: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MB90598G/F598G/V595G F²MC-16LX MB90595G Series
CMOS 16-bit Proprietary Microcontroller
The MB90595G series with FULL-CAN interface and FLASH ROM is especially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach.
The instruction set of $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU core inherits an AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{*}$ family with additional instruction sets for highlevel languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.
The MB90595G series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interface, 8/16-bit PPG timer, I/O timer (input capture (ICU), output compare (OCU)) and stepping motor controller.

Features

■ Clock
Embedded PLL clock multiplication circuit
Operating clock (PLL clock) can be selected from divided-by2 of oscillation or one to four times the oscillation (at oscillation of $4 \mathrm{MHz}, 4 \mathrm{MHz}$ to 16 MHz).
Minimum instruction execution time: 62.5 ns (operation at oscillation of 4 MHz , four times the oscillation clock,
Vcc of 5.0 V)

- Instruction set to optimize controller applications

Rich data types (bit, byte, word, long word)
Rich addressing mode (23 types)
Enhanced signed multiplication/division instruction and RETI instruction functions
Enhanced precision calculation realized by the 32-bit accumulator

■ Instruction set designed for high level language (C language) and multi-task operations
Adoption of system stack pointer
Enhanced pointer indirect instructions
Barrel shift instructions

- Program patch function (for two address pointers)

■ Enhanced execution speed: 4-byte instruction queue

- Enhanced interrupt function: 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation
Extended intelligent I/O service function (EI ${ }^{2} \mathrm{OS}$): Up to 10 channels
- Embedded ROM size and types

Mask ROM: 128 Kbytes
Flash ROM: 128 Kbytes
Embedded RAM size: 4 Kbytes (MB90595G: 6 Kbytes)

- Flash ROM

Supports automatic programming, Embedded Algorithm
Write/Erase/Erase-Suspend/Resume commands
A flag indicating completion of the algorithm
Hard-wired reset vector available in order to point to a fixed boot sector
Erase can be performed on each block
Block protection with external programming voltage
■ Low-power consumption (stand-by) mode
Sleep mode (mode in which CPU operating clock is stopped)
Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode Hardware stand-by mode

■ Process: $0.5 \mu \mathrm{~m}$ CMOS technology

- I/O port

General-purpose I/O ports: 78 ports
Push-pull output and Schmitt trigger input.
Programmable on each bit as I/O or signal for peripherals.

- Timer

Watchdog timer: 1 channel
8/16-bit PPG timer: 8/16-bit $\times 6$ channels
16-bit re-load timer: 2 channels

- 16-bit I/O timer

16-bit Free-run timer: 1 channel
Input capture: 4 channels
Output compare: 4 channels
■ Extended I/O serial interface: 1 channel

- UARTO

With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.

- UART1 (SCI)

With full-duplex double buffer (8-bit length)
Clock asynchronized or clock synchronized serial transmission (I/O extended transmission) can be selectively used.

■ Stepping motor controller (4 channels)

- External interrupt circuit (8 channels)

A module for starting an extended intelligent I/O service (EI ${ }^{2} \mathrm{OS}$) and generating an external interrupt which is triggered by an external input.
■ Delayed interrupt generation module: Generates an interrupt request for switching tasks.

- 8/10-bit A/D converter (8 channels) 8/10-bit resolution can be selectively used. Starting by an external trigger input.
■ FULL-CAN interface: 1 channel Conforming to Version 2.0 Part A and Part B Flexible message buffering (mailbox and FIFO buffering can be mixed)
- 18-bit Time-base counter

■ External bus interface: Maximum address space 16 Mbytes

MB90595G Series

Contents

Product Lineup 3
Pin Assignment 5
Pin Description 6
I/O Circuit Type 8
Handling Devices 11
Block Diagram 14
Memory Space 15
I/O Map 16
Can Controller 23
List of Control Registers 23
List of Message Buffers (ID Registers) 24
List of Message Buffers (DLC Registers and Data Registers) 27
Interrupt Source, Interrupt Vector, and Interrupt Control Register 29
Electrical Characteristics 31
Absolute Maximum Ratings 31
Recommended Conditions 33
DC Characteristics 33
AC Characteristics 35
A/D Converter 42
A/D Converter Glossary 44
Notes on Using A/D Converter 45
Flash memory 46
Example Characteristics 47
Ordering Information 49
Package Dimensions 49
Major Changes 50

