

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Spread Spectrum Clock Generator

CY88152A is a clock generator for EMI (Electro Magnetic Interference) reduction. The peak of unnecessary radiation noise (EMI) can be attenuated by making the oscillation frequency slightly modulate periodically with the internal modulator. It corresponds to both of the center spread which modulates input frequency as Middle Centered and down spread which modulates so as not to exceed input frequency.

Features

■ Input frequency: 16.6 MHz to 134 MHz
■ Output frequency: 16.6 MHz to 134 MHz

■ Modulation rate : $\pm 0.5\%$, $\pm 1.5\%$ (Center spread), -1.0%, -3.0% (Down spread)

■ Equipped with oscillation circuit: Range of oscillation 16.6 MHz to 48 MHz

■ Modulation clock output Duty: 40% to 60%

■ Modulation clock Cycle-Cycle Jitter: Less than 100 ps

■ Low current consumption by CMOS process : 5.0 mA (24 MHz : Typ-sample, no load)

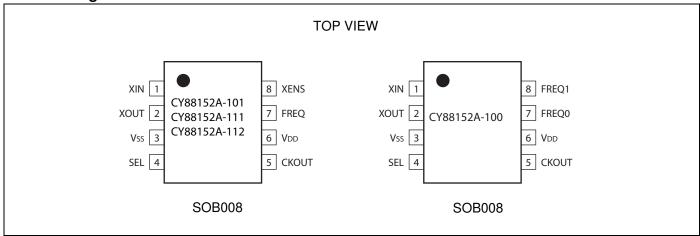
■ Power supply voltage: 3.3 V ± 0.3 V
 ■ Operating temperature: -40° to +85 °C

■ Package : SOP 8-pin

Contents

Product Line-up	3
Pin Assignment	3
Pin Description	3
I/O Circuit Type	4
Handling Devices	5
Block Diagram	6
Pin Setting	7
Modulation enable setting	
SEL modulation rate setting	7
Frequency setting	7
Absolute Maximum Ratings	9
Recommended Operating Conditions	10
Electrical Characteristics	12
DC Characteristics	
AC Characteristics	13

Output Clock Duty Cycle ($t_{DCC} = t_b/t_a$)	15
Input Frequency (f _{in} = 1/t _{in})	15
Output Slew Rate (SR)	15
Cycle-cycle Jitter ($t_{JC} = t_n - t_{n+1} $)	15
Modulation Waveform	16
Lock-up Time	17
Oscillation Circuit	18
Interconnection Circuit Example	19
Example Characteristics	20
Ordering Information	21
Package Dimension	22
Document History	23
Sales, Solutions, and Legal Information	

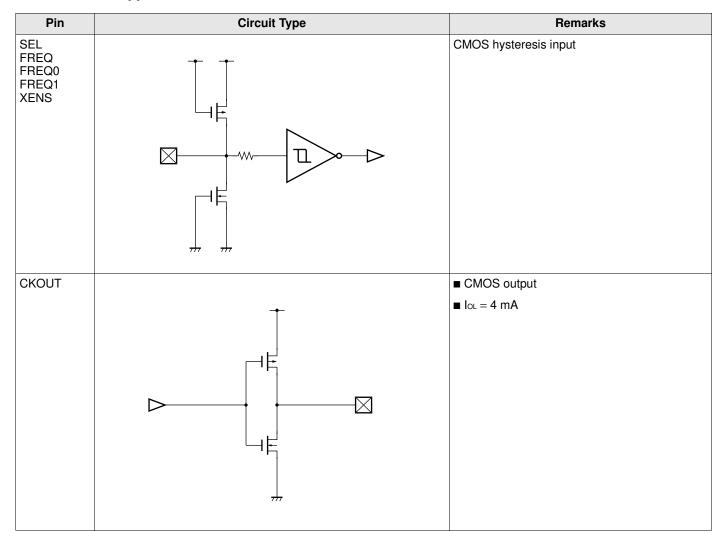


1. Product Line-up

CY88152A has three kinds of input frequency, and two kinds of modulation type (center/down spread), total six line-ups.

