

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5 V ECL 6-Bit D Register Differential Data and Clock

Description

The MC10E/100E451 contains six D-type flip-flops with single-ended outputs and differential data inputs. The common clock input is also differential. The registers are triggered by a positive transition of the positive clock (CLK) input.

A HIGH on the Master Reset (MR) input resets all Q outputs to LOW.

The differential input structures are clamped so that the inputs of unused registers can be left open without upsetting the bias network of the device. The clamping action will assert the \overline{D} and the \overline{CLK} sides of the inputs. Because of the edge triggered flip-flop nature of the device simultaneously opening both the clock and data inputs will result in an output which reaches an unidentified but valid state. Note that the input clamps only operate when both inputs fall to 2.5 V below V_{CC} .

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01~\mu F$ capacitor and limit current sourcing or sinking to 0.5~mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

Features

- Differential Inputs: Data and Clock
- V_{BB} Output
- 1100 MHz Min. Toggle Frequency
- Asynchronous Master Reset
- PECL Mode Operating Range:
 V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range:
 V_{CC} = 0 V with V_{EE} = −4.2 V to −5.7 V
- Internal Input 50 kΩ Pulldown Resistors
- ESD Protection:
 - ♦ > 2 kV Human Body Model
 - ♦ > 200 V Machine Model
- Transistor Count = 348 Devices
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Moisture Sensitivity: Level 3 (Pb-Free)
 (For Additional Information, see Application Note <u>AND8003/D</u>)
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant


ON Semiconductor®

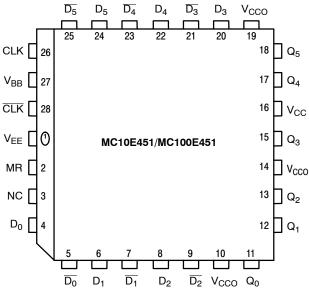
www.onsemi.com

PLCC-28 FN SUFFIX CASE 776-02

MARKING DIAGRAM*

xxx = 10 or 100

A = Assembly Location


WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping†
MC10E451FNG	PLCC-28 (Pb-Free)	37 Units / Tube
MC10E451FNR2G	PLCC-28 (Pb-Free)	500 Tape & Reel
MC100E451FNG	PLCC-28 (Pb-Free)	37 Units / Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

* All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 28-Lean Pinout Assignment (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
$D_0 - D_5$, $\overline{D}_0 - \overline{D}_5$	ECL Differential Data Input
CLK, CLK	ECL Differential Clock Input
MR	ECL Master Reset Input
Q ₀ – Q ₅	ECL Data Outputs
V _{BB}	Reference Voltage Output
V _{CC} , V _{CCO}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

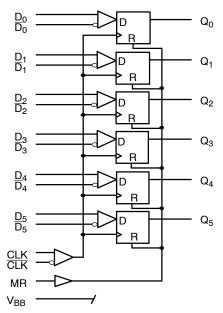


Figure 2. Logic Diagram

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. 10E SERIES PECL DC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1))

		0°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		84	101		84	101		84	101	mA
V _{OH}	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.65		3.75	3.69		3.81	٧
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.2		4.6	2.2		4.6	2.2		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46 V / +0.06 V.
- 2. Outputs are terminated through a 50 Ω resistor to \overline{V}_{CC} 2.0 V.
- 3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

Table 4. 10E SERIES NECL DC CHARACTERISTICS ($V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

		0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		84	101		84	101		84	101	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V_{BB}	Output Voltage Reference	-1.38		-1.27	-1.35		-1.25	-1.31		-1.19	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary -0.46 V / +0.06 V. 2. Outputs are terminated through a 50 Ω resistor to V $_{CC}$ 2.0 V.
- 3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

Table 5. 100E SERIES PECL DC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1))

		0°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		84	101		84	101		97	116	mA
V _{OH}	Output HIGH Voltage (Note 2)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.2		4.6	2.2		4.6	2.2		4.6	٧
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46~V / +0.8~V.
- 2. Outputs are terminated through a 50 Ω resistor to \overline{V}_{CC} 2.0 V.
- 3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

Table 6. 100E SERIES NECL DC CHARACTERISTICS ($V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

		0°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		84	101		84	101		97	116	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	٧
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary +0.46 V / -0.8 V. 2. Outputs are terminated through a 50 Ω resistor to V $_{CC}$ 2.0 V.
- 3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

Table 7. AC CHARACTERISTICS ($V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

			0°C			25°C			85°C			
Symbol	Characteristic	Mi	n	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency	1.	1			1.1			1.1			GHz
t _{PLH} t _{PHL}	Propagation Delay to Output CLK (Differential), CLK (Single-Ended), MR	62	:5		1050	625		1050	625		1050	ps
ts	Setup Time	15	0	-100		150	-100		150	-100		ps
t _h	Hold Time	25	0	100		250	100		250	100		ps
t _{RR}	Reset Recovery Time	75	0	600		750	600		750	600		ps
t _{PW}	Minimum Pulse Width CLK, MR	40	0			400			400			ps
t _{SKEW}	Within-Device Skew (Note 2)			100			100			100		ps
t _{JITTER}	Random Clock Jitter (RMS)			<1.0			<1.0			<1.0		ps
V _{PP}	Input Voltage Swing (Differential Configuration)	15	0		1000	150		1000	150		1000	mV
t _r t _f	Rise/Fall Times (20-80%)	27	5	450	800	275	450	800	275	450	800	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{1. 10} Series: V_{EE} can vary -0.46 V / +0.06 V. 100 Series: V_{EE} can vary -0.46 V / +0.8 V.

^{2.} Within-device skew is defined as identical transitions on similar paths through a device.

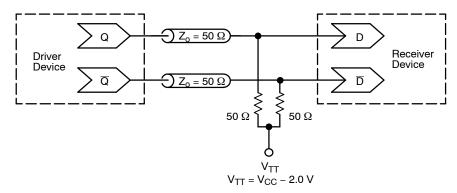


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

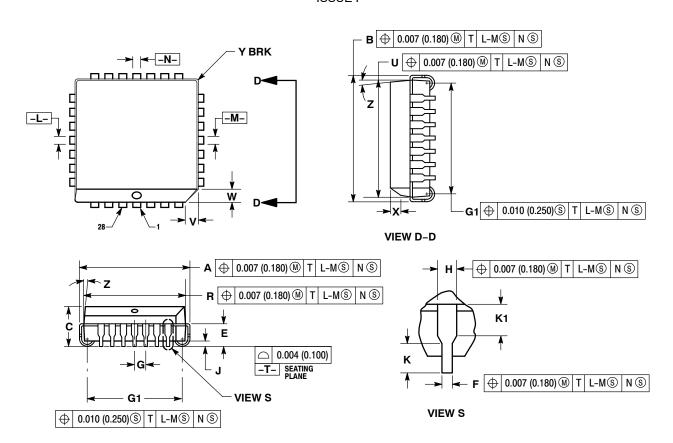
Interfacing Between LVDS and ECL

AND8001/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices


AND8066/D - Interfacing with ECLinPS

AN1568/D

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

28 LEAD PLLC **FN SUFFIX** CASE 776-02 **ISSUE F**

- O LES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
- 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- ANSI Y14.5M, 1982.

 5. CONTROLLING DIMENSION: INCH.

 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURDS. CATE PURPS AND INTERLIED. BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- PLASTIC BODY TO DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
C	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
7	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
5	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2 °	10°	2 °	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor datas sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative