imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination

The MC100EP16VT is a differential receiver functionally equivalent to the 100EP16 with input pins controlling the amplitude of the outputs (pin 1) and providing an internal termination network (pin 4).

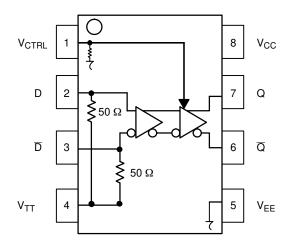
The V_{CTRL} input pin controls the output amplitude of the EP16VT and is referenced to V_{CC}. (See Figure 4.) The operational range of the V_{CTRL} input is from \leq V_{BB} (a supply at V_{CC}–1.42 V, maximum output amplitude) to V_{CC} (minimum output amplitude). V_{BB} is an externally supplied voltage equal to V_{CC}–1.42 V (See Figures 2 and 3). A variable resistor between V_{CC} and V_{BB}, with the wiper driving V_{CTRL}, can control the output amplitude. Typical application circuits and a V_{CTRL} Voltage vs. Output Amplitude graph are described in this data sheet. When left open, the V_{CTRL} pin will be internally pulled down to V_{EE} and operate as a standard EP16, with 100% output amplitude.

The V_{TT} input pin offers an internal termination network for a 50 ohm line impedance environment, shown in Figure 1. For further reference, see Application Note AND8020, Termination of ECL Logic Devices. Input considerations are required for D and \overline{D} under no signal conditions to prevent instability.

Special considerations are required for differential inputs under No Signal conditions to prevent instability.

- 220 ps Propagation Delay
- Maximum Frequency > 4 GHz Typical (See Graph)
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -5.5 V
- Open Input Default State
- 50 Ω Internal Termination Resistor

ON Semiconductor[™]


http://onsemi.com

MARKING **DIAGRAMS*** 8 A A A A SO-8 KEP63 D SUFFIX ALYW **CASE 751** Η Н 8 8 8 8 8 8 TSSOP-8 KP63 DT SUFFIX ALYW **CASE 948R** 8888 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping			
MC100EP16VTD	SO–8	98 Units/Rail			
MC100EP16VTDR2	SO–8	2500 Tape & Reel			
MC100EP16VTDT	TSSOP-8	100 Units/Rail			
MC100EP16VTDTR2	TSSOP-8	2500 Tape & Reel			

PIN DESCRIPTION

PIN	FUNCTION
D, D	ECL Data Inputs
Q, <u>Q</u>	ECL Data Outputs
V _{CTRL} *	Output Swing Control
V _{TT}	Termination Supply
V _{CC}	Positive Supply
V_{EE}	Negative Supply

* Pin will default LOW when left open.

Figure 1. 8–Lead Pinout (Top View) and Logic Diagram

ATTRIBUTES

Character	istics	Value
Internal Input Pulldown Resistor		75 kΩ
Internal Input Pullup Resistor		N/A
ESD Protection	Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time	e Out of Drypack (Note 1.)	Level 1
Flammability Rating Oxygen Index		UL-94 code V-0 A 1/8" 28 to 34
Transistor Count		140 Devices
Meets or exceeds JEDEC Spec El	A/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	$V_{EE} = 0 V$		6	V
V_{EE}	NECL Mode Power Supply	$V_{\rm CC} = 0 \ V$		6	V
Vi	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \! \leq \! V_{CC} \\ V_{I} \! \geq \! V_{EE} \end{array}$	6 6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to 44 \pm 5%	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