1. Product Lineup

Features		MB90598G	MB90F598G	MB90V595G
Classification		Mask ROM product	Flash ROM product	Evaluation product
ROM size		128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None
RAM size		4 Kbytes	4 Kbytes	6 Kbytes
Emulator-specific power supply		-		None
CPU functions		The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz) Interrupt processing time: $1.5 \mu \mathrm{~s}$ (at machine clock frequency of 16 MHz , minimum value)		
UARTO		Clock synchronized transmission ($500 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{Mbps}$) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 / 500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/slave connection.		
UART1(SCI)		Clock synchronized transmission ($62.5 \mathrm{~K} / 125 \mathrm{~K} / 250 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{Mbps}$) Clock asynchronized transmission (1202/2404/4808/9615/31250 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.		
8/10-bit A/D converter		Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel once only) Scan conversion mode (converts two or more successive channels and can program up to 8 channels) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)		
8/16-bit PPG timers (6 channels)		Number of channels: 6 ($8 / 16$-bit $\times 6$ channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ (fsys $=$ system clock frequency) $128 \mu \mathrm{~s}$ (fosc $=4 \mathrm{MHz}$: oscillation clock frequency)		
16-bit Reload timer		Number of channels: 2 Operation clock frequency: fsys/ $/ 2^{1}$, fsys $/ 2^{3}$, fsys $/ 2^{5}$ (fsys = System clock frequency) Supports External Event Count function		
16-bit I/O timer	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of compare register		
	Input captures	Number of channels: 4 Rewriting a register value upon a pin input (rising, falling, or both edges)		

MB90595G Series

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.
Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

2. Pin Assignment

MB90595G Series
Embedded in Tomorrow"

3. Pin Description

Pin no .	Pin name	Circuit type	Function
82	X0		
83	X1		Oscilator pin
77	$\overline{\text { RST }}$	B	Reset input
52	HST	C	Hardware standby input
85 to 88	P00 to P03	G	General purpose IO
	IN0 to IN3		Inputs for the Input Captures
89 to 92	P04 to P07	G	General purpose IO
	OUT0 to OUT3		Outputs for the Output Compares.
93 to 98	P10 to P15	D	General purpose IO
	PPG0 to PPG5		Outputs for the Programmable Pulse Generators
99	P16	D	General purpose IO
	TIN1		TIN input for the 16-bit Reload Timer 1
100	P17	D	General purpose IO
	TOT1		TOT output for the 16-bit Reload Timer 1
1 to 8	P20 to P27	G	General purpose IO
9 to 10	P30 to P31	G	General purpose IO
12 to 16	P32 to P36	G	General purpose IO
17	P37	D	General purpose IO
18	P40	G	General purpose IO
	SOTO		SOT output for UART 0
19	P41	G	General purpose IO
	SCKO		SCK input/output for UART 0
20	P42	G	General purpose IO
	SIN0		SIN input for UART 0
21	P43	G	General purpose IO
	SIN1		SIN input for UART 1
22	P44	G	General purpose IO
	SCK1		SCK input/output for UART 1
24	P45	G	General purpose IO
	SOT1		SOT output for UART 1
25	P46	G	General purpose IO
	SOT2		SOT output for the Serial IO
26	P47	G	General purpose IO
	SCK2		SCK input/output for the Serial IO

MB90595G Series
Embedded in Tomorrow"

Pin no.	Pin name	Circuit type	Function
28	P50	D	General purpose IO
	SIN2		SIN Input for the Serial IO
29 to 32	P51 to P54	D	General purpose IO
	INT4 to INT7		External interrupt input for INT4 to INT7
33	P55	D	General purpose IO
	ADTG		Input for the external trigger of the A/D Converter
38 to 41	P60 to P63	E	General purpose IO
	AN0 to AN3		Inputs for the A/D Converter
43 to 46	P64 to P67	E	General purpose IO
	AN4 to AN7		Inputs for the A/D Converter
47	P56	D	General purpose IO
	TIN0		TIN input for the 16-bit Reload Timer 0
48	P57	D	General purpose IO
	TOT0		TOT output for the 16-bit Reload Timer 0
54 to 57	P70 to P73	F	General purpose IO
	PWM1P0 PWM1M0 PWM2P0 PWM2M0		Output for Stepper Motor Controller channel 0
59 to 62	P74 to P77	F	General purpose IO
	PWM1P1 PWM1M1 PWM2P1 PWM2M1		Output for Stepper Motor Controller channel 1
64 to 67	P80 to P83	F	General purpose IO
	PWM1P2 PWM1M2 PWM2P2 PWM2M2		Output for Stepper Motor Controller channel 2
69 to 72	P84 to P87	F	General purpose IO
	PWM1P3 PWM1M3 PWM2P3 PWM2M3		Output for Stepper Motor Controller channel 3
74	P90	D	General purpose IO
	TX		TX output for CAN Interface
75	P91	D	General purpose IO
	RX		RX input for CAN Interface

