

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

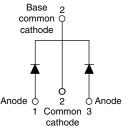
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

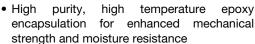
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



www.vishay.com

Vishay Semiconductors

High Performance Schottky Rectifier, 2 x 10 A


TO-220A	۱B
---------	----

common (cathode	2
1 Com	2 O Anode anode anode

PRODUCT SUMMARY					
I _{F(AV)}	2 x 10 A				
V_{R}	35 V, 45 V				
V _F at I _F	0.57 V				
I _{RM} max.	15 mA at 125 °C				
T _J max.	150 °C				
E _{AS}	8 mJ				
Package	TO-220AB				
Diode variation	Common cathode				

FEATURES

- 150 °C T_J operation
- · Low forward voltage drop
- · High frequency operation

- · Guard ring for enhanced ruggedness and long term reliability
- AEC-Q101 qualified meets JESD 201 class 2 whisker test
- · Material categorization: For definitions of compliance please see www.vishav.com/doc?99912

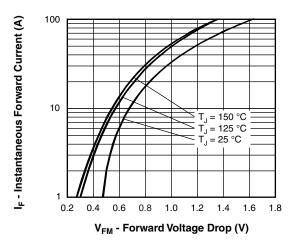
DESCRIPTION

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
I _{F(AV)}	Rectangular waveform (per device)	20	Α				
V _{RRM}		35/45	V				
I _{FRM}	T _C = 135 °C (per leg)	20	^				
I _{FSM}	t _p = 5 μs sine	1060	A				
V _F	10 A _{pk} , T _J = 125 °C	0.57	V				
TJ	Range	-65 to 150	°C				

VOLTAGE RATINGS						
PARAMETER SYMBOL VS-MBR2035CTHN3 VS-MBR2045CTHN3 UNITS						
Maximum DC reverse voltage	V_R	35	45	V		
Maximum working peak reverse voltage	V_{RWM}	33	45	V		

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST (CONDITIONS	VALUES	UNITS	
Maximum average per leg	_	$T_C = 135 ^{\circ}\text{C}$, rated V_B		10		
forward current per device	I _{F(AV)}	$r_C = 135^{\circ}$ C, rated v_R		20		
Peak repetitive forward current per leg	I _{FRM}	Rated V _R , square wave, 20	kHz, T _C = 135 °C	20		
Non-repetitive peak surge current	I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	1060	А	
, , ,		Surge applied at rated load single phase, 60 Hz	ge applied at rated load condition half wave, gle phase, 60 Hz			
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T_J maximum $V_A = 1.5 \times V_R$ typical		2		
Non-repetitive avalanche energy per leg	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2 \text{A}, L = 4$	mH	8	mJ	


ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS	
		20 A	T _J = 25 °C	0.84		
Maximum forward voltage drop	V _{FM} ⁽¹⁾	10 A	T. ₁ = 125 °C	0.57	V	
		20 A	1J = 125 C	0.72		
Maximum instantaneous reverse current	I _{RM} ⁽¹⁾	T _J = 25 °C	Rated DC voltage	0.1	- mA	
waximum instantaneous reverse current	'RM (''	T _J = 125 °C	hated DC voltage	15		
Threshold voltage	V _{F(TO)}	T - T movimum		0.354	V	
Forward slope resistance	r _t	$T_J = T_J$ maximum		17.6	mΩ	
Maximum junction capacitance	C _T	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		600	pF	
Typical series inductance	L _S	Measured from top of term	8.0	nH		
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs	

Note

 $^{(1)}\,$ Pulse width < 300 µs, duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction temper	rature range	TJ		-65 to 150	°C	
Maximum storage temper	ature range	T_{Stg}		-65 to 175	C	
Maximum thermal resistar junction to case per leg	Maximum thermal resistance, junction to case per leg		DC operation 2.0		°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased (only for TO-220)	0.50	C/VV	
Approximate weight				2	g	
Approximate weight				0.07	OZ.	
Mounting toward	minimum		Non-lubricated threads	6 (5)	kgf · cm	
Mounting torque maximum			Non-lubricated trireads	12 (10)	(lbf·in)	
Marking device			Coop of the TO 220AP	MBR2035CTH		
			Case style TO-220AB	MBR2045CTH		