2. Maximum Ratings are those values beyond which device damage may occur.

			_40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	30	36	42	31	38	44	32	40	48	mA
V _{OH}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2155		2405	2155		2405	2155		2405	mV
V _{OL}	Output LOW Voltage (Max Swing) (Note 4.) V _{CTRL} \leq V _{BB}	1355	1490	1605	1355	1520	1605	1355	1520	1605	mV
	$V_{CC} \ge V_{CTRL} > V_{BB}$		See Fig.2			See Fig.2			See Fig.2		
	V _{CTRL} = V _{CC} (Min Swing)	2105	2230	2355	2095	2220	2345	2065	2190	2315	
V _{IH}	D, D Input HIGH Voltage (Single Ended)	2075		2420	2075		2420	2075		2420	mV
V _{IL}	D, \overline{D} Input LOW Voltage (Single Ended)	1490		1675	1490		1675	1490		1675	mV
V _{CTRL}	Input Voltage (V _{CTRL})	V_{EE}		V _{CC}	V_{EE}		V _{CC}	V_{EE}		V _{CC}	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 5.)	2.0		2.9	2.0		2.9	2.0		2.9	V
I _{IH}	Input HIGH Current (V _{TT} Open)			150			150			150	μA
Ι _{ΙL}	Input LOW Current (V _{TT} Open)	-150		1	-150			-150		1	μA

DC CHARACTERISTICS. PECL Voc = 3.3 V. Vrr = 0 V (Note 3.)

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to V_{CC}-2.0 volts. V_{OH} does not change with V_{CTRL}. V_{OL} changes with V_{CTRL}. V_{CTRL} is referenced to V_{CC}. 5. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			_40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	30	36	42	31	38	44	32	40	48	mA
V _{OH}	Output HIGH Voltage (Note 7.) V _{CC} > V _{CTRL} > V _{EE}	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	3055	3190	3305	3055	3220	3305	3055	3220	3305	mV
	$VCC \ge V_{CTRL} > V_{BB}$		See Fig.2			See Fig.2			See Fig.2		
	V _{CTRL} = V _{CC} (Min Swing)	3805	3930	4055	3795	3920	4045	3765	3890	4015	
V _{IH}	D, D Input HIGH Voltage (Single Ended)	3775		4120	3775		4120	3775		4120	mV
V _{IL}	D, D Input LOW Voltage (Single Ended)	3190		3375	3190		3375	3190		3375	mV
V _{CTRL}	Input Voltage (V _{CTRL})	V_{EE}		V _{CC}	V_{EE}		V _{CC}	V_{EE}		V _{CC}	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 8.)	2.0		4.6	2.0		4.6	2.0		4.6	V
I _{IH}	Input HIGH Current (V _{TT} Open)			150			150			150	μA
I _{IL}	Input LOW Current (V _{TT} Open)	-150			-150			-150			μA

DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}, V_{EE} = 0 \text{ V}$ (Note 6.)

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit sine designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to -0.5 V.
All loading with 50 ohms to V_{CC}-2.0 volts. V_{OH} does not change with V_{CTRL}. V_{OL} changes with V_{CTRL}. V_{CTRL} is referenced to V_{CC}.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential

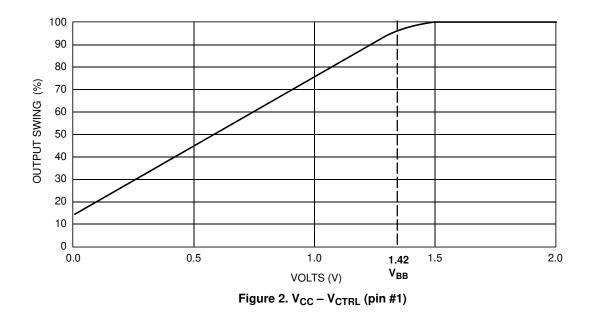
input signal.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	30	36	42	31	38	44	32	40	48	mA
V _{OH}	Output HIGH Voltage (Note 10.) $V_{CC} > V_{CTRL} > V_{EE}$	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-1945	-1810	-1695	-1945	-1780	-1695	-1945	-1780	-1695	mV
	$VCC \ge V_{CTRL} > V_{BB}$		See Fig.2			See Fig.2			See Fig.2		
	$V_{CTRL} = V_{CC}$ (Min Swing)	-1195	-1070	-945	-1205	-1080	-955	-1235	-1110	-985	
V _{IH}	D, \overline{D} Input HIGH Voltage (Single Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	D, \overline{D} Input LOW Voltage (Single Ended)	-1810		-1625	-1810		-1625	-1810		-1625	mV
V _{CTRL}	Input Voltage (V _{CTRL})	V_{EE}		V _{CC}	V_{EE}		V _{CC}	V_{EE}		V _{CC}	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 11.)	V _{EE}	+2.0	-0.4	V _{EE}	+2.0	-0.4	V _{EE}	+2.0	-0.4	V
I _{IH}	Input HIGH Current (V _{TT} Open)			150			150			150	μA
IIL	Input LOW Current (V _{TT} Open)	-150			-150			-150			μA

