

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Memory FRAM

64 K (8 K \times 8) Bit SPI

MB85RS64V

■ DESCRIPTION

MB85RS64V is a FRAM (Ferroelectric Random Access Memory) chip in a configuration of $8,192 \text{ words} \times 8 \text{ bits}$, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells.

MB85RS64V adopts the Serial Peripheral Interface (SPI).

The MB85RS64V is able to retain data without using a back-up battery, as is needed for SRAM.

The memory cells used in the MB85RS64V can be used for 10^{12} read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E²PROM. MB85RS64V does not take long time to write data like Flash memories or E²PROM, and MB85RS64V takes no wait time.

■ FEATURES

• Bit configuration : 8,192 words × 8 bits

• Serial Peripheral Interface : SPI (Serial Peripheral Interface)

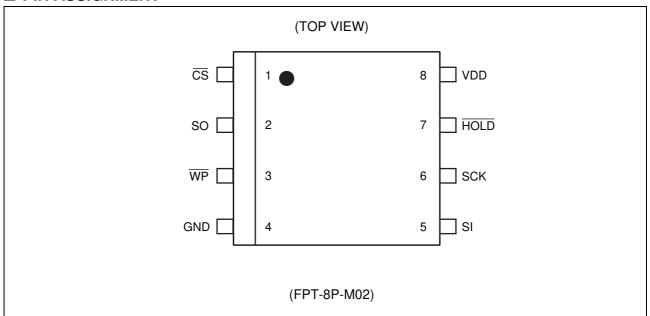
Correspondent to SPI mode 0 (0, 0) and mode 3 (1, 1)

Operating frequency
 High endurance
 20 MHz (Max)
 10¹² times / byte

Data retention
 : 10 years (+85 °C), 95 years (+55 °C), over 200 years (+35 °C)

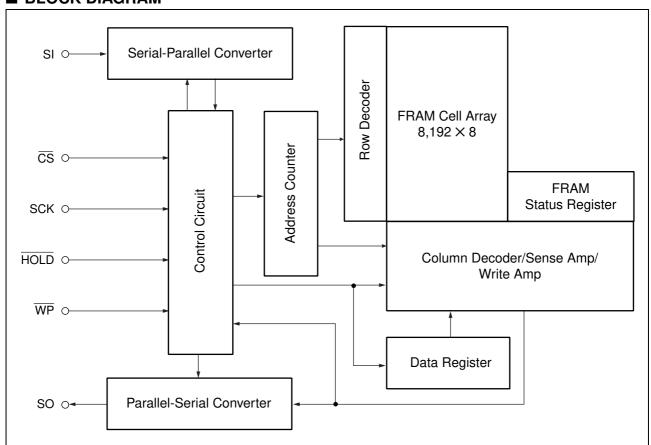
Operating power supply voltage : 3.0 V to 5.5 V

Low power consumption : Operating power supply current 1.5 mA (Typ@20 MHz)


Standby current 10 µA (Typ)

Operation ambient temperature range : −40 °C to +85 °C

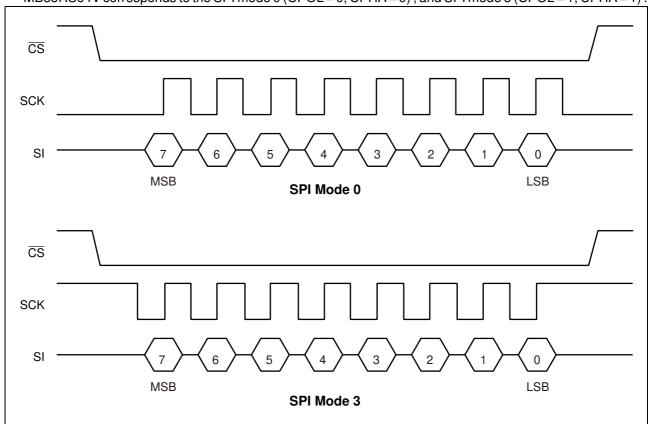
Package : 8-pin plastic SOP (FPT-8P-M02) RoHS compliant


