Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # 3.3V / 5V ECL Quad 4-Input OR/NOR #### Description The MC10/100EP101 is a Quad 4-input OR/NOR gate. The device is functionally equivalent to the E101. With AC performance faster than the E101 device, the EP101 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. #### **Features** - 250 ps Typical Propagation Delay - Maximum Frequency > 3 GHz Typical - PECL Mode Operating Range: V<sub>CC</sub> = 3.0 V to 5.5 V with V<sub>EE</sub> = 0 V - NECL Mode Operating Range: $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.0 \text{ V}$ to -5.5 V - Open Input Default State - Pb-Free Packages are Available\* #### ON Semiconductor® http://onsemi.com # MARKING DIAGRAM\* LQFP-32 FA SUFFIX CASE 873A QFN32 MN SUFFIX CASE 488AM xxx = 10 or 100 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. <sup>\*</sup>For additional marking information, refer to Application Note AND8002/D. <sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Warning: All $V_{CC}$ and $V_{EE}$ pins must be externally connected to Power Supply to guarantee proper operation. Figure 2. 32-Lead QFN Pinout (Top View) Figure 1. 32-Lead LQFP Pinout (Top View) **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | D0a*-D3d* | ECL Data Inputs | | Q0-Q3, <del>Q0-Q3</del> | ECL Data Outputs | | V <sub>CC</sub> | Positive Supply | | V <sub>EE</sub> | Negative Supply | | NC | No Connect | | EP for QFN-32, only | The Exposed Pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heatsinking conduit. The pad is electrically connected to V <sub>EE</sub> . | <sup>\*</sup> Pins will default LOW when left open. **Table 2. TRUTH TABLE** | Dna | Dnb | Dnc | Dnd | Qn | Qn | |-----|-----|-----|-----|----|----| | L | L | L | L | L | Н | | Н | Х | Х | Х | Н | L | | Х | Н | Х | Х | Н | L | | Х | Х | Н | Х | Н | L | | Х | Х | Х | Н | Н | L | | Н | Н | Н | Н | Н | L | | ł | | | | | | Figure 3. Logic Diagram **Table 3. ATTRIBUTES** | Characteris | stics | Va | lue | | | | |---------------------------------------|-------------------------|------------------|--------------------|--|--|--| | Internal Input Pulldown Resistor | | 75 kΩ | | | | | | Internal Input Pullup Resistor | | N/A | | | | | | ESD Protection | > 10 | kV<br>00 V<br>kV | | | | | | Moisture Sensitivity, Indefinite Time | Out of Drypack (Note 1) | Pb Pkg | Pb-Free Pkg | | | | | | LQFP-32<br>QFN-32 | Level 2 | Level 2<br>Level 1 | | | | | Flammability Rating | Oxygen Index: 28 to 34 | UL-94 V-0 | @ 0.125 in | | | | | Transistor Count | | 173 D | evices | | | | | Meets or exceeds JEDEC Spec EIA | JESD78 IC Latchup Test | | | | | | <sup>1.</sup> For additional information, see Application Note AND8003/D. **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------|-------------|--------------| | V <sub>CC</sub> | PECL Mode Power Supply | V <sub>EE</sub> = 0 V | | 6 | V | | V <sub>EE</sub> | NECL Mode Power Supply | V <sub>CC</sub> = 0 V | | -6 | V | | VI | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $V_{I} \le V_{CC}$<br>$V_{I} \le V_{EE}$ | 6<br>-6 | V<br>V | | l <sub>out</sub> | Output Current | Continuous<br>Surge | | 50<br>100 | mA<br>mA | | I <sub>BB</sub> | V <sub>BB</sub> Sink/Source | | | ± 0.5 | mA | | T <sub>A</sub> | Operating Temperature Range | | | -40 to +85 | °C | | T <sub>stg</sub> | Storage Temperature Range | | | -65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm<br>500 lfpm | 32 LQFP<br>32 LQFP | 80<br>55 | °C/W<br>°C/W | | $\theta_{JC}$ | Thermal Resistance (Junction-to-Case) | Standard | 32 LQFP | 12 to 17 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm<br>500 lfpm | QFN-32<br>QFN-32 | 31<br>27 | °C/W<br>°C/W | | θJC | Thermal Resistance (Junction-to-Case) | 2S2P | QFN-32 | 12 | °C/W | | T <sub>sol</sub> | Wave Solder Pb Pb-Free | | | 265<br>265 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Table 5. 10EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 3.3 V, V<sub>EE</sub> = 0 V (Note 2) | | | | -40°C | | | 25°C | | | | | | |-----------------|-----------------------------------|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I <sub>EE</sub> | Power Supply Current | 45 | 57 | 75 | 45 | 58 | 75 | 45 | 59 | 75 | mA | | V <sub>OH</sub> | Output HIGH Voltage (Note 3) | 2165 | 2290 | 2415 | 2230 | 2355 | 2480 | 2290 | 2415 | 2540 | mV | | V <sub>OL</sub> | Output LOW Voltage (Note 3) | 1365 | 1490 | 1615 | 1430 | 1555 | 1680 | 1490 | 1615 | 1740 | mV | | V <sub>IH</sub> | Input HIGH Voltage (Single-Ended) | 2090 | | 2415 | 2155 | | 2480 | 2215 | | 2540 | mV | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | 1365 | | 1690 | 1460 | | 1755 | 1490 | | 1815 | mV | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I <sub>IL</sub> | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 2. Input and output parameters vary 1:1 with $V_{CC}$ . $V_{EE}$ can vary +0.3 V to -2.2 V. - 3. All loading with 50 W to V<sub>CC</sub> 2.0 V. Table 6. 10EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 5.0 V, V<sub>EE</sub> = 0 V (Note 4) | | | | -40°C | | | 25°C | | | | | | |-----------------|-----------------------------------|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I <sub>EE</sub> | Power Supply Current | 45 | 57 | 75 | 45 | 58 | 75 | 45 | 59 | 75 | mA | | V <sub>OH</sub> | Output HIGH Voltage (Note 5) | 3865 | 3990 | 4115 | 3930 | 4055 | 4180 | 3990 | 4115 | 4240 | mV | | V <sub>OL</sub> | Output LOW Voltage (Note 5) | 3065 | 3190 | 3315 | 3130 | 3255 | 3380 | 3190 | 3315 | 3440 | mV | | V <sub>IH</sub> | Input HIGH Voltage (Single-Ended) | 3790 | | 4115 | 3855 | | 4180 | 3915 | | 4240 | mV | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | 3065 | | 3390 | 3130 | | 3455 | 3190 | | 3515 | mV | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I <sub>IL</sub> | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 4. Input and output parameters vary 1:1 with $V_{CC}$ . $V_{EE}$ can vary +2.0 V to -0.5 V. - 5. All loading with 50 $\Omega$ to V $_{CC}$ 2.0 V. Table 7. 10EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$ , $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 6) | | | | -40°C | | | 25°C | | | 85°C | | | | |-----------------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|--| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | | I <sub>EE</sub> | Power Supply Current | 45 | 57 | 75 | 45 | 58 | 75 | 45 | 59 | 75 | mA | | | V <sub>OH</sub> | Output HIGH Voltage (Note 7) | -1135 | -1010 | -885 | -1070 | -945 | -820 | -1010 | -885 | -760 | mV | | | V <sub>OL</sub> | Output LOW Voltage (Note 7) | -1935 | -1810 | -1685 | -1870 | -1745 | -1620 | -1810 | -1685 | -1560 | mV | | | V <sub>IH</sub> | Input HIGH Voltage (Single-Ended) | -1210 | | -885 | -1145 | | -820 | -1085 | | -760 | mV | | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | -1935 | | -1610 | -1870 | | -1545 | -1810 | | -1485 | mV | | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | | I <sub>IL</sub> | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 6. Input and output parameters vary 1:1 with V<sub>CC</sub>. - 7. All loading with 50 $\Omega$ to $V_{CC}$ 2.0 V. Table 8. 100EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 3.3 V, V<sub>EE</sub> = 0 V (Note 8) | | | | -40°C | | | 25°C | | | | | | |-----------------|-----------------------------------|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I <sub>EE</sub> | Power Supply Current | 40 | 55 | 75 | 40 | 58 | 75 | 45 | 60 | 85 | mA | | V <sub>OH</sub> | Output HIGH Voltage (Note 9) | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | | V <sub>OL</sub> | Output LOW Voltage (Note 9) | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV | | V <sub>IH</sub> | Input HIGH Voltage (Single-Ended) | 2075 | | 2420 | 2075 | | 2420 | 2075 | | 2420 | mV | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | 1355 | | 1675 | 1355 | | 1675 | 1355 | | 1675 | mV | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I <sub>IL</sub> | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 8. Input and output parameters vary 1:1 with $V_{CC}$ . $V_{EE}$ can vary +0.3 V to -2.2 V. - 9. All loading with 50 $\Omega$ to $V_{CC}$ 2.0 V. Table 9. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}$ , $V_{EE} = 0 \text{ V}$ (Note 10) | | | | −40°C | | | 25°C | | | | | | |-----------------|-----------------------------------|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I <sub>EE</sub> | Power Supply Current | 40 | 58 | 75 | 40 | 61 | 75 | 45 | 64 | 85 | mA | | V <sub>OH</sub> | Output HIGH Voltage (Note 11) | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV | | V <sub>OL</sub> | Output LOW Voltage (Note11) | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | mV | | V <sub>IH</sub> | Input HIGH Voltage (Single-Ended) | 3775 | | 4120 | 3775 | | 4120 | 3775 | | 4120 | mV | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | 3055 | | 3375 | 3055 | | 3375 | 3055 | | 3375 | mV | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I <sub>IL</sub> | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 10. Input and output parameters vary 1:1 with $V_{CC}$ . $V_{EE}$ can vary +2.0 V to -0.5 V. Table 10. 100EP DC CHARACTERISTICS, NECL V<sub>CC</sub> = 0 V, V<sub>EE</sub> = -5.5 V to -3.0 V (Note 12) | | | | -40°C | | | 25°C | | | 85°C | | | | |-----------------|------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------|--| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | | I <sub>EE</sub> | Power Supply Current $V_{CC} = -3.3V$<br>$V_{CC} = -5.0 V$ | 40<br>40 | 55<br>58 | 75<br>75 | 40<br>40 | 58<br>61 | 75<br>75 | 45<br>45 | 60<br>64 | 85<br>85 | mA | | | I <sub>EE</sub> | Power Supply Current | 50 | 63 | 80 | 55 | 67 | 85 | 60 | 70 | 88 | mA | | | V <sub>OH</sub> | Output HIGH Voltage (Note 13) | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | | | V <sub>OL</sub> | Output LOW Voltage (Note 13) | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | mV | | | V <sub>IH</sub> | Input HIGH Voltage (Single-Ended) | -1225 | | -880 | -1225 | | -880 | -1225 | | -880 | mV | | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | -1945 | | -1625 | -1945 | | -1625 | -1945 | | -1625 | mV | | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | | I <sub>IL</sub> | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. <sup>11.</sup> All loading with 50 $\Omega$ to $\mbox{V}_{\mbox{CC}}$ – 2.0 V. <sup>12.</sup> Input and output parameters vary 1:1 with $V_{CC}$ . <sup>13.</sup> All loading with 50 $\Omega$ to $V_{CC}$ – 2.0 V. Table 11. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$ ; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 14) | | | | -40°C | | | 25°C | | | 85°C | | | |----------------------------------------|-------------------------------------------------------------------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f <sub>max</sub> | Maximum Frequency<br>(See Figure 4. F <sub>max</sub> /JITTER) | | > 3 | | | > 3 | | | > 3 | | GHz | | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay D to Q, 0<br>1<br>10 | 125 | 225<br>280 | 325<br>380 | 150<br>200 | 250<br>300 | 370<br>400 | 170<br>250 | 300<br>320 | 420<br>450 | ps | | tskew | Within Device Skew Q, 