imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V / 5V ECL Differential Phase-Frequency Detector

Description

The MC100EP40 is a three-state phase-frequency detector intended for phase-locked loop applications which require a minimum amount of phase and frequency difference at lock. Advanced design significantly reduces the dead zone of the detector. For proper operation, the input edge rate of the R and V inputs should be less than 5 ns. The device is designed to work with a 3.3 V / 5 V power supply.

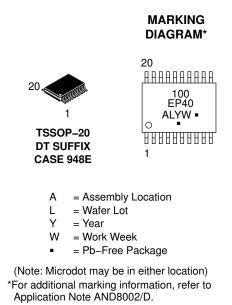
When Reference (R) and Feedback (FB) inputs are unequal in frequency and/or phase the differential UP (U) and DOWN (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO.

When Reference (R) and Feedback (FB) inputs are 80 ps or less in phase difference, the Phase Lock Detect pin will indicate lock by a high state (V_{OH}). The V_{TX} (V_{TR}, $\overline{V_{TR}}$, V_{TFB} , $\overline{V_{TFB}}$) pins offer an internal termination network for 50 Ω line impedance environment shown in Figure 2. An external sinking supply of V_{CC}-2 V is required on V_{TX} pin(s). If you short the two differential pins V_{TR} and $\overline{V_{TR}}$ (or V_{TFB} and $\overline{V_{TFB}}$) together, you provide a 100 Ω termination resistance. For more information on termination of logic devices, see AND8020.

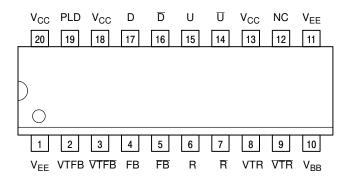
The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

For more information on Phase Lock Loop operation, refer to AND8040.

Special considerations are required for differential inputs under No Signal conditions to prevent instability.


Features

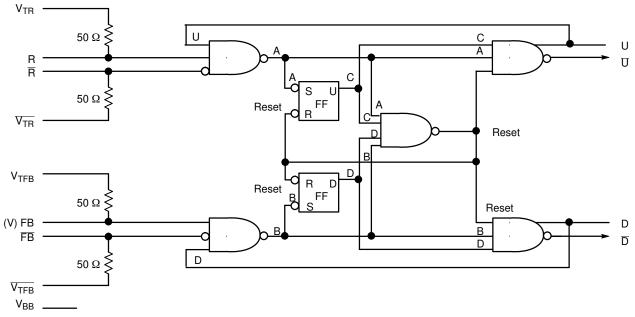
- Maximum Frequency > 2 GHz Typical
- Fully Differential
- Advanced High Band Output Swing of 400 mV
- Theoretical Gain = 1.11
- T_{rise} 97 ps Typical, F_{fall} 70 ps Typical
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -3.0 V$ to -5.5 V
- 50 Ω Internal Termination Resistor
- These are Pb–Free Devices


ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.



Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View)

r	
PIN	FUNCTION
U, U	ECL Up Differential Outputs
D, <u>D</u>	ECL Down Differential Outputs
FB, FB	ECL Feedback Differential Inputs
R, R	ECL Reference Differential Inputs
PLD	ECL Phase Lock Detect Function
VTR	ECL Internal Termination for R
VTR	ECL Internal Termination for \overline{R}
VTFB	ECL Internal Termination for FB
VTFB	ECL Internal Termination for FB
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

Figure 2. Logic Diagram

Table 2. ATTRIBUTES

Characteris	Value						
Internal Input Pulldown Resistor	N/A						
Internal Input Pullup Resistor	Ν	/A					
ESD Protection	> 1	kV 00 V 2 kV					
Moisture Sensitivity, Indefinite Time	e Out of Drypack (Note 1)	Pb Pkg	Pb–Free Pkg				
	TSSOP-20	Level 1	Level 3				
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0	@ 0.125 in				
Transistor Count	699 D	evices					
Meets or exceeds JEDEC Spec El	Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	$V_{EE} = 0 V$		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 –6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-20 TSSOP-20	140 100	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-20	23 to 41	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

			–40°C 25°C								
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	100	128	160	100	130	160	110	140	170	mA
V _{OH}	Output HIGH Voltage (Note 3)	2225	2350	2475	2275	2400	2525	2300	2425	2550	mV
V _{OL}	Output LOW Voltage (Note 3) U, U, B, B PLD	1775 1305	1900 1480	2025 1605	1800 1305	1925 1480	2050 1605	1825 1305	1950 1480	2075 1605	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	2075		2420	2075		2420	2075		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1305		1675	1305		1675	1305		1675	mV
V_{BB}	Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	-150			-150			-150			μA

Table 4. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to –2.2 V. 3. All loading with 50 Ω to V_{CC} – 2.0 V.