MB90595G Series
Embedded in Tomorrow"

Pin no.	Pin name	Circuit type	Function
76	P92	D	General purpose IO
	INT0		External interrupt input for INT0
78 to 80	P93 to P95	D	General purpose IO
	INT1 to INT3		External interrupt input for INT1 to INT3
58,68	DVcc	-	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)
53, 63, 73	DVss	-	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AV ${ }_{\text {cc }}$	Power supply	Dedicated power supply pin for the A/D Converter
37	AVss	Power supply	Dedicated ground pin for the A/D Converter
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter
49,50	$\begin{aligned} & \text { MD0 } \\ & \text { MD1 } \end{aligned}$	C	Operating mode selection input pins. These pins should be connected to V_{cc} or $\mathrm{V}_{\text {ss }}$.
51	MD2	H	Operating mode selection input pin. This pin should be connected to V_{cc} or V_{ss}.
27	C	-	External capacitor pin. A capacitor of $0.1 \mu \mathrm{~F}$ should be connected to this pin and Vss.
23, 84	Vcc	Power supply	Power supply pins (5.0 V).
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
A	Hard, Soft Standby control	Oscillation feedback resistor: $1 \mathrm{M} \Omega$ approx.
B		- Hysteresis input with pull-up Resistor: $50 \mathrm{k} \Omega$ approx.
c	$\square \mathrm{M}_{\mathrm{M}}^{\mathrm{Q}} \mathrm{O}^{\mathrm{HYS}}$	- Hysteresis input

MB90595G Series
Embedded in Tomorrow"'

Circuit Type	Circuit	Remarks
D		CMOS output CMOS Hysteresis input
E		- CMOS output ■ CMOS Hysteresis input ■ Analog input

MB90595G Series
Embedded in Tomorrow"'

Circuit Type	Circuit	Remarks
F		CMOS high current output CMOS Hysteresis input
G		- CMOS output - CMOS Hysteresis input TTL input (MB90F598G, only in Flash mode)
H		- Hysteresis input Pull-down Resistor: $50 \mathrm{k} \Omega$ approx. (except MB90F598G)

5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding V_{cc} or an voltage below V ss is applied to input or output pins or a voltage exceeding the rating is applied across V_{cc} and V ss.
When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.
In turning on/turning off the analog power supply, make sure the analog power voltage ($\mathrm{AVcc}, \mathrm{AVRH}, \mathrm{DV}$ cc) and analog input voltages not exceed the digital voltage (V_{cc}).
(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least $2 \mathrm{k} \Omega$ resistance.
Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.
(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)
Make sure to connect V_{cc} and $\mathrm{V}_{\text {ss }}$ pins via lowest impedance to power lines.
It is recommended to provide a bypass capacitor of around $0.1 \mu \mathrm{~F}$ between V_{cc} and $\mathrm{V}_{\text {ss }}$ pins near the device.

MB90595G Series

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.
A printed circuit board artwork surrounding the X 0 and X 1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A / D converter to $A V c c=V_{c c}, A V s s=A V R H=D V c c=V_{s s}$.
(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at
$50 \mu \mathrm{~s}$ or more (0.2 V to 2.7 V).
(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If $\overline{\mathrm{RST}}$ pin is " H ", the outputs become indeterminate.

- If $\overline{R S T}$ pin is " L ", the outputs become high-impedance.

Pay attention to the port output timing shown as follows.