Product	Input/Output Frequency	Modulation Type	Modulation Enable Pin
CY88152A-100	16.6 MHz to 134 MHz	Down spread	No
CY88152A-101	16.6 MHz to 67 MHz		Yes
CY88152A-111	16.6 MHz to 67 MHz	Center spread	Yes
CY88152A-112	40 MHz to 134 MHz		

2. Pin Assignment



3. Pin Description

Pin Name	I/O	Pin No.	Description
XIN	I	1	Crystal resonator connection pin/clock input pin
XOUT	0	2	Crystal resonator connection pin
Vss	_	3	GND pin
SEL	I	4	Modulation rate setting pin
CKOUT	0	5	Modulated clock output pin
V _{DD}	_	6	Power supply voltage pin
FREQ/FREQ0	I	7	Frequency setting pin
XENS/FREQ1	I	8	Modulation enable setting pin/frequency setting pin

4. I/O Circuit Type

Note: For XIN and XOUT pins, refer to "Oscillation Circuit".

5. Handling Devices

Preventing Latch-up

A latch-up can occur if, on this device, (a) a voltage higher than V_{DD} or a voltage lower than V_{SS} is applied to an input or output pin or (b) a voltage higher than the rating is applied between V_{DD} and V_{SS} pins. The latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use this device, be very careful not to exceed the maximum rating.

Handling Unused Pins

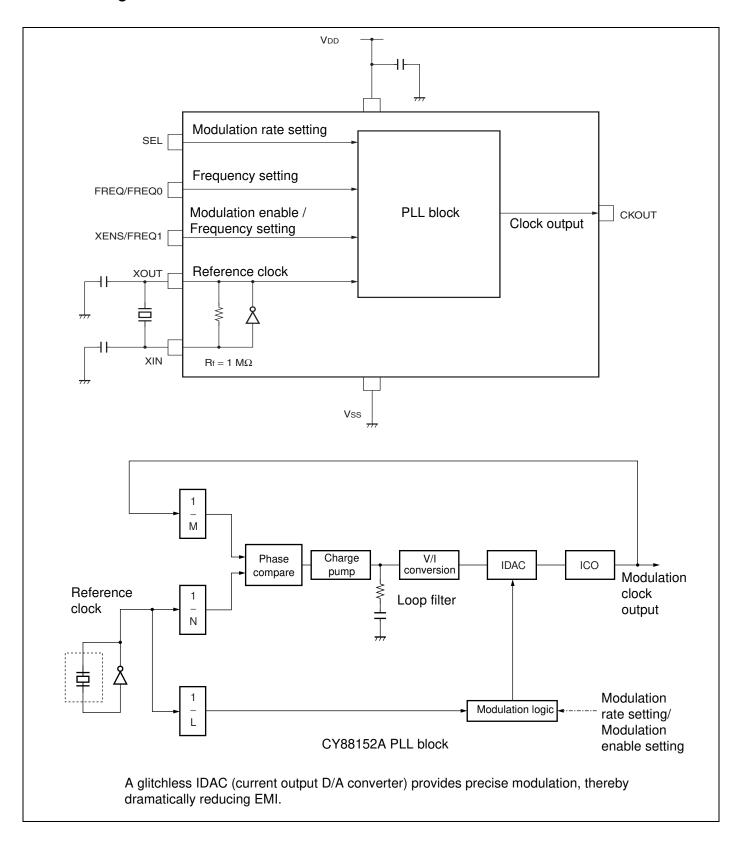
- Do not leave an unused input pin open, since it may cause a malfunction. Handle by, using a pull-up or pull-down resistor.
- Unused output pin should be opened.

The Attention when the External Clock is Used

- Input the clock to XIN pin, and XOUT pin should be opened when you use the external clock.
- Please pay attention so that an overshoot and an undershoot do not occur to an input clock of XIN pin.

Power Supply Pins

- Please design connecting the power supply pin of this device by as low impedance as possible from the current supply source.
- We recommend connecting electrolytic capacitor (about 10 µF) and the ceramic capacitor (about 0.01 µF) in parallel between Vss and Vpp pins near the device, as a bypass capacitor.


Oscillation Circuit

- Noise near the XIN and XOUT pins may cause the device to malfunction. Design printed circuit boards so that electric wiring of XIN or XOUT pin and resonator (or ceramic oscillator) do not intersect other wiring.
- Design the printed circuit board that surrounds the XIN and XOUT pins with ground.

Document Number: 002-08308 Rev. *C

6. Block Diagram

7. Pin Setting

When changing the pin setting, the stabilization wait time for the modulation clock is required. The stabilization wait time for the modulation clock takes the maximum value of Lock-Up time in "AC Characteristics of Electrical Characteristics".