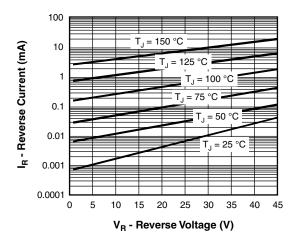


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

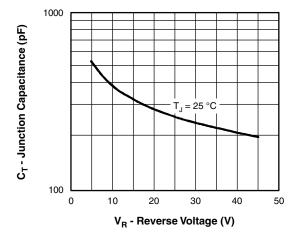


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

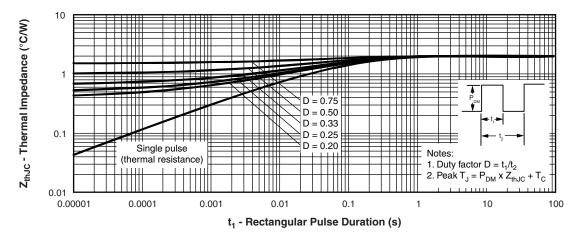


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

www.vishay.com

Vishay Semiconductors

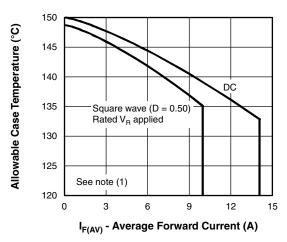


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

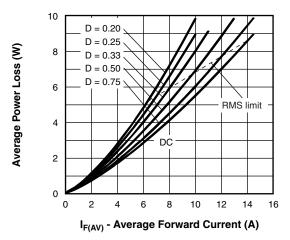


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

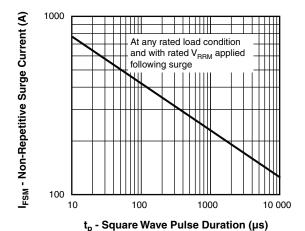
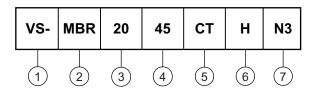


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)


Note

 $\begin{array}{ll} \text{(1)} & \text{Formula used: } T_C = T_J - (\text{Pd} + \text{Pd}_{\text{REV}}) \times R_{\text{th,JC}}; \\ \text{Pd} = \text{Forward power loss} = I_{\text{F(AV)}} \times V_{\text{FM}} \text{ at } (I_{\text{F(AV)}}/D) \text{ (see fig. 6)}; \\ \text{Pd}_{\text{REV}} = \text{Inverse power loss} = V_{\text{R1}} \times I_{\text{R}} (1 - D); I_{\text{R}} \text{ at } V_{\text{R1}} = \text{Rated } V_{\text{R}} \end{aligned}$

ORDERING INFORMATION TABLE

- Vishay Semiconductors product

2 - Schottky MBR series

3 - Current rating (20 = 20 A)

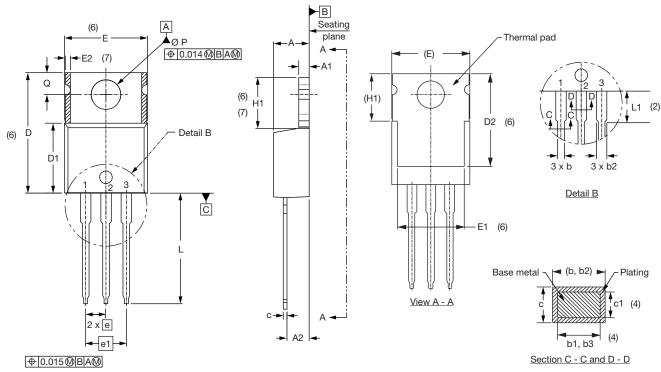
35 = 35 V 45 = 45 V

5 - CT = Essential part number

6 - H = AEC-Q101 qualified

7 - Environmental digit

• N3 = Halogen-free, RoHS-compliant, and totally lead (Pb)-free


ORDERING INFORMATION (Example)							
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION				
VS-MBR2035CTHN3	50	1000	Antistatic plastic tube				
VS-MBR2045CTHN3	50	1000	Antistatic plastic tube				

LINKS TO RELATED DOCUMENTS						
Dimensions <u>www.vishay.com/doc?95222</u>						
Part marking information TO-220AB	N3 <u>www.vishay.com/doc?95028</u>					
SPICE model	www.vishay.com/doc?95295					

TO-220AB

DIMENSIONS in millimeters and inches

Lead tip

Lead assignments

<u>Diodes</u>

- 1. Anode/open
- 2. Cathode
- 3. Anode

Conforms to JEDEC outline TO-220AB

SYMBOL	MILLIN	IETERS	INCHES		NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.56	2.92	0.101	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.25	0.585	0.600	3
D1	8.38	9.02	0.330	0.355	
D2	11.68	12.88	0.460	0.507	6

SYMBOL	MILLIN	IETERS	INCHES		NOTES
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Е	10.11	10.51	0.398	0.414	3, 6
E1	6.86	8.89	0.270	0.350	6
E2	-	0.76	-	0.030	7
е	2.41	2.67	0.095	0.105	
e1	4.88	5.28	0.192	0.208	
H1	6.09	6.48	0.240	0.255	6, 7
L	13.52	14.02	0.532	0.552	
L1	3.32	3.82	0.131	0.150	2
ØΡ	3.54	3.73	0.139	0.147	
Q	2.60	3.00	0.102	0.118	
θ	90° to 93°		90° t	o 93°	
		•	•	•	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3 and c1 apply to base metal only
- (5) Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2 and F1
- (7) Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed
- (8) Outline conforms to JEDEC TO-220, except A2 (maximum) and D2 (minimum) where dimensions are derived from the actual package outline

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.