MB90595G Series

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.
(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in " 00 h ".
If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than " 00 H ", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.
(14) Using REALOS

The use of $\mathrm{El}^{2} \mathrm{OS}$ is not possible with the REALOS real time operating system.
(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

MB90595G Series

6. Block Diagram

MB90595G Series

7. Memory Space

The memory space of the MB90595G Series is shown below
Figure 1. Memory space map

Note: : The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16 -bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".
For example, if an attempt has been made to access 00 COOOH , the contents of the ROM at FFCOOOH are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000н to FFFFFFH looks, therefore, as if it were the image for 004000н to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000н to FFFFFFн.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00-	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXв
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXв
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXX
0^{05}	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXX ${ }_{\text {в }}$
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX
07\%	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXX ${ }_{\text {в }}$
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXX ${ }_{\text {в }}$
09н	Port 9 Data Register	PDR9	R/W	Port 9	_- XXXXXX $^{\text {¢ }}$
0Ан to 0F\%	Reserved				
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000 B
11H	Port 1 Direction Register	DDR1	R/W	Port 1	00000000 в
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000 в
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000 B
14 H	Port 4 Direction Register	DDR4	R/W	Port 4	00000000 в
15 H	Port 5 Direction Register	DDR5	R/W	Port 5	00000000 в
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000 в
17H	Port 7 Direction Register	DDR7	R/W	Port 7	00000000 в
18н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000 в
19н	Port 9 Direction Register	DDR9	R/W	Port 9	_- 000000 в
1 Ан	Reserved				
1 BH	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111111 в
1殂 to 1FH	Reserved				
$2 \mathrm{H}_{\mathrm{H}}$	Serial Mode Control Register 0	UMC0	R/W	UARTO	00000100 в
21H	Serial status Register 0	USR0	R/W		00010000 в
22н	Serial Input/Output Data Register 0	UIDRO/UODR0	R/W		XXXXXXXX
23H	Rate and Data Register 0	URD0	R/W		0000000 Хв
24	Serial Mode Register 1	SMR1	R/W	UART1	00000000 в
25 H	Serial Control Register 1	SCR1	R/W		00000100 в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W		XXXXXXXX
27 H	Serial Status Register 1	SSR1	R/W		00001_008
28 H	UART1 Prescaler Control Register	U1CDCR	R/W		$0_{---} 1111$ в

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Aн	Reserved				
2 BH	Serial IO Prescaler	SCDCR	R/W	Serial IO	$0_{\text {_-_ }} 1111 \mathrm{~B}$
$2 \mathrm{CH}_{\mathrm{H}}$	Serial Mode Control Register (low-order)	SMCS	R/W		----0000в
2Dh	Serial Mode Control Register (high-order)	SMCS	R/W		00000010 в
2 E н	Serial Data Register	SDR	R/W		XXXXXXXX в
2 FH	Edge Selector	SES	R/W		------- ${ }^{\text {® }}$
30 H	External Interrupt Enable Register	ENIR	R/W	External Interrupt	00000000 в
31 H	External Interrupt Request Register	EIRR	R/W		XXXXXXXXв
32 н	External Interrupt Level Register	ELVR	R/W		00000000 в
33 H	External Interrupt Level Register	ELVR	R/W		00000000 в
34 ${ }^{\text {H}}$	A/D Control Status Register 0	ADCS0	R/W	A/D Converter	00000000 в
35 ${ }^{\text {H}}$	A/D Control Status Register 1	ADCS1	R/W		00000000 в
36	A/D Data Register 0	ADCR0	R		
37\%	A/D Data Register 1	ADCR1	R/W		$00001_{\text {_ }} \mathbf{X X} \chi_{\text {B }}$
38	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable Pulse Generator 0/1	$0_{-} 000_{--}{ }^{18}$
39н	PPG1 Operation Mode Control Register	PPGC1	R/W		0_0000018
3Ан	PPG0, 1 Output Pin Control Register	PPG01	R/W		$000000^{\text {_ }}{ }^{\text {B }}$
3Вн	Reserved				
$3 \mathrm{C}_{\mathrm{H}}$	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable Pulse Generator 2/3	$0_{-} 000_{--}{ }^{18}$
3D	PPG3 Operation Mode Control Register	PPGC3	R/W		$0_{-} 000001 \mathrm{~B}$
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W		$000000{ }_{\text {_ }}{ }^{\text {B }}$
3FH	Reserved				
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable Pulse Generator 4/5	$0_{-} 000_{--}{ }^{18}$
41н	PPG5 Operation Mode Control Register	PPGC5	R/W		0_0000018
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W		$000000{ }_{\text {_ }}{ }^{\text {B }}$
43н	Reserved				
44н	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable Pulse Generator 6/7	$0_{-} 000_{--}{ }^{18}$
45	PPG7 Operation Mode Control Register	PPGC7	R/W		$0_{+} 000001 \mathrm{~B}$
46H	PPG6, 7 Output Pin Control Register	PPG67	R/W		$000000{ }_{\text {- }}{ }^{\text {B }}$
47\%	Reserved				
48н	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Programmable Pulse Generator 8/9	$0_{-} 000_{--}{ }^{18}$
49н	PPG9 Operation Mode Control Register	PPGC9	R/W		0_000001в
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W		$000000{ }_{\text {_ }}{ }^{\text {B }}$
4Вн	Reserved				

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
4 CH	PPGA Operation Mode Control Register	PPGCA	R/W	16-b	$0 _000{ }_{-} 1_{\text {в }}$
4D ${ }_{\text {н }}$	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_0000018
4Ен	PPGA, B Output Pin Control Register	PPGAB	R/W		00000 _ $^{\text {B }}$
4FH	Reserved				
50H	Timer Control Status Register 0	TMCSR0	R/W	$\begin{gathered} \text { 16-bit } \\ \text { Reload Timer } 0 \end{gathered}$	00000000 в
51H	Timer Control Status Register 0	TMCSR0	R/W		- - - $0000 \mathrm{O}_{\text {в }}$
52 H	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX ${ }_{\text {в }}$
53H	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX ${ }_{\text {в }}$
54 ${ }_{\text {H }}$	Timer Control Status Register 1	TMCSR1	R/W	16-bitReload Timer 1	$00000000_{\text {в }}$
55 H	Timer Control Status Register 1	TMCSR1	R/W		- - - 0000 в
56	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX ${ }_{\text {в }}$
57\%	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX ${ }_{\text {в }}$
58\%	Output Compare Control Status Register 0	OCS0	R/W	Output Compare 0/1	$00000^{\text {O }} 0$
59	Output Compare Control Status Register 1	OCS1	R/W		- - $000000^{\text {b }}$
5 н $^{\text {}}$	Output Compare Control Status Register 2	OCS2	R/W	Output Compare 2/3	$0000{ }_{-} 000^{\text {b }}$
5Вн	Output Compare Control Status Register 3	OCS3	R/W		---000008
$5 \mathrm{C}_{\mathrm{H}}$	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000 в
5D	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	00000000 в
5Ен	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	$00000 \ldots{ }^{\text {O }}$
5FH	Reserved				
60 H	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$00000 \ldots{ }^{\text {¢ }}$
61H	Reserved				
62 ${ }^{\text {r }}$	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$00000 \ldots{ }^{\text {¢ }}$
63н	Reserved				
64 ${ }^{\text {r }}$	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	$00000 \ldots{ }^{\text {¢ }}$
65H	Reserved				
66н	Timer Data Register (low-order)	TCDT	R/W	16-bit Free-run Timer	00000000 в
67\%	Timer Data Register (high-order)	TCDT	R/W		00000000 в
68H	Timer Control Status Register	TCCS	R/W		00000000 в
69 H to $6 \mathrm{E}_{\text {H }}$	Reserved				

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
6FH	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	_-_-_-_-_ ${ }^{\text {B }}$
70 н	PWM1 Compare Register 0	PWC10	R/W	Stepping Motor Controller 0	XXXXXXXX ${ }_{\text {B }}$
71н	PWM2 Compare Register 0	PWC20	R/W		XXXXXXXX
72н	PWM1 Select Register 0	PWS10	R/W		__ 000000 в
73	PWM2 Select Register 0	PWS20	R/W		_ 0000000 в
74	PWM1 Compare Register 1	PWC11	R/W	Stepping Motor Controller 1	XXXXXXXX ${ }_{\text {B }}$
75	PWM2 Compare Register 1	PWC21	R/W		XXXXXXXX ${ }_{\text {¢ }}$
76н	PWM1 Select Register 1	PWS11	R/W		__ 000000 в
77	PWM2 Select Register 1	PWS21	R/W		_ 0000000 в
78н	PWM1 Compare Register 2	PWC12	R/W	Stepping Motor Controller 2	XXXXXXXX
79н	PWM2 Compare Register 2	PWC22	R/W		XXXXXXXX
7 7	PWM1 Select Register 2	PWS12	R/W		__ 000000 в
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0000000 в
7 CH	PWM1 Compare Register 3	PWC13	R/W	Stepping Motor Controller 3	XXXXXXXX
7D	PWM2 Compare Register 3	PWC23	R/W		XXXXXXXX ${ }_{\text {B }}$
7Ен	PWM1 Select Register 3	PWS13	R/W		_ - 000000 в
7F	PWM2 Select Register 3	PWS23	R/W		_ 000000 0в
80н to 8Fн	CAN Controller. Refer to section about CAN Controller				
90н to 9Dн	Reserved				
9Ен	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0000000 0в
9F\%	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	------_ ${ }^{\text {® }}$
AOH	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	00011000 в
A1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	11111100 о
A2н to A7н	Reserved				
A8H	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX $111_{\text {в }}$
A9 ${ }^{\text {}}$	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	1 _ _ 00100 в
AAн to ADн	Reserved				
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	000×0000 в
AFH	Reserved				

(Continued)

MB90595G Series

Address	Register	Abbreviation	Access	Peripheral	Initial value
B0н	Interrupt Control Register 00	ICR00	R/W	Interrupt controller	$00000111^{\text {B }}$
B1 ${ }^{\text {H}}$	Interrupt Control Register 01	ICR01	R/W		$00000111^{\text {B }}$
В2н	Interrupt Control Register 02	ICR02	R/W		$00000111^{\text {B }}$
В3н	Interrupt Control Register 03	ICR03	R/W		$00000111^{\text {B }}$
B4 ${ }^{\text {¢ }}$	Interrupt Control Register 04	ICR04	R/W	Interrupt controller	$00000111^{\text {B }}$
B5	Interrupt Control Register 05	ICR05	R/W		$00000111_{\text {B }}$
B6	Interrupt Control Register 06	ICR06	R/W		$00000111^{\text {B }}$
B7 ${ }^{\text {r }}$	Interrupt Control Register 07	ICR07	R/W		$00000111^{\text {B }}$
В8н	Interrupt Control Register 08	ICR08	R/W		$00000111^{\text {B }}$
В9н	Interrupt Control Register 09	ICR09	R/W		$00000111^{\text {B }}$
ВАн	Interrupt Control Register 10	ICR10	R/W		$00000111^{\text {B }}$
ВВн	Interrupt Control Register 11	ICR11	R/W		$00000111^{\text {B }}$
BCH	Interrupt Control Register 12	ICR12	R/W		$00000111^{\text {B }}$
BD	Interrupt Control Register 13	ICR13	R/W		$00000111^{\text {B }}$
ВЕн	Interrupt Control Register 14	ICR14	R/W		$00000111^{\text {B }}$
BF_{H}	Interrupt Control Register 15	ICR15	R/W		$00000111^{\text {B }}$
C 0 н to FF_{H}	Reserved				
1900н	Reload Register L	PRLLO	R/W	16-bit Programmable Pulse Generator 0/1	XXXXXXXX ${ }_{\text {в }}$
1901H	Reload Register H	PRLH0	R/W		XXXXXXXX ${ }_{\text {B }}$
1902н	Reload Register L	PRLL1	R/W		XXXXXXXX ${ }_{\text {¢ }}$
1903н	Reload Register H	PRLH1	R/W		XXXXXXXX ${ }_{\text {¢ }}$
1904н	Reload Register L	PRLL2	R/W	16-bit Programmable Pulse Generator 2/3	XXXXXXXX ${ }_{\text {¢ }}$
1905н	Reload Register H	PRLH2	R/W		XXXXXXXX ${ }_{\text {B }}$
1906н	Reload Register L	PRLL3	R/W		XXXXXXXX ${ }_{\text {¢ }}$
1907H	Reload Register H	PRLH3	R/W		XXXXXXXX ${ }_{\text {¢ }}$
1908н	Reload Register L	PRLL4	R/W	16-bit Programmable Pulse Generator 4/5	XXXXXXXX ${ }_{\text {¢ }}$
$1909{ }_{\text {H }}$	Reload Register H	PRLH4	R/W		XXXXXXXX
190Ан	Reload Register L	PRLL5	R/W		XXXXXXXX ${ }_{\text {в }}$
190Вн	Reload Register H	PRLH5	R/W		XXXXXXXX ${ }_{\text {¢ }}$
190 CH	Reload Register L	PRLL6	R/W	16-bit Programmable Pulse Generator 6/7	XXXXXXXX
190D ${ }_{\text {н }}$	Reload Register H	PRLH6	R/W		XXXXXXXX ${ }_{\text {B }}$
190Eн	Reload Register L	PRLL7	R/W		XXXXXXXX ${ }_{\text {¢ }}$
190F ${ }_{\text {H }}$	Reload Register H	PRLH7	R/W		XXXXXXXX ${ }_{\text {B }}$