7.1 Modulation Enable Setting

XENS	Modula	ition
L		CY88152A-101,
Н	No modulation	CY88152A-111, CY88152A-112

Note: CY88152A-100 and CY88152A-110 do not have XENS pin.

7.2 SEL Modulation Rate Setting

SEL		Modulation Rate		
L	± 0.5%	CY88152A-111, CY88152A-112	Center spread	
	- 1.0%	CY88152A-100, CY88152A-101	Down spread	
Н	± 1.5%	CY88152A-111, CY88152A-112	Center spread	
	- 3.0%	CY88152A-100, CY88152A-101	Down spread	

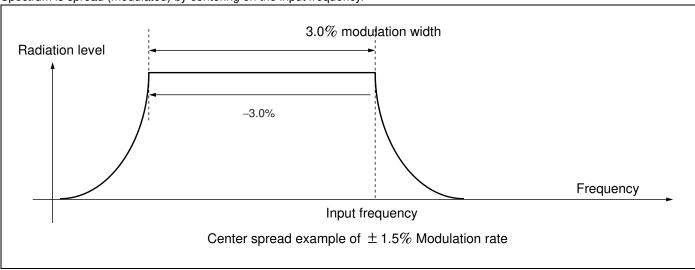
Note: The modulation rate can be changed at the level of the terminal.

7.3 Frequency Setting

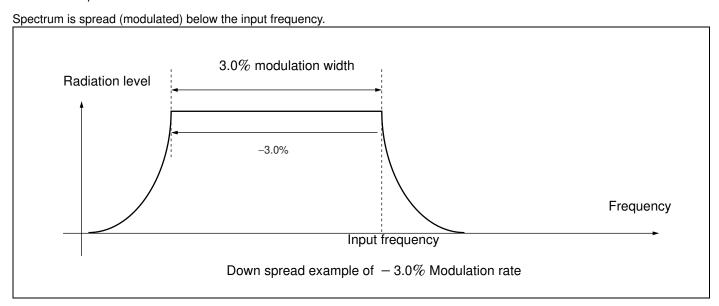
7.5 Trequency octains							
FREQ		Frequency					
L	16.6 MHz to 40 MHz	CY88152A-101, CY88152A-111					
	40 MHz to 80 MHz	CY88152A-112					
Н	33 MHz to 67 MHz	CY88152A-101, CY88152A-111					
	66 MHz to 134 MHz	CY88152A-112					

Note: CY88152A-100 and CY88152A-110 do not have FREQ pin.

FREQ1	FREQ0	Frequency			
L	L	16.6 MHz to 40 MHz	CY88152A-100		
L	Н	33 MHz to 67 MHz			
Н	L	40 MHz to 80 MHz			
Н	Н	66 MHz to 134 MHz			


Note: CY88152A-101, CY88152A-111 and CY88152A-112 have neither FREQ0 pin nor FREQ1 pin.

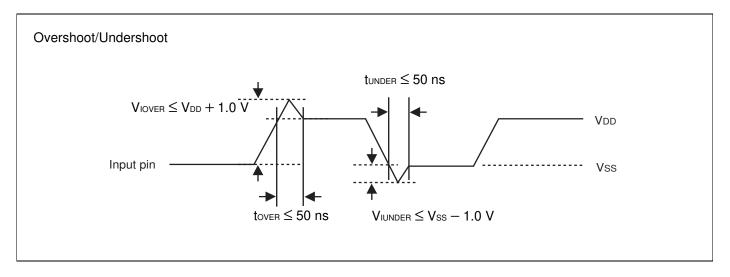
Document Number: 002-08308 Rev. *C



7.3.1 Center Spread

Spectrum is spread (modulated) by centering on the input frequency.

7.3.2 Down Spread



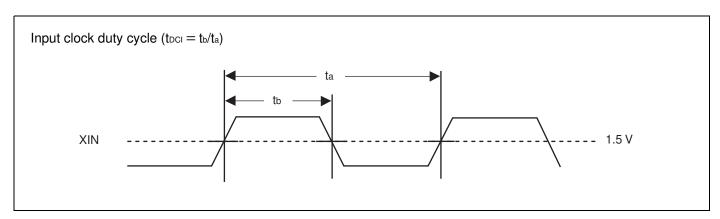
8. Absolute Maximum Ratings

Parameter	Cumbal	Ra	Unit		
Farameter	Symbol	Min	Max	Onit	
Power supply voltage ^a	V _{DD}	- 0.5	+4.0	V	
Input voltage ^a	Vı	Vss - 0.5	V _{DD} + 0.5	V	
Output voltage ^a	Vo	Vss - 0.5	V _{DD} + 0.5	V	
Storage temperature	Тѕт	– 55	+ 125	°C	
Operation junction temperature	TJ	-40	+ 125	°C	
Output current	lo	- 14	+ 14	mA	
Overshoot	VIOVER	_	$V_{DD} + 1.0 \text{ (tover} \leq 50 \text{ ns)}$	V	
Undershoot	VIUNDER	$V_{SS} - 1.0 \text{ (tunder} \leq 50 \text{ ns)}$	_	V	

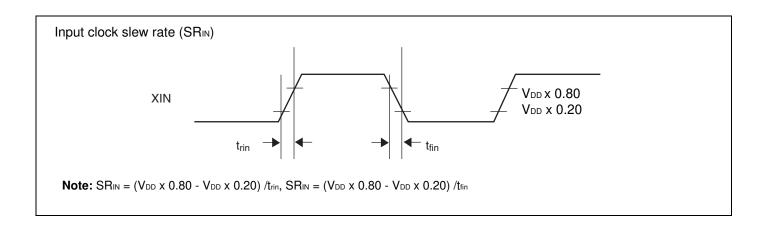
a. The parameter is based on $V_{\text{SS}} = 0.0 \text{ V}$.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

9. Recommended Operating Conditions


 $(V_{SS} = 0.0 V)$

Parameter	Cumbal	Pin	Conditions		Value				
Parameter	Symbol	Pin	Conditions	Min	Тур	Max	Unit		
Power supply voltage	V _{DD}	V _{DD}	_	3.0	3.3	3.6	V		
"H" level input voltage	VIH	SEL, FREQ/FREQ0, XENS/FREQ1	_	VDD x 0.8	_	V _{DD} + 0.3	V		
		XIN	16.6 MHz to 100 MHz	V _{DD} x 0.8	_	$V_{DD} + 0.3$	V		
			100 MHz to 134 MHz	V _{DD} x 0.9	_	$V_{DD} + 0.3$	V		
"L" level input voltage	ge VıL	SEL, FREQ/FREQ0, XENS/FREQ1	_	Vss	_	V _{DD} x 0.2	V		
					XIN	16.6 MHz to 100 MHz	Vss	_	V _{DD} x 0.2
			100 MHz to 134 MHz	Vss	_	V _{DD} x 0.1	V		
Input clock	toci	XIN	16.6 MHz to 100 MHz	40	50	60	%		
duty cycle			100 MHz to 134 MHz	45	50	55			
Input clock slew rate	SRIN	XIN	Input frequency 40 MHz to 100 MHz	0.0475 x fin - 1.75	_	_	V/ns		
		Input frequency 100 MHz to 134 MHz	3	_	_				
Operating temperature	Та	_	_	-40	_	+ 85	·C		


WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

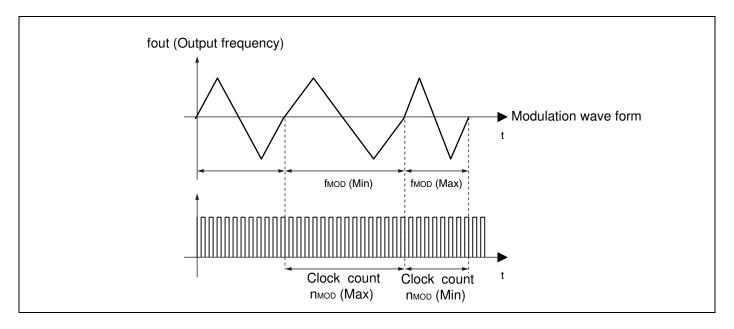
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

10. Electrical Characteristics

10.1 DC Characteristics

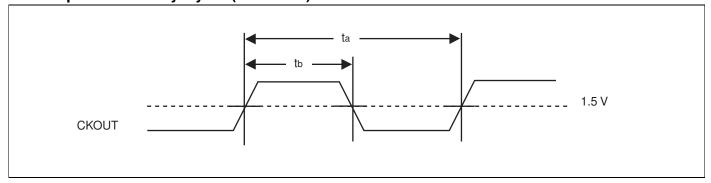
 $(Ta = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{SS} = 0.0 \text{ V})$