■ PIN ASSIGNMENT

■ PIN FUNCTIONAL DESCRIPTIONS

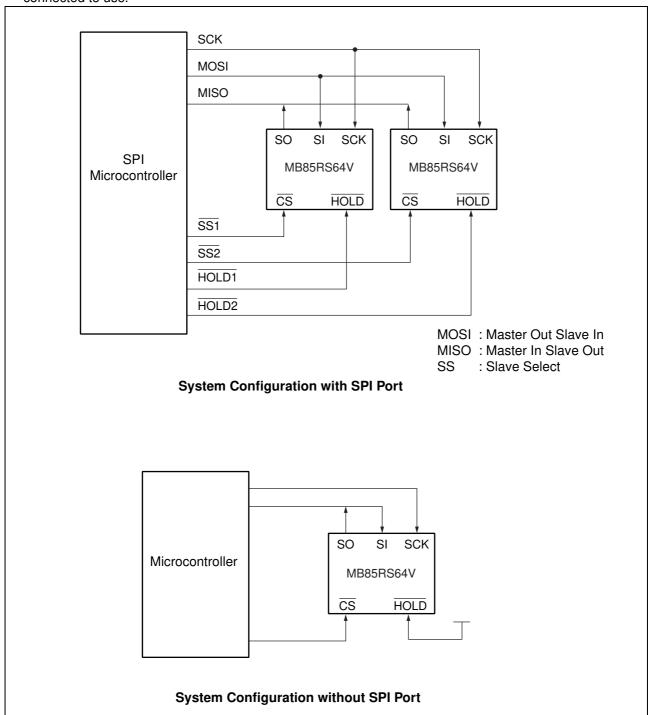
Pin No.	Pin Name	Functional description
1	CS	Chip Select pin This is an input pin to make chip select. When \overline{CS} is the "H" level, device is in deselect (standby) status and SO becomes High-Z. Inputs from other pins are ignored at this time. When \overline{CS} is the "L" level, device is in select (active) status. \overline{CS} has to be the "L" level before inputting op-code. The Chip Select pin is pulled up internally to the VDD pin.
3	WP	Write Protect pin This is a pin to control writing to a status register. The writing of status register (see "■ STATUS REGISTER") is protected in related with WP and WPEN. See "■WRITING PROTECT" for detail.
7	HOLD	Hold pin This pin is used to interrupt serial input/output without making chip deselect. When HOLD is the "L" level, hold operation is activated, SO becomes High-Z, and SCK and SI become don't care. While the hold operation, CS shall be retained the "L" level.
6	SCK	Serial Clock pin This is a clock input pin to input/output serial data. SI is loaded synchronously to a rising edge, SO is output synchronously to a falling edge.
5	SI	Serial Data Input pin This is an input pin of serial data. This inputs op-code, address, and writing data.
2	SO	Serial Data Output pin This is an output pin of serial data. Reading data of FRAM memory cell array and status register are output. This is High-Z during standby.
8	VDD	Supply Voltage pin
4	GND	Ground pin

■ BLOCK DIAGRAM



MB85RS64V

■ SPI MODE


4

MB85RS64V corresponds to the SPI mode 0 (CPOL = 0, CPHA = 0), and SPI mode 3 (CPOL = 1, CPHA = 1).

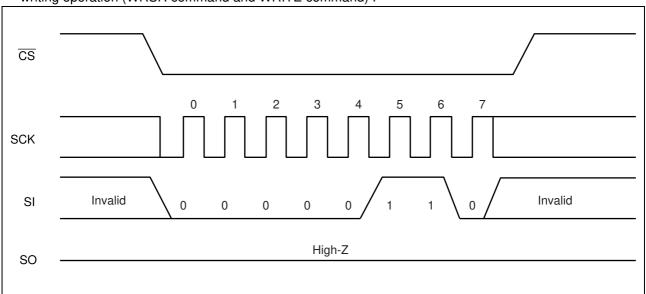
■ SERIAL PERIPHERAL INTERFACE (SPI)

MB85RS64V works as a slave of SPI. More than 2 devices can be connected by using microcontroller equipped with SPI port. By using a microcontroller not equipped with SPI port, SI and SO can be bus connected to use.

■ STATUS REGISTER

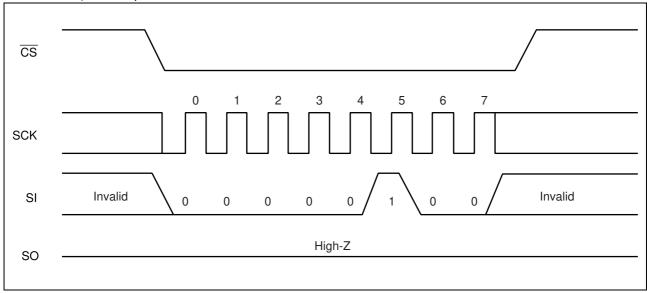
Bit No.	Bit Name	Function
7	WPEN	Status Register Write Protect This is a bit composed of nonvolatile memories (FRAM). WPEN protects writing to a status register (see "■ WRITING PROTECT") relating with WP input. Writing with the WRSR command and reading with the RDSR command are possible.
6 to 4	_	Not Used Bits These are bits composed of nonvolatile memories, writing with the WRSR command is possible. These bits are not used but they are read with the RDSR command.
3	BP1	Block Protect This is a bit composed of nonvolatile memory. This defines size of write
2	BP0	protect block for the WRITE command (see "■ BLOCK PROTECT"). Writing with the WRSR command and reading with the RDSR command are possible.
1	WEL	Write Enable Latch This indicates FRAM Array and status register are writable. The WREN command is for setting, and the WRDI command is for resetting. With the RDSR command, reading is possible but writing is not possible with the WRSR command. WEL is reset after the following operations. After power ON. After WRDI command recognition. At the rising edge of CS after WRSR command recognition. At the rising edge of CS after WRITE command recognition.
0	0	This is a bit fixed to "0".