DC CHARACTERISTICS, NECL $V_{CC} = 0 V$; $V_{FF} = -5.5 V$ to -3.0 V (Note 9.)

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with V_{CC} .

10. All loading with 50 ohms to V_{CC} =2.0 volts. V_{OH} does not change with V_{CTRL} . V_{OL} changes with V_{CTRL} . V_{CTRL} is referenced to V_{CC} . 11. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.


		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (See Figure 8. F _{max} /JITTER)		> 4			> 4			> 4		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential Max Swing Min Swing	250 200	300 250	350 300	250 200	300 250	350 300	250 200	300 250	350 300	ps
t _{SKEW}	Duty Cycle Skew (Note 13.)		5.0	20		5.0	20		5.0	20	ps
t _{JITTER}	Cycle-to-Cycle Jitter (See Figure 8. F _{max} /JITTER)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Input Voltage Swing (Differential) (Note 14.)	150	800	1200	150	800	1200	150	800	1200	mV
t _r , t _f	Output Rise/Fall Times Max Swing Q (20% – 80%) Min Swing	70 30	120 80	170 130	80 20	130 70	180 120	100 20	150 70	200 120	ps

AC CHARACTERISTICS $V_{CC} = 0 V$; $V_{EE} = -3.0 V$ to -5.5 V or $V_{CC} = 3.0 V$ to 5.5 V; $V_{EE} = 0 V$ (Note 12.)

12. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V_{CC}-2.0 V.

13. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

14. VPP(min) is minimum input swing for which AC parameters are guaranteed.

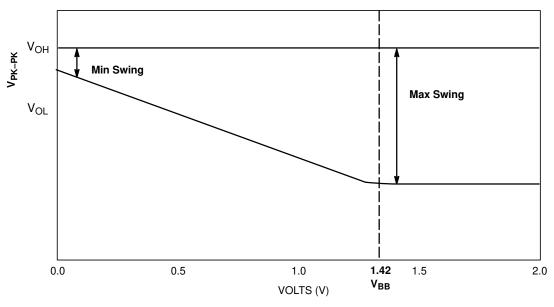
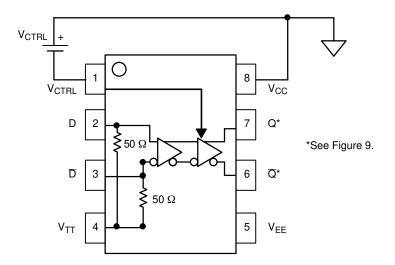



Figure 3. V_{CC} – V_{CTRL}

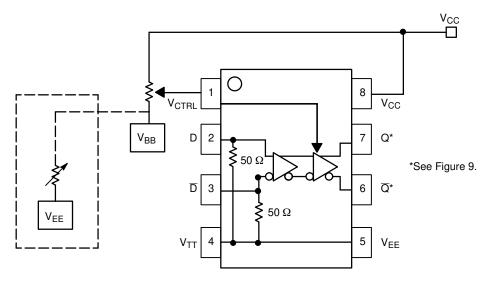
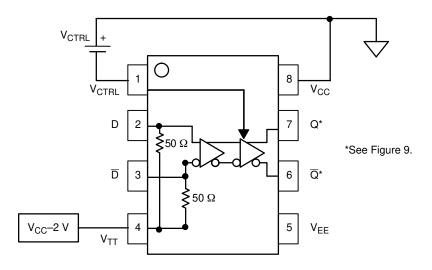