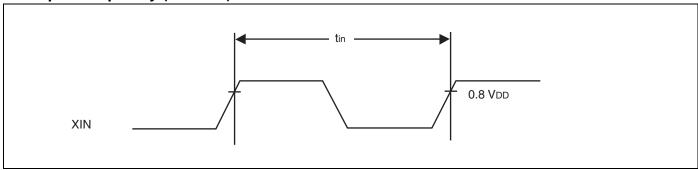
Dawamatan	Cumbal	mbol Pin	Conditions		Value		
Parameter	Symbol	Pin	Conditions	Min	Тур	Max	- Unit
Power supply current	Icc	V _{DD}	24 MHz output No load capacitance	_	5.0	7.0	mA
Output voltage	Vон	CKOUT	"H" level output IOH = -4 mA	V _{DD} — 0.5	_	V _{DD}	V
	Vol		"L" level output IoL = 4 mA	Vss	_	0.4	V
Output impedance	Zo	CKOUT	16.6 MHz to 134 MHz	_	45	_	Ω
Input capacitance	Cin	XIN, SEL, FREQ/ FREQ0, XENS/ FREQ1	$Ta = +25 ^{\circ}C$ $V_{DD} = V_{I} = 0.0 V$ f = 1 MHz	_	-	16	pF
Load capacitance	CL	CKOUT	16.6 MHz to 67 MHz	_	_	15	pF
			67 MHz to 100 MHz	_	_	10	
			100 MHz to 134 MHz	_	_	7	

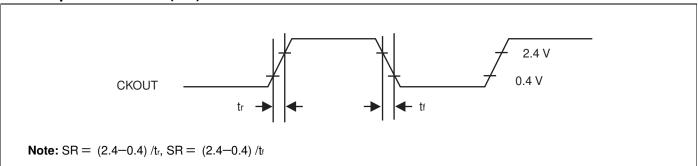

10.2 AC Characteristics

 $(Ta = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{SS} = 0.0 \text{ V})$

Doucmater	Cymphal	Pin	Conditions	Value			
Parameter	Symbol	Pin	Conditions	Min	Тур	Max	Unit
Oscillation frequency	fx	XIN,	Fundamental oscillation	16.6	_	40	MHz
		XOUT	3rd over tone	40	_	48	
Input frequency	fin	XIN	CY88152A-100	16.6	_	134	MHz
			CY88152A-101/111	16.6	_	67	
			CY88152A-112	40	_	134	
Output frequency	fouт	CKOUT	CY88152A-100	16.6	_	134	MHz
			CY88152A-101/111	16.6	_	67	
			CY88152A-112	40	_	134	
Output slew rate	SR	CKOUT	0.4 V to 2.4 V Load capacitance 15 pF	0.4	_	4.0	V/ns
Output clock duty cycle	tocc	CKOUT	1.5 V	40	_	60	%
Modulation frequency (Number of input clocks per modulation)	fмор (пмор)	CKOUT	CY88152A-100 FREQ[1:0] = (00)	fin/2640 (2640)	fin/2280 (2280)	fin/1920 (1920)	kHz (clks)
			CY88152A-100 FREQ[1:0] = (01)	fin/4400 (4400)	fin/3800 (3800)	fin/3200 (3200)	
			CY88152A-100 FREQ[1:0] = (10)	fin/5280 (5280)	fin/4560 (4560)	fin/3840 (3840)	
			CY88152A-100 FREQ[1:0] = (11)	fin/8800 (8800)	fin/7600 (7600)	fin/6400 (6400)	
			CY88152A-101/111 FREQ = 0	fin/2640 (2640)	fin/2280 (2280)	fin/1920 (1920)	
			CY88152A-101/111 FREQ = 1	fin/4400 (4400)	fin/3800 (3800)	fin/3200 (3200)	
			CY88152A-112 FREQ = 0	fin/5280 (5280)	fin/4560 (4560)	fin/3840 (3840)	
			CY88152A-112 FREQ = 1	fin/8800 (8800)	fin/7600 (7600)	fin/6400 (6400)	
Lock-Up time	tlk	CKOUT	16.6 MHz to 80 MHz	_	2	5	ms
			80 MHz to 134 MHz	_	3	8	
Cycle-cycle jitter	tuc	CKOUT	No load capacitance, Ta = +25 °C, $V_{DD} = 3.3$ V	-	-	100	ps-rms


<Definition of modulation frequency and number of input clocks per modulation>

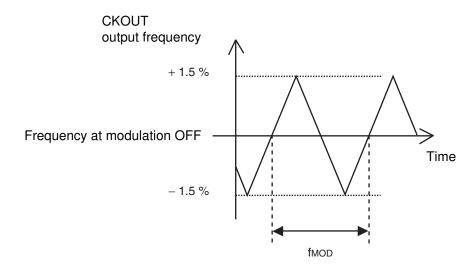

- CY88152A contains the modulation period to realize the efficient EMI reduction.
- The modulation period fMoD depends on the input frequency and changes between fMoD (Min) and fMoD (Max) .
- Furthermore, the average value of fmod equals the typical value of the electrical characteristics.


11. Output Clock Duty Cycle ($t_{DCC} = t_b/t_a$)

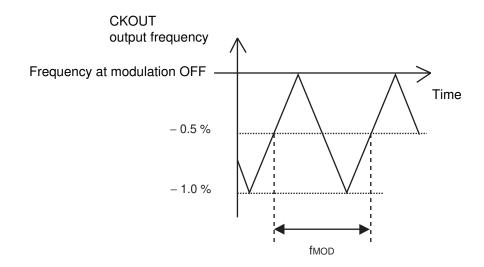
12. Input Frequency (fin = 1/tin)

13. Output Slew Rate (SR)

14. Cycle-cycle Jitter ($t_{JC} = |t_n - t_{n+1}|$)

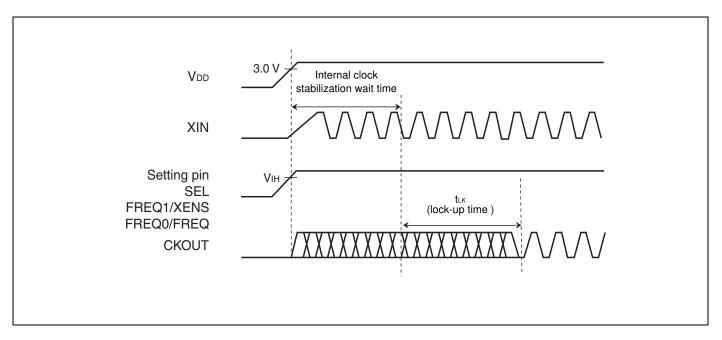


Note: Cycle-cycle jitter is defined the difference between a certain cycle and immediately after (or, immediately before) .

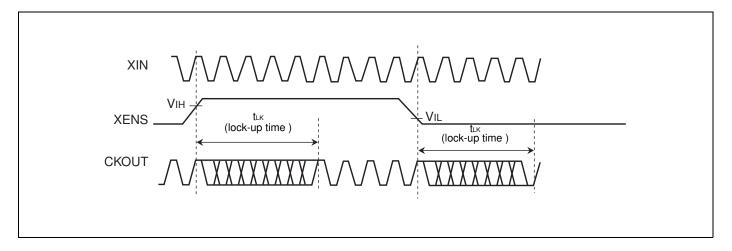


15. Modulation Waveform

$\pm 1.5\%$ modulation rate, Example of center spread



-1.0% modulation rate, Example of down spread

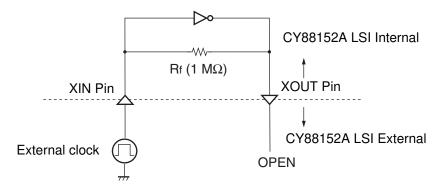


16. Lock-up Time

If the setting pin is fixed at the "H" or "L" level, the maximum time after the power is turned on until the set clock signal is output from CKOUT pin is (the stabilization wait time of input clock to XIN pin) + (the lock-up time "tlk"). For the input clock stabilization time, check the characteristics of the resonator or oscillator used.