■ OP-CODE


MB85RS64V accepts 7 kinds of command specified in op-code. Op-code is a code composed of 8 bits shown in the table below. Do not input invalid codes other than those codes. If $\overline{\text{CS}}$ is risen while inputting op-code, the command are not performed.

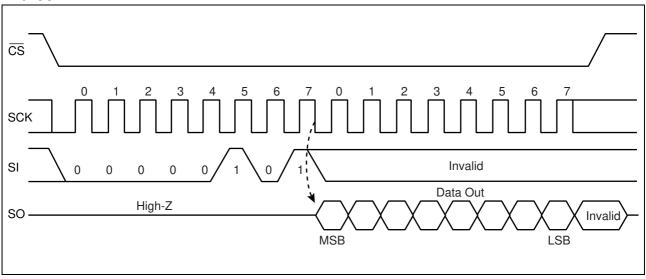
Name	Description	Op-code
WREN	Set Write Enable Latch	0000 0110в
WRDI	Reset Write Enable Latch	0000 0100в
RDSR	Read Status Register	0000 0101в
WRSR	Write Status Register	0000 0001в
READ	Read Memory Code	0000 0011в
WRITE	Write Memory Code	0000 0010в
RDID	Read Device ID	1001 1111в

■ COMMAND

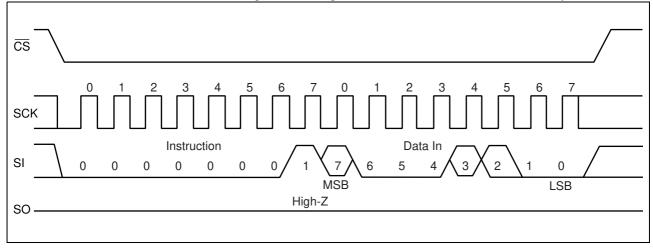

• WREN

The WREN command sets WEL (Write Enable Latch) . WEL shall be set with the WREN command before writing operation (WRSR command and WRITE command) .

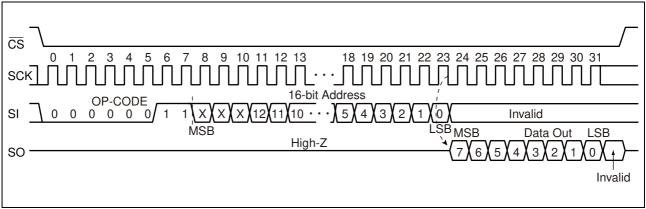
• WRDI


The WRDI command resets WEL (Write Enable Latch) . Writing operation (WRITE command and WRSR command) are not performed when WEL is reset.

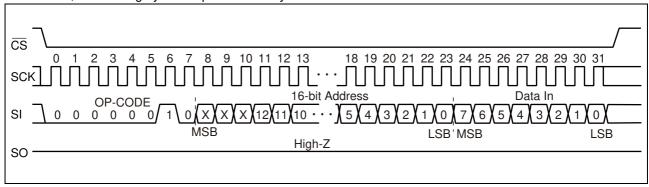
MB85RS64V


• RDSR

The RDSR command reads status register data. After op-code of RDSR is input to SI, 8-cycle clock is input to SCK. The SI value is invalid during this time. SO is output synchronously to a falling edge of SCK. In the RDSR command, repeated reading of status register is enabled by sending SCK continuously before rising of $\overline{\text{CS}}$.