4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current (Note 6)	100	128	160	100	130	160	110	140	170	mA
V _{OH}	Output HIGH Voltage (Note 7)	3925	4050	4175	3975	4100	4225	4000	4125	4250	mV
V _{OL}	Output LOW Voltage (Note 7) U, U, B, B PLD	3475 3005	3600 3180	3725 3305	3500 3005	3625 3180	3750 3305	3525 3005	3650 3180	3775 3305	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	3775		4120	3775		4120	3775		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3005		3375	3005		3375	3005		3375	mV
V _{BB}	Output Voltage Reference	3475	3575	3675	3475	3575	3675	3475	3575	3675	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 8)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current	-150			-150			-150			μA

Table 5. 100EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 5)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. 6. For $(V_{CC} - V_{EE}) > 3.3 V$, 5 Ω to 10 Ω in line with V_{EE} required for maximum thermal protection at elevated temperatures. Recommend $V_{CC} - V_{EE}$ operation at $\leq 3.3 V$. 7. All loading with 50 Ω to $V_{CC} - 2.0 V$.

8. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current (Note 10)	100	128	160	100	130	160	110	140	170	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1075	-950	-825	-1025	-900	-775	-1000	-875	-750	mV
V _{OL}	Output LOW Voltage (Note 11) U, Ū, B, B PLD	-1525 -1995	-1400 -1820	-1275 -1695	-1500 -1995	-1375 -1820	-1250 -1695	-1475 -1995	-1350 -1820	-1225 -1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single–Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
V_{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	V _{EE} + 2.0		0.0	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V
IIH	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	-150			-150			-150			μA

Table 6. 100EP DC CHARACTERISTICS, NECL V_{CC} = 0 V; V_{EE} = -5.5 V to -3.0 V (Note 9)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

9. Input and output parameters vary 1:1 with V_{CC}.

10. For ($V_{CC} - V_{EE}$) > 3.3 V, 5 Ω to 10 Ω in line with V_{EE} required for maximum thermal protection at elevated temperatures. Recommend $V_{CC} - V_{EE}$ operation at \leq 3.3 V.

11. All loading with 50 Ω to V_{CC} – 2.0 V.

12. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C 25°C				85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 3)		> 2			> 2			> 2		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output DifferentialFB to D/U R to D/U	400	525	700	410	550	750	450	575	775	ps
t _{JITTER}	Random Clock Jitter (Figure 3)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Input Voltage Swing (Differential Configur- ation)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q, Q (20% – 80%)	60	85	130	60	110	150	80	120	160	ps

Table 7. AC CHARACTERISTICS $V_{CC} = 0 V$; $V_{EE} = -3.0 V$ to -5.5 V or $V_{CC} = 3.0 V$ to 5.5 V; $V_{EE} = 0 V$ (Note 13)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared

operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

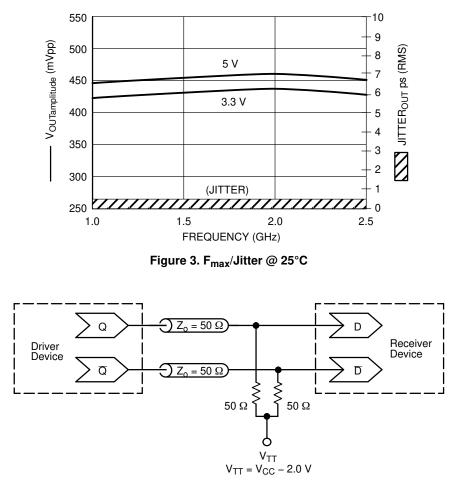
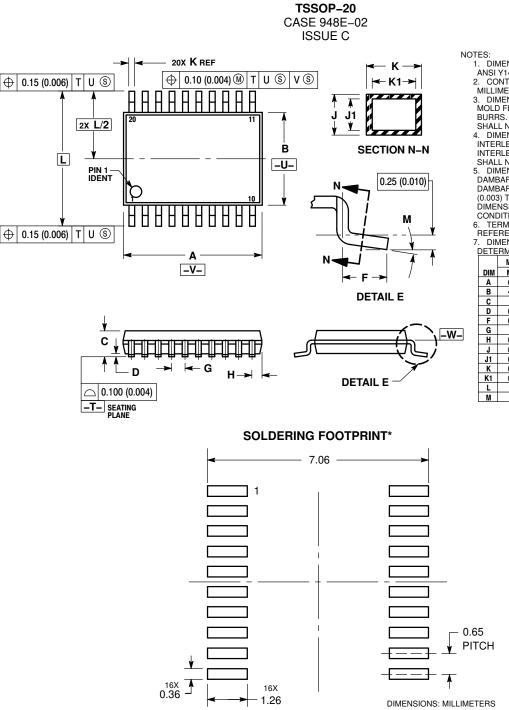


Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION


Device	Package	Shipping [†]			
MC100EP40DTG	TSSOP-20*	75 Units / Rail			
MC100EP40DTR2G	TSSOP-20*	2500 / Tape & Reel			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb-Free.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS ON GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERI FAD EI ASH OR PROTEI ISION

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION

INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	6.40	6.60	0.252	0.260		
В	4.30	4.50	0.169	0.177		
С		1.20		0.047		
D	0.05	0.15	0.002	0.006		
F	0.50	0.75	0.020	0.030		
G	0.65	BSC	0.026 BSC			
Н	0.27	0.37	0.011	0.015		
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007	0.012		
K1	0.19	0.25	0.007	0.010		
L	6.40	BSC	0.252	BSC		
М	0°	8°	0°	8°		

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **OD** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized solutions and legges that SCILLC as negarding the design or manuf

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC100EP40