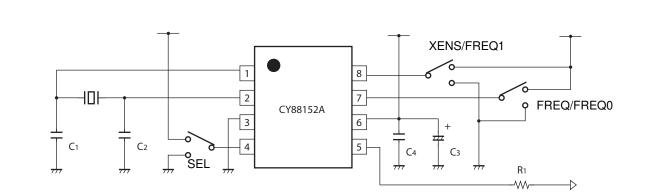

For modulation enable control using the XENS pin during normal operation, the set clock signal is output from CKOUT pin at most the lock-up time (t_{LK}) after the level at the XENS pin is determined.

Note: When the pin setting is changed, the CKOUT pin output clock stabilization time is required. Until the output clock signal becomes stable, the output frequency, output clock duty cycle, modulation period, and cycle-cycle jitter cannot be guaranteed. It is therefore advisable to perform processing such as cancelling a reset of the device at the succeeding stage after the lock-up time.



17. Oscillation Circuit

The left side of figures below shows the connection example about general resonator. The oscillation circuit has the built-in feedback resistance (R_f). The value of capacity (C_1 and C_2) is required adjusting to the most suitable value of an individual resonator. The right side of figures below shows the example of connecting for the 3rd over-tone resonator. The value of capacity (C_1 , C_2 and C_3) and inductance (L_1) is needed adjusting to the most suitable value of an individual resonator. The most suitable value is different by individual resonator. Please refer to the resonator manufacturer which you use for the most suitable value. When an external clock is used (the resonator is not used), input the clock to XIN pin and do not connect anything with XOUT pin.


When using an external clock

Note: A jitter characteristic of an input clock may cause an affect to a cycle-cycle jitter characteristic.

18. Interconnection Circuit Example

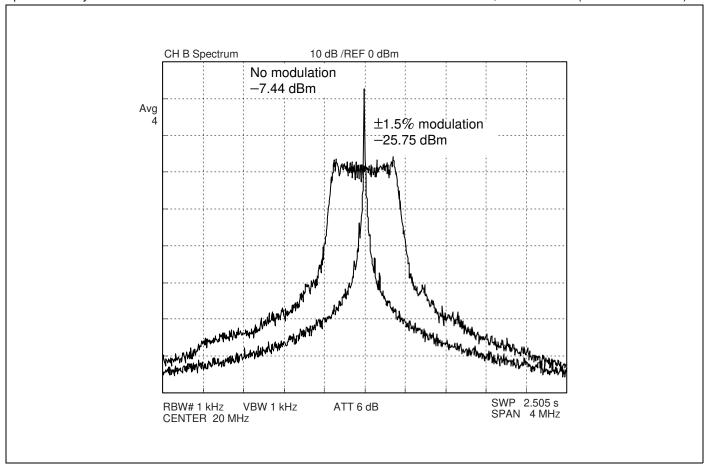
C₁, C₂ : Oscillation stabilization capacitance (refer to "Oscillation Circuit".)

C₃ : Capacitor of 10 μF or higher

 C_4 : Capacitor about 0.01 μF (connect a capacitor of good high frequency

property (ex. laminated ceramic capacitor) to close to this device.)

R₁ : Impedance matching resistor for board pattern

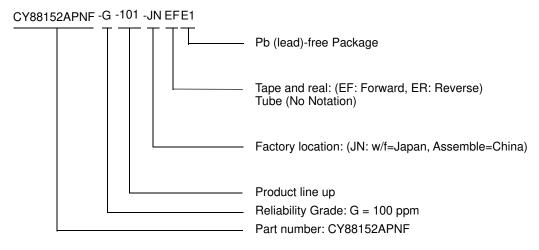


19. Example Characteristics

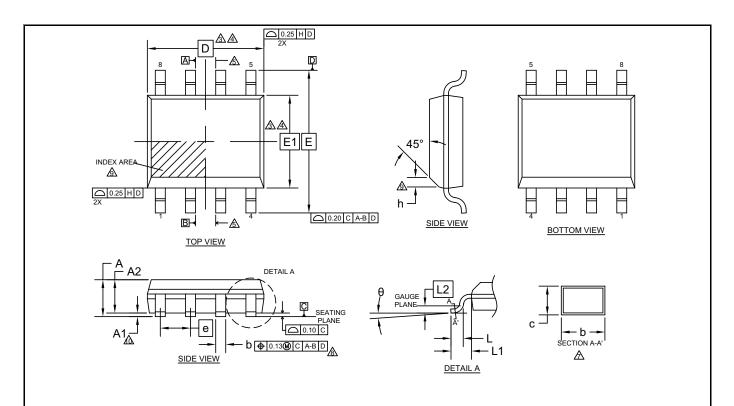
The condition of the examples of the characteristics is shown as follows: Input frequency = 20 MHz (Output frequency = 20 MHz: Use for CY88152A-111)

Power-supply voltage = 3.3 V, None load capacity, Modulation rate = $\pm 1.5\%$ (center spread).

Spectrum analyzer HP4396B is connected with CKOUT. The result of the measurement with, RBW = 1 kHz (ATT use for -6 dB).



20. Ordering Information


Part Number	Input/Output Frequency	Modulation Type	Modulation Enable pin	Package	Remarks
CY88152APNF-G-100-JNE1	16.6 MHz to 134 MHz	Down spread	No	8-pin plastic	
CY88152APNF-G-101-JNE1	16.6 MHz to 67 MHz	Down spread	Yes	SOP (SOB008)	
CY88152APNF-G-111-JNE1	16.6 MHz to 67 MHz	Center spread	Yes		
CY88152APNF-G-112-JNE1	40 MHz to 134 MHz	Center spread	Yes		
CY88152APNF-G-100-JNEFE1	16.6 MHz to 134 MHz	Down spread	No	8-pin plastic SOP (SOB008)	Emboss taping (EF type)
CY88152APNF-G-101-JNEFE1	16.6 MHz to 67 MHz	Down spread	Yes		
CY88152APNF-G-111-JNEFE1	16.6 MHz to 67 MHz	Center spread	Yes		
CY88152APNF-G-112-JNEFE1	40 MHz to 134 MHz	Center spread	Yes		
CY88152APNF-G-100-JNERE1	16.6 MHz to 134 MHz	Down spread	No	8-pin plastic	Emboss taping (ER type)
CY88152APNF-G-101-JNERE1	16.6 MHz to 67 MHz	Down spread	Yes	SOP (SOB008)	
CY88152APNF-G-111-JNERE1	16.6 MHz to 67 MHz	Center spread	Yes		71-7
CY88152APNF-G-112-JNERE1	40 MHz to 134 MHz	Center spread	Yes		

Ordering Code Definitions

21. Package Dimension

SYMBOL	DIMENSIONS				
STIMBUL	MIN.	NOM.	MAX.		
Α			1.75		
A1	0.05		0.25		
A2	1.30	1.40	1.50		
D	5.05 BSC.				
E	6.00 BSC.				
E1	3.90 BSC				
θ	0°		8°		
С	0.15	_	0.25		
b	0.36	0.44	0.52		
L	0.45	0.60	0.75		
L 1	1.05 REF				
L 2	0.25 BSC				
е	1.27 BSC.				
h	0.40 BSC.				

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETER.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- ⚠ DIMENSIONING D INCLUDE MOLD FLASH, DIMENSIONING E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.025 mm PER SIDE. D and E1 DIMENSION ARE DETERMINED AT DATUM H.
- $\underline{\underline{\mathbb{A}}}$ THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONING D and E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- 6. "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
- riangle THE DIMENSION APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm TO 0.25mm FROM THE LEAD TIP.
- A DIMENSION "b" DOES NOT INCLUDE THE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR MAY NOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.
- THIS CHAMFER FEATURE IS OPTIONAL. LF IT IS NOT PRESENT, THEN A PIN 1 IDENTIFIER MUST BE LOCATED WITHIN THE INDEX AREA INDICATED
- /10\ "A1" IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY EXCLUDING THE LID AND OR THERMAL ENHANCEMENT ON CAVITY DOWN PACKAGE CONFIGURATIONS.
 - 11. JEDEC SPECIFICATION NO. REF: N/A

002-15856 Rev.**

Document History

Document Title: CY88152A Spread Spectrum Clock Generator Document Number: 002-08308						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	-	TAOA	06/29/2009	Initial release.		
*A	5560671	TAOA	12/28/2016	Migrated Spansion datasheet "DS04-29125-3E" into Cypress Template.		
*B	6003426	TAOA	12/25/2017	Deleated EOL part number: MB88152A-102/110 Updated Package Dimensions: Updated to Cypress format Changed the package name from FPT-8P-M02 to SOB008		
*C	6268353	ATTS	07/31/2018	Updated part number: MB88152A to CY88152A Added Ordering Code Definitions		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot cypress.com/memory Memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2006-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, unclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not l

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.