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W	16-bit Programmable Pulse Generator 8/9	XXXXXXXX
1911н	Reload Register H	PRLH8	R/W		XXXXXXXX ${ }_{\text {в }}$
1912н	Reload Register L	PRLL9	R/W		XXXXXXXX
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX ${ }_{\text {¢ }}$
1914н	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse Generator A/B	XXXXXXXX ${ }_{\text {¢ }}$
1915 ${ }_{\text {H }}$	Reload Register H	PRLHA	R/W		XXXXXXXX
1916н	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse Generator A/B	XXXXXXXX ${ }_{\text {в }}$
1917H	Reload Register H	PRLHB	R/W		XXXXXXXX ${ }_{\text {в }}$
1918H to 191FH	Reserved				
1920н	Input Capture Register 0 (low-order)	IPCP0	R	Input Capture 0/1	XXXXXXXX ${ }_{\text {в }}$
1921н	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXX ${ }_{\text {B }}$
1922н	Input Capture Register 1 (low-order)	IPCP1	R		XXXXXXXX ${ }_{\text {в }}$
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX ${ }_{\text {B }}$
1924н	Input Capture Register 2 (low-order)	IPCP2	R	Input Capture 2/3	XXXXXXXX ${ }_{\text {в }}$
1925 +	Input Capture Register 2 (high-order)	IPCP2	R		XXXXXXXX ${ }_{\text {в }}$
1926н	Input Capture Register 3 (low-order)	IPCP3	R		XXXXXXXX ${ }_{\text {в }}$
1927	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX ${ }_{\text {в }}$
1928н	Output Compare Register 0 (low-order)	OCCPO	R/W	Output Compare 0/1	XXXXXXXX ${ }_{\text {в }}$
1929н	Output Compare Register 0 (high-order)	OCCPO	R/W		XXXXXXXX ${ }_{\text {в }}$
192Aн	Output Compare Register 1 (low-order)	OCCP1	R/W		XXXXXXXX ${ }_{\text {в }}$
192Вн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX ${ }_{\text {в }}$

(Continued)

MB90595G Series
(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W	Output Compare 2/3	XXXXXXXX ${ }_{\text {в }}$
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W		XXXXXXXX ${ }_{\text {в }}$
192Ен	Output Compare Register 3 (low-order)	OCCP3	R/W		XXXXXXXX ${ }_{\text {в }}$
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX ${ }_{\text {в }}$
1930н to 19FFH	Reserved				
1A00н to 1AFF ${ }_{\text {H }}$	CAN Controller. Refer to section about CAN Controller				
$1 \mathrm{B00}$ н to 18FFH	CAN Controller. Refer to section about CAN Controller				
1C00 ${ }^{\text {to }} 1 \mathrm{EFFF}_{\text {H }}$	Reserved				
1FFOн	Program Address Detection Register 0 (low-order)	PADR0	R/W	Address Match Detection Function	XXXXXXXX ${ }_{\text {в }}$
1FF1H	Program Address Detection Register 0 (middle-order)				XXXXXXXX ${ }_{\text {в }}$
1FF2н	Program Address Detection Register 0 (high-order)				XXXXXXXX ${ }_{\text {в }}$
1FF3н	Program Address Detection Register 1 (low-order)	PADR1	R/W		XXXXXXXX ${ }_{\text {в }}$
1FF4H	Program Address Detection Register 1 (middle-order)				XXXXXXXX ${ }_{\text {в }}$
1FF5 ${ }^{\text {+ }}$	Program Address Detection Register 1 (high-order)				ХXXXXXXX ${ }_{\text {в }}$
1FF6 ${ }_{\text {H }}$ to 1FFF ${ }_{\text {H }}$	Reserved				

- Description for Read/Write

R/W : Readable/writable
R : Read only
W: Write only

- Description of initial value

0 : the initial value of this bit is " 0 ".
1 : the initial value of this bit is " 1 ".
X : the initial value of this bit is undefined.
: this bit is unused. the initial value is undefined.
Note: : Addresses in the range of 0000 н to 00 FF , which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading " X ", and any write access should not be performed.