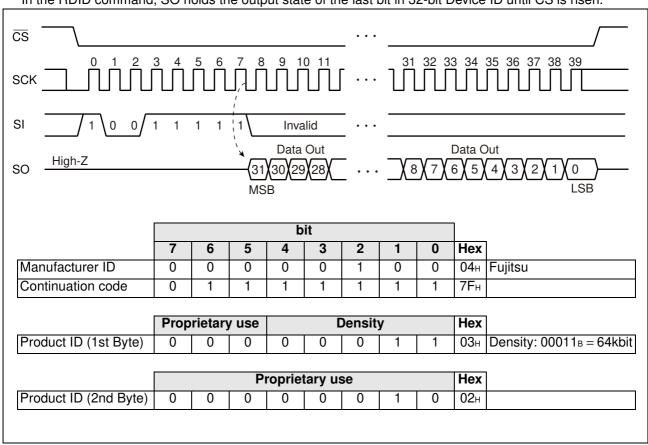

• WRSR

The WRSR command writes data to the nonvolatile memory bit of status register. After performing WRSR op-code to a SI pin, 8 bits writing data is input. WEL (Write Enable Latch) is not able to be written with WRSR command. A SI value correspondent to bit 1 is ignored. Bit 0 of the status register is fixed to "0" and cannot be written. The SI value corresponding to bit 0 is ignored. The $\overline{\text{WP}}$ signal level shall be fixed before performing the WRSR command, and do not change the $\overline{\text{WP}}$ signal level until the end of command sequence.


• READ

The READ command reads FRAM memory cell array data. Arbitrary 16 bits address and op-code of READ are input to SI. The 3-bit upper address bit is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When \overline{CS} is risen, the READ command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before \overline{CS} rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely.

• WRITE


The WRITE command writes data to FRAM memory cell array. WRITE op-code, arbitrary 16 bits of address and 8 bits of writing data are input to SI. The 3-bit upper address bit is invalid. When 8 bits of writing data is input, data is written to FRAM memory cell array. Risen \overline{CS} will terminate the WRITE command. However, if you continue sending the writing data for 8 bits each before \overline{CS} rising, it is possible to continue writing with automatic address increment. When it reaches the most significant address, it rolls over to the starting address, and writing cycle keeps on infinitely.

MB85RS64V

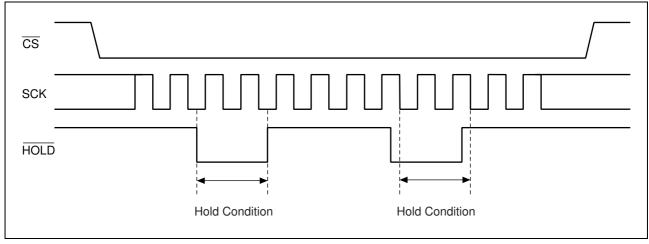
• RDID

The RDID command reads fixed Device ID. After performing RDID op-code to SI, 32-cycle clock is input to SCK. The SI value is invalid during this time. SO is output synchronously to a falling edge of SCK. The output is in order of Manufacturer ID (8bit)/Continuation code (8bit)/Product ID (1st Byte)/ Product ID (2nd Byte). In the RDID command, SO holds the output state of the last bit in 32-bit Device ID until \overline{CS} is risen.

■ BLOCK PROTECT

Writing protect block for WRITE command is configured by the value of BP0 and BP1 in the status register.

BP1	BP0	Protected Block
0	0	None
0	1	1800н to 1FFFн (upper 1/4)
1	0	1000н to 1FFFн (upper 1/2)
1	1	0000н to 1FFFн (all)


■ WRITING PROTECT

Writing operation of the WRITE command and the WRSR command are protected with the value of WEL, WPEN, WP as shown in the table.

WEL	WPEN	WP	Protected Blocks	Unprotected Blocks	Status Register
0	Х	Х	Protected	Protected	Protected
1	0	Х	Protected	Unprotected	Unprotected
1	1	0	Protected	Unprotected	Protected
1	1	1	Protected	Unprotected	Unprotected

■ HOLD OPERATION

Hold status is retained without aborting a command if HOLD is the "L" level while \overline{CS} is the "L" level. The timing for starting and ending hold status depends on the SCK to be the "H" level or the "L" level when a HOLD pin input is transited to the hold condition as shown in the diagram below. In case the HOLD pin transited to "L" level when SCK is "L" level, return the HOLD pin to "H" level at SCK being "L" level. In the same manner, in case the HOLD pin transited to "L" level when SCK is "H" level, return the HOLD pin to "H" level at SCK being "H" level. Arbitrary command operation is interrupted in hold status, SCK and SI inputs become don't care. And, SO becomes High-Z while reading command (RDSR, READ). If \overline{CS} is rising during hold status, a command is aborted. In case the command is aborted before its recognition, WEL holds the value before transition to HOLD status.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ra	Unit	
raiailletei	Symbol	Min	Max	Offic
Power supply voltage*	V_{DD}	- 0.5	+ 6.0	V
Input voltage*	VIN	- 0.5	$V_{DD} + 0.5 \ (\le 6.0)$	V
Output voltage*	Vоит	- 0.5	$V_{DD} + 0.5 \ (\le 6.0)$	V
Operation ambient temperature	TA	- 40	+ 85	°C
Storage temperature	Tstg	– 55	+ 125	°C

^{*:}These parameters are based on the condition that Vss is 0 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Linit		
Parameter	Symbol	Min	Тур	Max	Unit
Power supply voltage*	V _{DD}	3.0	_	5.5	V
Input high voltage*	V _{IH}	$V_{DD} \times 0.8$	_	V _{DD} + 0.3	V
Input low voltage*	VıL	- 0.3	_	$V_{DD} \times 0.2$	V
Operation ambient temperature	Та	- 40	_	+ 85	°C

^{*:} These parameters are based on the condition that Vss is 0 V.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

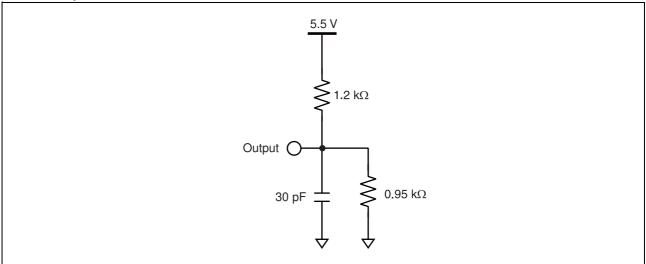
(within recommended operating conditions)

Parameter	Symbol	Condition			Unit		
Parameter	Symbol	Condition	Min	Тур	Max	Offic	
		$0 \le \overline{CS} < V_{DD}$	_		200		
Input leakage current	lu	$\overline{CS} = V_{DD}$	_	_	10	μΑ	
mparisonage content	1.51	\overline{WP} , \overline{HOLD} , SCK, $SI = 0 V to V_{DD}$		_	10		
Output leakage current	ILO	SO = 0 V to V _{DD}	_		10	μΑ	
Operating power supply current	loo	SCK = 20 MHz		1.5	2.5	mA	
Standby current	IsB	$SCK = SI = \overline{CS} = V_{DD}$	_	10	20	μΑ	
Output high voltage	Vон	lон = −2 mA	V _{DD} - 0.5		V_{DD}	V	
Output low voltage	Vol	IoL = 2 mA	Vss		0.4	V	
Pull up resistance for CS	R₽	_	28	50	180	kΩ	

MB85RS64V

2. AC Characteristics

Parameter	Symbol	Va	alue	Unit
Parameter	Symbol	Min	Max	Unit
SCK clock frequency	fск	0	20	MHz
Clock high time	tсн	25	_	ns
Clock low time	tcL	25	_	ns
Chip select set up time	t csu	10	_	ns
Chip select hold time	tсsн	10	_	ns
Output disable time	top	_	20	ns
Output data valid time	todv	_	20	ns
Output hold time	tон	0	_	ns
Deselect time	to	60	_	ns
Data rising time	tr	_	50	ns
Data falling time	tF	_	50	ns
Data set up time	t su	5	_	ns
Data hold time	tн	5	_	ns
HOLD set up time	t HS	10	_	ns
HOLD hold time	tнн	10	_	ns
HOLD output floating time	tнz	_	20	ns
HOLD output active time	tız	_	20	ns

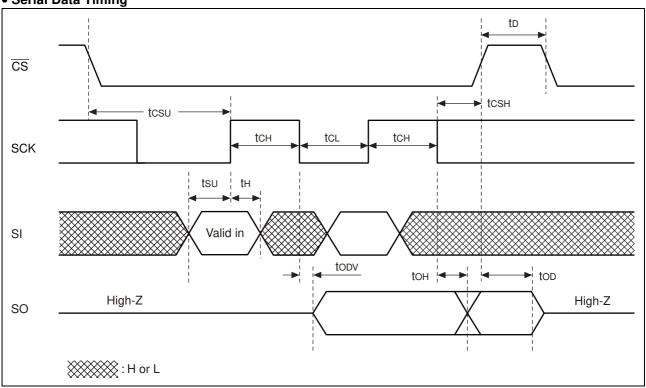

AC Test Condition

Power supply voltage : 3.0 V to 5.5 V

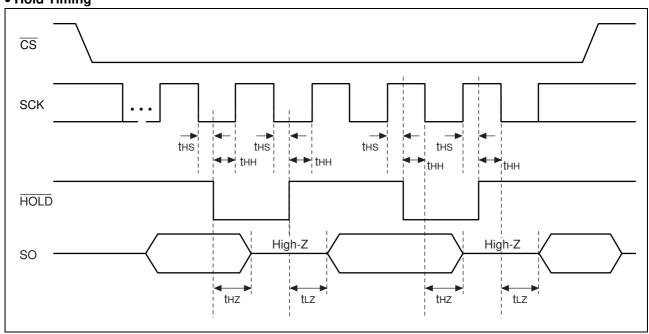
Operation ambient temperature : -40 °C to +85 °C Input voltage magnitude : $V_{DD} \times 0.1$ to $V_{DD} \times 0.9$