Figure 5. Alternative Implementations, V_{CTRL} Pin 1

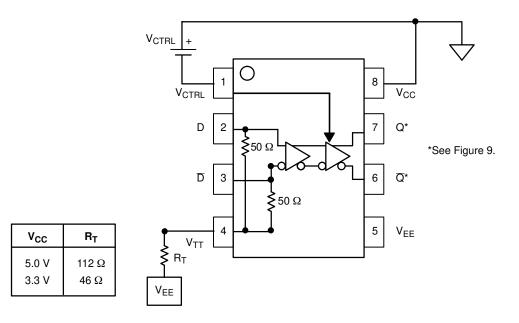


Figure 7. Alternate "Y" Termination Method, V_{TT} Pin 4

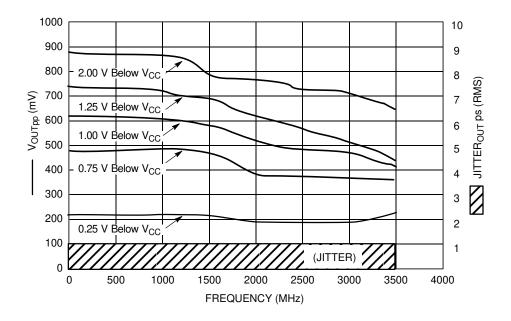
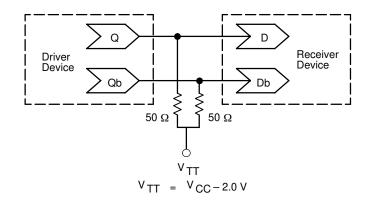
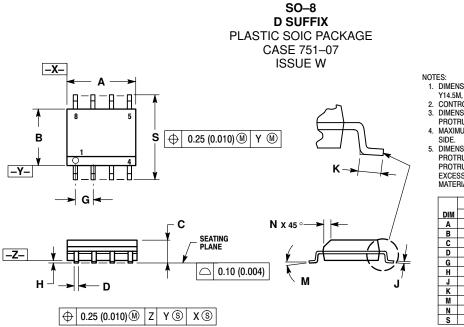


Figure 8. F_{max}/Jitter

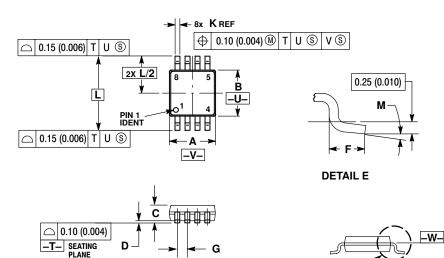



Figure 9. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404	_	ECLinPS Circuit Performance at Non–Standard V_{IH} Levels
AN1405	_	ECL Clock Distribution Techniques
AN1406	_	Designing with PECL (ECL at +5.0 V)
AN1504	_	Metastability and the ECLinPS Family
AN1568	_	Interfacing Between LVDS and ECL
AN1650	_	Using Wire–OR Ties in ECLinPS Designs
AN1672	_	The ECL Translator Guide
AND8001	_	Odd Number Counters Design
AND8002	_	Marking and Date Codes
AND8009	_	ECLinPS Plus Spice I/O Model Kit
AND8020	_	Termination of ECL Logic Devices

For an updated list of Application Notes, please see our website at http://onsemi.com.


PACKAGE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
- FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR
- a. TETRININGE NONDELITS AND STREET REPERTINGE ON A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	2.90	3.10	0.114	0.122			
В	2.90	3.10	0.114	0.122			
С	0.80	1.10	0.031	0.043			
D	0.05	0.15	0.002	0.006			
F	0.40	0.70	0.016	0.028			
G	0.65	BSC	0.026	BSC			
K	0.25	0.40	0.010	0.016			
L	4.90	BSC	0.193				
М	0°	6 °	0°	6°			

DETAIL E

<u>Notes</u>

<u>Notes</u>

ON Semiconductor and without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" parameters, soluted for each customer application by customer's technical experts. SCILLC products for any other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold stributors for any social injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold stributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.