9. Can Controller

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
- - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

9.1 List of Control Registers

Address	Register	Abbreviation	Access	Initial Value
000080 ${ }^{\text {H }}$	Message buffer valid register	BVALR	R/W	0000000000000000 B
000081н				
000082н	Transmit request register	TREQR	R/W	0000000000000000 в
000083н				
000084н	Transmit cancel register	TCANR	W	$0000000000000000{ }_{\text {B }}$
000085 ${ }_{\text {н }}$				
000086н	Transmit complete register	TCR	R/W	$0000000000000000{ }_{\text {B }}$
000087 ${ }^{\text {¢ }}$				
000088н	Receive complete register	RCR	R/W	$0000000000000000{ }_{\text {B }}$
000089н				
00008Ан	Remote request receiving register	RRTRR	R/W	0000000000000000 B
00008Вн				
00008 С $_{\text {H }}$	Receive overrun register	ROVRR	R/W	0000000000000000 в
00008Dн				
00008Eн	Receive interrupt enable register	RIER	R/W	0000000000000000 B
00008Fн				
001B00 ${ }^{\text {¢ }}$	Control status register	CSR	R/W, R	00---000 0----0-1в
001B01н				
001B02н	Last event indicator register	LEIR	R/W	--------000-0000в
001В03н				
001B04н	Receive/transmit error counter	RTEC	R	0000000000000000 B
001B05н				
001B06н	Bit timing register	BTR	R/W	-1111111 11111111в
001B07н				

(Continued)

MB90595G Series
(Continued)

Address	Register	Abbreviation	Access	Initial Value
001B08н	IDE register	IDER	R/W	
001B09н				
001В0Ан	Transmit RTR register	TRTRR	R/W	0000000000000000 в
001B0В				
001B0Сн	Remote frame receive waiting register	RFWTR	R/W	
001B0D				
001B0Eн	Transmit interrupt enable register	TIER	R/W	0000000000000000 в
001B0FH				
001B10н	Acceptance mask select register	AMSR	R/W	
001B11H				
001В12н				
001B13н				
001B14н	Acceptance mask register 0	AMR0	R/W	XXXXXXXX XXXXXXXХв
001B15				
001B16н				
001B17н				
001В18н	Acceptance mask register 1	AMR1	R/W	
001B19н				
$001 \mathrm{B1} \mathrm{~A}_{\text {н }}$				
001B1В ${ }_{\text {н }}$				

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
$\begin{aligned} & 001 \mathrm{~A} 00 \mathrm{H} \\ & \text { to } \\ & 001 \mathrm{~A}^{2} \mathrm{~F}_{\mathrm{H}} \end{aligned}$	General-purpose RAM	--	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001A20H	ID register 0	IDR0	R/W	
001A21н				
001A22H				ХXXXX--- XXXXXXXXв
001A23н				
001A24H	ID register 1	IDR1	R/W	
001A25H				
001A26H				XXXXX--- XXXXXXXXв
001A27н				
001A28H	ID register 2	IDR2	R/W	
001A29н				
001 А2Ан				XXXXX--- XXXXXXXX
001A2Bн				

MB90595G Series
Embedded in Tomorrow"

Address	Register	Abbreviation	Access	Initial Value
001A2CH	ID register 3	IDR3	R/W	
001A2D				
001A2Eн				ХХХХХ--- ХХХХХХХХв
001A2F ${ }^{\text {¢ }}$				
001A30н	ID register 4	IDR4	R/W	
001A31н				
001А32н				ХХХХХ--- ХХХХХХХХв
001A33н				
001A34	ID register 5	IDR5	R/W	
001A35				
001A36н				ХХХХХХ-- XXXXXXXX $^{\text {- }}$
001A37 ${ }^{\text {¢ }}$				
001A38н	ID register 6	IDR6	R/W	Х XXXXXXX $^{\text {XXXXXXXXв }}$
001A39н				
001АЗАн				XXXXX--- XXXXXXXXв
001A3Вн				
001A3CH	ID register 7	IDR7	R/W	Х XXXXXXX $^{\text {XXXXXXXXв }}$
001A3D ${ }_{\text {¢ }}$				
001АЗЕн				ХХХХХХ--- XXXXXXXX
001A3F				