Input rising time : 5 ns
Input falling time : 5 ns
Input judge level : VDD/2
Output judge level : VDD/2

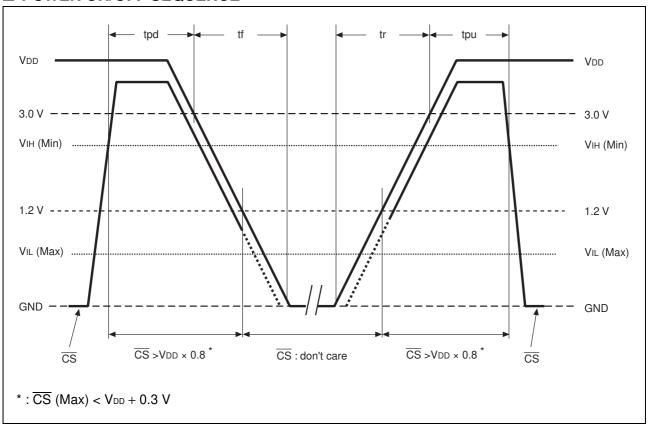
AC Load Equivalent Circuit



3. Pin Capacitance


Parameter	Symbol	Conditions	Va	Unit	
Farameter	Зушьог	Conditions	Min	Max	Oill
Output capacitance	Со	$V_{DD} = V_{IN} = V_{OUT} = 0 V$	_	10	pF
Input capacitance	Cı	f = 1 MHz, T _A = +25 °C		10	pF

■ TIMING DIAGRAM


• Serial Data Timing

• Hold Timing

■ POWER ON/OFF SEQUENCE

Parameter	Symbol	Value		Unit	Condition	
Farameter	Syllibol	Min	Max	Oilit	Condition	
CS level hold time at power OFF	tpd	400	_	ns	_	
CS level hold time at power ON	tou	0.1	_	ms	$V_{DD} = 5.0V \pm 0.5V$ Operation	
C3 level floid tille at power ON	tpu	0.6	_		$V_{DD} = 3.3V \pm 0.3V$ Operation	
Power supply falling time	tf	200	_	μs/V	_	
Power supply rising time	tr	100		μs/V	$V_{DD} = 5.0V \pm 0.5V$ Operation	
l ower supply rising time		1		μ5/ ν	$V_{DD} = 3.3V \pm 0.3V$ Operation	

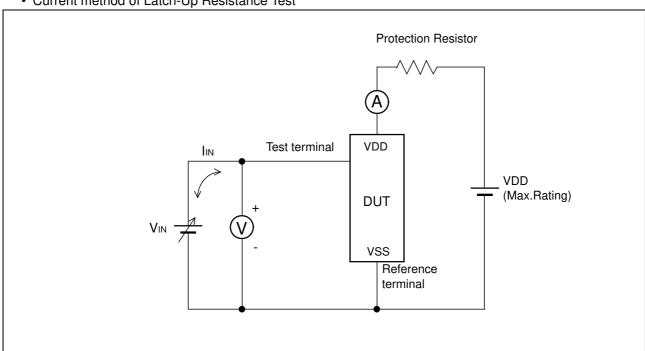
If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.

■ FRAM CHARACTERISTICS

Item	Min	Max	Unit	Parameter
Read/Write Endurance*1	1012	_	Times/byte	Operation Ambient Temperature T _A = +85 °C
	10	_		Operation Ambient Temperature T _A = +85 °C
Data Retention*2	95	_	Years	Operation Ambient Temperature T _A = +55 °C
	≥ 200	_		Operation Ambient Temperature T _A = +35 °C

^{*1 :} Total number of reading and writing defines the minimum value of endurance, as an FRAM memory operates with destructive readout mechanism.

^{*2 :} Minimun values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results.


■ NOTE ON USE

We recommend programming of the device after reflow. Data written before reflow cannot be guaranteed.

■ ESD AND LATCH-UP

Test	DUT	Value
ESD HBM (Human Body Model) JESD22-A114 compliant		≥ 2000 V
ESD MM (Machine Model) JESD22-A115 compliant		≥ 200 V
ESD CDM (Charged Device Model) JESD22-C101 compliant		≥ 1000 V
Latch-Up (I-test) JESD78 compliant	MB85RS64VPNF-G-JNE1	_
Latch-Up (V _{supply} overvoltage test) JESD78 compliant		_
Latch-Up (Current Method) Proprietary method		_
Latch-Up (C-V Method) Proprietary method		≥ 200 V

· Current method of Latch-Up Resistance Test

Note: The voltage V_{IN} is increased gradually and the current I_{IN} of 300 mA at maximum shall flow. Confirm the latch up does not occur under $I_{IN} = \pm 300$ mA.

In case the specific requirement is specified for I/O and I_{IN} cannot be 300 mA, the voltage shall be increased to the level that meets the specific requirement.

C-V method of Latch-Up Resistance Test

Note: Charge voltage alternately switching 1 and 2 approximately 2 sec interval. This switching process is considered as one cycle.

Repeat this process 5 times. However, if the latch-up condition occurs before completing 5 times, this test must be stopped immediately.

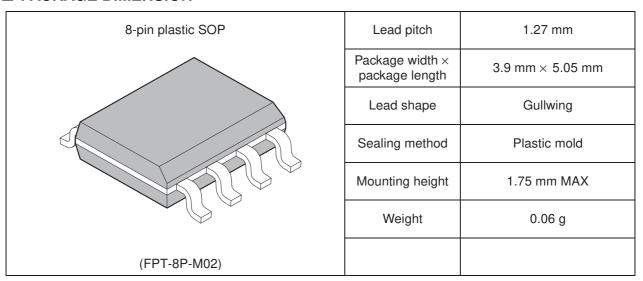
■ REFLOW CONDITIONS AND FLOOR LIFE

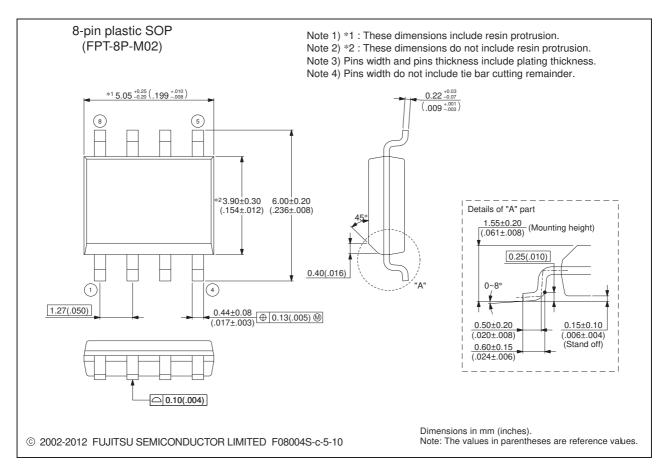
[JEDEC MSL] : Moisture Sensitivity Level 3 (ISP/JEDEC J-STD-020D)

■ CURRENT STATUS ON CONTAINED RESTRICTED SUBSTANCES

This product complies with the regulations of REACH Regulations, EU RoHS Directive and China RoHS. Please refer to the following web site for more details of current status on contained restricted substances in our products.

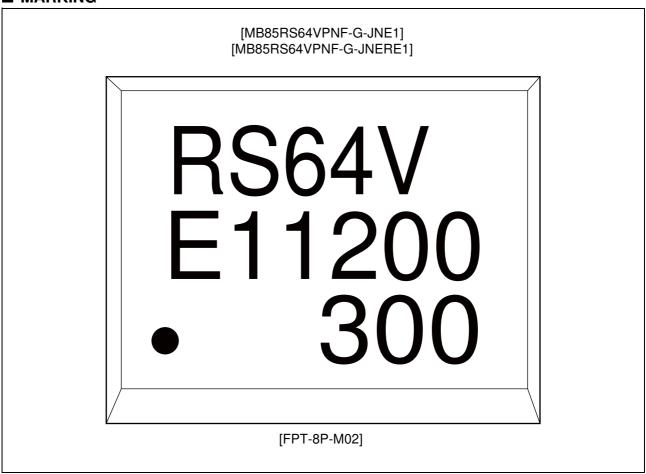
http://www.fujitsu.com/global/services/microelectronics/environment/products/


MB85RS64V


■ ORDERING INFORMATION

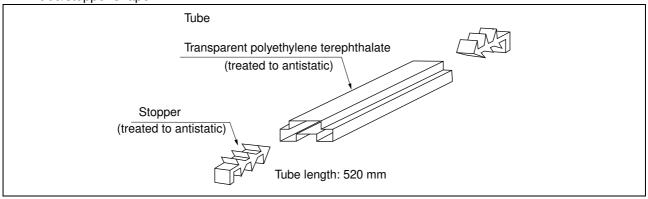
Part number	Package	Shipping form	Minimum shipping quantity	
MB85RS64VPNF-G-JNE1	8-pin plastic SOP (FPT-8P-M02)	Tube	*	
MB85RS64VPNF-G-JNERE1	8-pin plastic SOP (FPT-8P-M02)	Embossed Carrier tape	1500	

^{*:} Please contact our sales office about minimum shipping quantity.


■ PACKAGE DIMENSION

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

■ MARKING

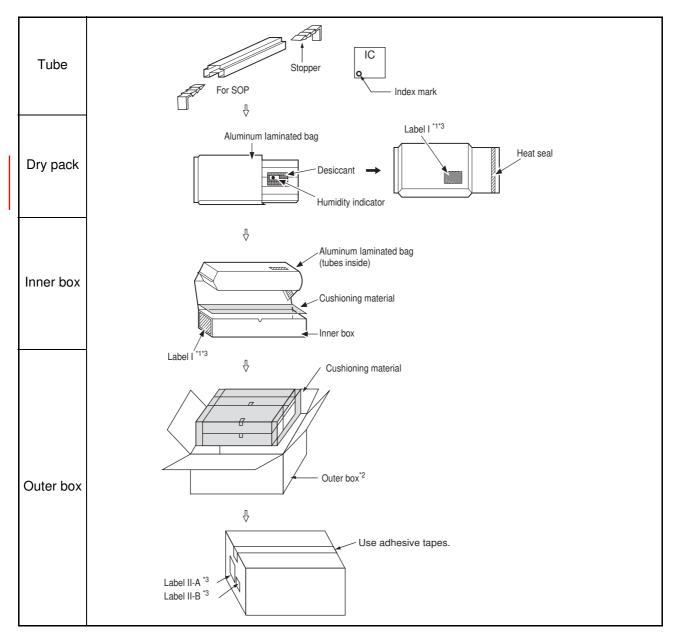


■ PACKING INFORMATION

1. Tube

1.1 Tube Dimensions

• Tube/stopper shape



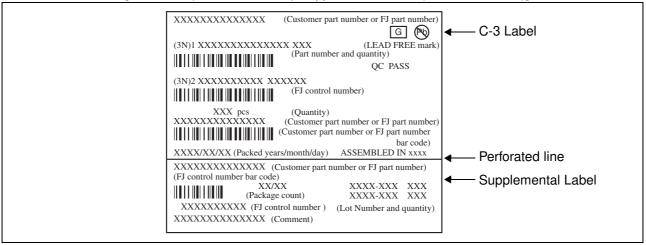
Tube cross-sections and Maximum quantity

	Package code	Maximum quantity		
Package form		pcs/ tube	pcs/inner box	pcs/outer box
SOP, 8, plastic (2)	FPT-8P-M02	95	7600	30400
7.4 6.4 8 9 7 0				
©2006-2010 FUJITSU SEMICONDUCTOR LIMITED F08008-SET1-PET:FJ99L-0022-E0008-1-K-3				
t = 0.5 Transparent polyethylene terephthalate				

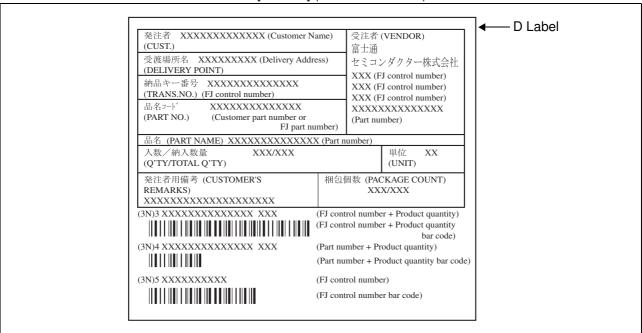
(Dimensions in mm)

1.2 Tube Dry pack packing specifications

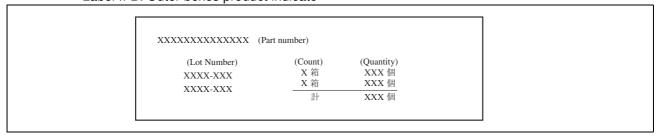
^{*1:} For a product of witch part number is suffixed with "E1", a " [G] (N)" marks is display to the moisture barrier bag and the inner boxes.


Note: The packing specifications may not be applied when the product is delivered via a distributor.

^{*2:} The space in the outer box will be filled with empty inner boxes, or cushions, etc.


^{*3:} Please refer to an attached sheet about the indication label.

1.3 Product label indicators


Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

Label II-A: Label on Outer box [D Label] (100mm × 100mm)

Label II-B: Outer boxes product indicate

Note: Depending on shipment state, "Label II-A" and "Label II-B" on the external boxes might not be printed.