Current Address Read

When the previous write or read operation finishes successfully up to the stop condition and assumes the last accessed address is " n ", then the address at " $n+1$ " is read by sending the following command unless turning the power off. If the memory address is last address, the address counter will roll over to 0000 H . The current address in memory address buffer is undefined immediately after the power is turned on.

- Random Read

The one byte of data from the memory address saved in the memory address buffer can be read out synchronously to SCL by specifying the address in the same way as for a write, and then issuing another start condition and sending the Device Address Word (R/W "1" input).
The final NACK (SDA is the " H " level) is issued by the receiver that receives the data. In this case, this bit is issued by the master side.

- Sequential Read

Data can be received continuously following the Device address word (R/W "1" input) after specifying the address in the same way as for Random Read. If the read reaches the end of address, the internal read address automatically rolls over to first memory address 0000 H and keeps reading.

\square Access from master
\square Access from slave
P Stop Condition
A ACK (SDA is the "L" level)
N NACK (SDA is the "H" level)

- Device ID

The Device ID command reads fixed Device ID. The size of Device ID is 3 bytes and consists of manufacturer ID and product ID. The Device ID is read-only and can be read out by following sequences.
a) The master sends the Reserved Slave ID F8н after the START condition.
b) The master sends the device address word after the ACK response from the slave. In this device address word, R/W code are "Don't care" value.
c) The master re-sends the START condition followed by the Reserved Slave ID F9н after the ACK response from the slave.
d) The master read out the Device ID succeedingly in order of Data Byte 1st / 2nd / 3rd after the ACK response from the slave.
e) The master respnds the NACK (SDA is the "H" level) after reading 3 bytes of the Device ID. In case the master respond the ACK after reading 3 bytes of the Device ID, the master re-reading the Device ID from the 1st byte.

Access from master

S Start Condition
P Stop Condition
A ACK (SDA is the "L" level)
N NACK (SDA is the " H " level)

Data Byte 1st								Data Byte 2nd								Data Byte 3rd							
Manufacture ID $=00 \mathrm{~A}_{H}$												Product ID $=51 \mathrm{H}_{\mathrm{H}}$											
11	10	9	8	7	6	5	4	3	2	1	0	11	10	9	8	7	6	5	4	3	2	1	0
Fujitsu Semiconductor												Density $=5_{\mathrm{H}}$				Proprietary use							
0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	0

SOFTWARE RESET SEQUENCE OR COMMAND RETRY

In case the malfunction has occurred after power on, the master side stopped the $I^{2} \mathrm{C}$ communication during processing, or unexpected malfunction has occurred, execute the following (1) software recovery sequence just before each command, or (2) retry command just after failure of each command.
(1) Software Reset Sequence

Since the slave side may be outputting " L " level, do not force to drive " H " level, when the master side drives the SDA port. This is for preventing a bus conflict. The additional hardware is not necessary for this software reset sequence.

Send "Start Condition and one data " 1 "" .
Repeat these 9 times just before Write or Read command.
(2) Command Retry

Command retry is useful to recover from failure response during $I^{2} \mathrm{C}$ communication.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Power supply voltage*	VdD	-0.5	+6.0	V
Input voltage*	VIn	-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5(\leq 6.0)$	V
Output voltage*	Vout	-0.5	VDD $+0.5(\leq 6.0)$	V
Operation ambient temperature	TA	-40	+ 85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55	+ 125	${ }^{\circ} \mathrm{C}$

*: These parameters are based on the condition that VSS is 0 V .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power supply voltage* *	V DD	2.7	-	5.5	V
"H" level input voltage*	V_{IH}	$\mathrm{V}_{\mathrm{DD}} \times 0.8$	-	5.5	V
"L" level input voltage*	V_{IL}	V_{ss}	-	$\mathrm{V}_{\mathrm{DD}} \times 0.2$	V
Operation ambient temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$

*: These parameters are based on the condition that VSS is 0 V .

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges.
Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(within recommended operating conditions)

Parameter	Symbol	Condition	Value			Unit		
			Min	Typ	Max			
Input leakage current*1	\|	Lا		VIN $=0 \mathrm{~V}$ to V_{dd}	-	-	1	$\mu \mathrm{A}$
Output leakage current*2	\|ILO		Vout $=0 \mathrm{~V}$ to V di	-	-	1	$\mu \mathrm{A}$	
Operating power supply current	IDD	SCL $=400 \mathrm{kHz}$	-	-	130	$\mu \mathrm{A}$		
		SCL $=1000 \mathrm{kHz}$	-	-	200	$\mu \mathrm{A}$		
Standby current	Isb	$\begin{aligned} & \hline \text { SCL, SDA = VDD } \\ & \text { WP }=0 \text { V or VDD or Open } \\ & \text { Under Stop Condition } \\ & \hline \end{aligned}$	-	$\begin{gathered} 27 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\mu \mathrm{A}$		
"L" level output voltage	Vol	$\mathrm{loL}=3 \mathrm{~mA}$	-	-	0.4	V		
Input resistance for WP, A0, A1, and A2 pins	Rin	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Max})$	50	-	-	$\mathrm{k} \Omega$		
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\mathrm{Min})$	1	-	-	$\mathrm{M} \Omega$		

*1: Applicable pin: SCL,SDA
*2: Applicable pin: SDA

MB85RC256V

2. AC Characteristics

Parameter	Symbol	Value						Unit
		STANDARD MODE		FAST MODE		$\begin{aligned} & \hline \text { FAST MODE } \\ & \text { PLUS } \end{aligned}$		
		Min	Max	Min	Max	Min	Max	
SCL clock frequency	FSCL	0	100	0	400	0	1000	kHz
Clock high time	Тніян	4000	-	600	-	400	-	ns
Clock low time	Tow	4700	-	1300	-	600	-	ns
SCL/SDA rising time	T_{r}	-	1000	-	300	-	300	ns
SCL/SDA falling time	T_{f}	-	300	-	300	-	100	ns
Start condition hold	Thd:sta	4000	-	600	-	250	-	ns
Start condition setup	Tsu:sta	4700	-	600	-	250	-	ns
SDA input hold	Thd:dat	0	-	0	-	0	-	ns
SDA input setup	Tsu:dat	250	-	100	-	100	-	ns
SDA output hold	Tdн:dat	0	-	0	-	0	-	ns
Stop condition setup	Tsu:sto	4000	-	600	-	250	-	ns
SDA output access after SCL falling	TAA	-	3000	-	900	-	550	ns
Pre-charge time	Tbuf	4700	-	1300	-	500	-	ns
Noise suppression time (SCL and SDA)	Tsp	-	50	-	50	-	50	ns

AC characteristics were measured under the following measurement conditions.
Power supply voltage $: 2.7 \mathrm{~V}$ to 5.5 V
Operation ambient temperature : $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input voltage magnitude $: V_{D D} \times 0.2$ to $V_{D D} \times 0.8$
Input rising time $: 5 \mathrm{~ns}$
Input falling time $: 5 \mathrm{~ns}$
Input judge level : VDo/2
Output judge level : Vod/2
3. AC Timing Definitions

4. Pin Capacitance

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
I/O capacitance	Cı/o	$\begin{gathered} V_{D D}=V_{I N}=V_{\text {OUT }}=0 \mathrm{~V}, \\ \mathrm{f}=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{gathered}$	-	-	15	pF
Input capacitance	Cin		-	-	15	pF

5. AC Test Load Circuit

MB85RC256V

POWER ON/OFF SEQUENCE

Parameter	Symbol	Value		Unit
		Min	Max	
SDA, SCL level hold time during power down	tpd			ns
SDA, SCL level hold time during power up	tpu	85	-	ns
Power supply rising time	tr	0.5	50	ms
Power supply falling time	tf	0.5	50	ms

If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.

■ FRAM CHARACTERISTICS

Item	Min	Max	Unit	Parameter
Read/Write Endurance*1	10^{12}	-	Times/byte	Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$
Data Retention*2	10	-	Years	Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$
	95	-		Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+55^{\circ} \mathrm{C}$
	≥ 200	-		Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+35^{\circ} \mathrm{C}$

*1: Total number of reading and writing defines the minimum value of endurance, as an FRAM memory operates with destructive readout mechanism.
*2 : Minimun values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results.

■ NOTE ON USE

- Data written before performing IR reflow is not guaranteed after IR reflow.
- During the access period from the start condition to the stop condition, keep the level of WP, A0, A1, and A2 pins to the " H " level or the " L " level.

ESD AND LATCH-UP

Test	DUT	Value
ESD HBM (Human Body Model) JESD22-A114 compliant		$\geq\|2000 \mathrm{~V}\|$
ESD MM (Machine Model) JESD22-A115 compliant		$\geq\|200 \mathrm{~V}\|$
ESD CDM (Charged Device Model) JESD22-C101 compliant		-
Latch-Up (I-test) JESD78 compliant	MB85RC256VPNF-G-JNE1	-
Latch-Up (Vsupply overvoltage test) JESD78 compliant		-
Latch-Up (Current Method) Proprietary method		-
Latch-Up (C-V Method) Proprietary method		$\geq\|200 \mathrm{~V}\|$

- Current method of Latch-Up Resistance Test

Note: The voltage Vin is increased gradually and the current lin of 300 mA at maximum shall flow. Confirm the latch up does not occur under $\operatorname{lin}= \pm 300 \mathrm{~mA}$.
In case the specific requirement is specified for I/O and lin cannot be 300 mA , the voltage shall be increased to the level that meets the specific requirement.

MB85RC256V

- C-V method of Latch-Up Resistance Test

Note : Charge voltage alternately switching 1 and 2 approximately 2 sec interval. This switching process is considered as one cycle.
Repeat this process 5 times. However, if the latch-up condition occurs before completing 5times, this test must be stopped immediately.

REFLOW CONDITIONS AND FLOOR LIFE

Item	Condition	
Method	IR (infrared reflow), Convection	
Times	2	
Floor life	Before unpacking	Please use within 2 years after production.
	From unpacking to 2nd reflow	Within 8 days
	In case over period of floor life	Baking with $125^{\circ} \mathrm{C}+/-3^{\circ} \mathrm{C}$ for $24 \mathrm{hrs}+2 \mathrm{hrs} /-0 \mathrm{hrs}$ is required. Then please use within 8 days. (Please remember baking is up to 2 times)
Floor life condition	Between $5^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ and also below $70 \% \mathrm{RH}$ required. (It is preferred lower humidity in the required temp range.)	

Reflow Profile

(a) Average ramp-up rate
: $1^{\circ} \mathrm{C} / \mathrm{s}$ to $4^{\circ} \mathrm{C} / \mathrm{s}$
(b) Preheat \& Soak
: $170^{\circ} \mathrm{C}$ to $190^{\circ} \mathrm{C}, 60 \mathrm{~s}$ to 180 s
(c) Average ramp-up rate
(d) Peak temperature
(d') Liquidous temperature
(e) Cooling
: $1^{\circ} \mathrm{C} / \mathrm{s}$ to $4^{\circ} \mathrm{C} / \mathrm{s}$
: Temperature $260^{\circ} \mathrm{C} \mathrm{Max;} 255^{\circ} \mathrm{C}$ within 10 s
: Up to $230^{\circ} \mathrm{C}$ within 40 s or Up to $225^{\circ} \mathrm{C}$ within 60 s or Up to $220^{\circ} \mathrm{C}$ within 80 s
: Natural cooling or forced cooling

Note : Temperature on the top of the package body is measured.

MB85RC256V

■ RESTRICTED SUBSTANCES

This product complies with the regulations below（Based on current knowledge as of November 2011）．
－EU RoHS Directive（2002／95／EC）
－China RoHS（Administration on the Control of Pollution Caused by Electronic Information Products
（电子信息产品污染控制管理办法）
－Vietnam RoHS（30／2011／TT－BCT）
Restricted substances in each regulation are as follows．

Substances	Threshold	Contain status＊$^{* \mid}$
Lead and its compounds	$1,000 \mathrm{ppm}$	\bigcirc
Mercury and its compounds	$1,000 \mathrm{ppm}$	\bigcirc
Cadmium and its compounds	100 ppm	\bigcirc
Hexavalent chromium compound	$1,000 \mathrm{ppm}$	\bigcirc
Polybrominated biphenyls（PBB）	$1,000 \mathrm{ppm}$	\bigcirc
Polybrominated diphenyl ethers（PBDE）	$1,000 \mathrm{ppm}$	O

＊：The mark of＂O＂shows below a threshold value．

ORDERING INFORMATION

Part number	Package	Shipping form	Minimum shipping quantity
MB85RC256VPNF-G-JNE1	8-pin, plastic SOP (FPT-8P-M02)	Tube	1
MB85RC256VPNF-G-JNERE1	8-pin, plastic SOP (FPT-8P-M02)	Embossed Carrier tape	1500
MB85RC256VPF-G-JNE2	8-pin, plastic SOP (FPT-8P-M08)	Tube	1
MB85RC256VPF-G-JNERE2	8-pin, plastic SOP (FPT-8P-M08)	Embossed Carrier tape	2000

PACKAGE DIMENSION

8-pin plastic SOP	Lead pitch	1.27 mm
Package width \times package length	$3.9 \mathrm{~mm} \times 5.05 \mathrm{~mm}$	
Lead shape	Gullwing	
Sealing method	Plastic mold	
(FPT-8P-M02)		

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)
(Continued)

8-pin plastic SOP	Lead pitch	1.27 mm
Package width \times package length	$5.30 \mathrm{~mm} \times 5.24 \mathrm{~mm}$	
	Lead shape direction	Gullwing
Sealing method	Normal bend	
Mounting height	2.10 mm Max	

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

[MB85RC256VPF-G-JNE2]
[MB85RC256VPF-G-JNERE2]

[FPT-8P-M08]

PACKING INFORMATION

1. Tube

1.1 Tube Dimensions (FPT-8P-M02)

- Tube/stopper shape

Tube
Transparent polyethylene terephthalate
(treated to antistatic)

Stopper
(treated to antistatic)

Tube cross-sections and Maximum quantity

Package form	Package code	Maximum quantity		
		$\begin{aligned} & \mathrm{pcs} / \\ & \text { tube } \end{aligned}$	pcs/inner box	pcs/outer box
SOP, 8, plastic (2)	FPT-8P-M02	95	7600	30400
©2006-2010 FUJITSU SEMICONDUCTOR LIMITED F08008-SET1-PET:FJ99L-0022-E0008-1-K-3 $t=0.5$ Transparent polyethylene terephthalate				

(Dimensions in mm)