0 Device to Device Skew (Note 15) | Q | 15 | 50<br>200 | | 20 | 50<br>200 | | 20 | 50<br>200 | ps | | <sup>†</sup> JITTER | Cycle-to-Cycle Jitter<br>(See Figure 4. F <sub>max</sub> /JITTER) | | 0.2 | < 1 | | 0.2 | < 1 | | 0.2 | < 1 | ps | | t <sub>r</sub> | Output Rise/Fall Times Q, 0<br>(20% – 80%) | 100 | 150 | 200 | 120 | 170 | 220 | 150 | 190 | 250 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 $\Omega$ to V<sub>CC</sub> 2.0 V. - 15. Skew is measured between outputs under identical transitions. Figure 4. F<sub>max</sub>/Jitter Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | |-----------------|----------------------|-----------------------| | MC10EP101FA | LQFP-32 | 250 Units / Tray | | MC10EP101FAG | LQFP-32<br>(Pb-Free) | 250 Units / Tray | | MC10EP101FAR2 | LQFP-32 | 2000 / Tape & Reel | | MC10EP101FAR2G | LQFP-32<br>(Pb-Free) | 2000 / Tape & Reel | | MC100EP101FA | LQFP-32 | 250 Units / Tray | | MC100EP101FAG | LQFP-32<br>(Pb-Free) | 250 Units / Tray | | MC100EP101FAR2 | LQFP-32 | 2000 / Tape & Reel | | MC100EP101FAR2G | LQFP-32<br>(Pb-Free) | 2000 / Tape & Reel | | MC10EP101MNG | | 74 Units / Rail | | MC10EP101MNR4G | QFN-32 | 1000 / Tape & Reel | | MC100EP101MNG | (Pb-Free) | 74 Units / Rail | | MC100EP101MNR4G | | 1000 / Tape & Reel | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### PACKAGE DIMENSIONS #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: - 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -AB- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -T-, -U-, AND -Z- TO BE DETERMINED AT DATUM PLANE -AB-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -AC-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-. 7. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR - DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS - SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY - VARY FROM DEPICTION. | | MILLIMETERS | | INCHES | | | |-----|-------------|-----------|-----------|-----------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 7.000 | 7.000 BSC | | 0.276 BSC | | | A1 | 3.500 BSC | | 0.138 BSC | | | | В | 7.000 BSC | | 0.276 BSC | | | | B1 | 3.500 BSC | | 0.138 BSC | | | | C | 1.400 | 1.600 | 0.055 | 0.063 | | | D | 0.300 | 0.450 | 0.012 | 0.018 | | | E | 1.350 | 1.450 | 0.053 | 0.057 | | | F | 0.300 | 0.400 | 0.012 | 0.016 | | | G | 0.800 BSC | | 0.031 BSC | | | | Н | 0.050 | 0.150 | 0.002 | 0.006 | | | J | 0.090 | 0.200 | 0.004 | 0.008 | | | K | 0.450 | 0.750 | 0.018 | 0.030 | | | M | 12° | 12° REF | | 12° REF | | | N | 0.090 | 0.160 | 0.004 | 0.006 | | | P | 0.400 | BSC | 0.016 BSC | | | | Q | 1° | 5° | 1° | 5° | | | R | 0.150 | 0.250 | 0.006 | 0.010 | | | S | 9.000 BSC | | 0.354 BSC | | | | S1 | 4.500 BSC | | 0.177 BSC | | | | ٧ | 9.000 BSC | | 0.354 BSC | | | | V1 | 4.500 BSC | | 0.177 BSC | | | | W | 0.200 REF | | 0.008 REF | | | | X | 1.000 REF | | 0.039 REF | | | #### PACKAGE DIMENSIONS # **QFN32 5\*5\*1 0.5 P**CASE 488AM-01 ISSUE O #### NOTES: - DIMENSIONS AND TOLERANCING PER - ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - 3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM TERMINAL - 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | | |-----|-------------|-------|-------|--|--| | DIM | MIN | NOM | MAX | | | | Α | 0.800 | 0.900 | 1.000 | | | | A1 | 0.000 | 0.025 | 0.050 | | | | А3 | 0.200 REF | | | | | | b | 0.180 | 0.250 | 0.300 | | | | D | 5.00 BSC | | | | | | D2 | 2.950 | 3.100 | 3.250 | | | | Е | 5.00 BSC | | | | | | E2 | 2.950 | 3.100 | 3.250 | | | | е | 0.500 BSC | | | | | | K | 0.200 | | | | | | L | 0.300 | 0.400 | 0.500 | | | # BOTTOM VIEW \*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC). ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative