Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## 3.3V / 5V ECL Dual **Differential 2:1 Multiplexer** #### Description The MC10/100EP56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or other skew sensitive signals. Multiple V_{BB} pins are provided. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 µF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. The device features both individual and common select inputs to address both data path and random logic applications. The 100 Series contains temperature compensation. #### **Features** - 360 ps Typical Propagation Delays - Maximum Frequency > 3 GHz Typical - PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$ - NECL Mode Operating Range: V_{CC} = 0 V with $V_{EE} = -3.0 \text{ V}$ to -5.5 V - Open Input Default State - Safety Clamp on Inputs - Separate and Common Select - Q Output Will Default LOW with Inputs Open or at V_{EE} - V_{RR} Outputs - These Devices are Pb-Free and are RoHS Compliant #### ON Semiconductor® http://onsemi.com #### **MARKING DIAGRAMS*** SOIC-20 **DW SUFFIX** CASE 751D TSSOP-20 **DT SUFFIX** CASE 948R QFN_20 **MN SUFFIX** CASE 485E XXXX = MC10 or 100 = Assembly Location WL.I = Wafer Lot = Year YY, Y WW, W = Work Week = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. 1 ^{*}For additional marking information, refer to Application Note AND8002/D. Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead Package (Top View) and Logic Diagram **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |-------------------------------------|--------------------------| | D0a* - D1a* | ECL Input Data a | | <u>D0a</u> * − <u>D1a</u> * | ECL Input Data a Invert | | D0b* – D1b* | ECL Input Data b | | D0b* - D1b* | ECL Input Data b Invert | | SEL0* - SEL1* | ECL Indiv. Select Input | | COM_SEL* | ECL Common Select Input | | V _{BB0} , V _{BB1} | Output Reference Voltage | | Q0 – Q1 | ECL True Outputs | | Q0 – Q1 | ECL Inverted Outputs | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | | EP | Exposed Pad | ^{*} Pins will default LOW when left open. **Table 2. TRUTH TABLE** | SEL0 | SEL1 | COM_SEL | Q0,
Q0 | Q1,
Q1 | |------|------|---------|-----------|-----------| | Х | Χ | Н | а | а | | L | L | L | b | b | | L | Н | L | b | а | | Н | Н | L | а | а | | Н | L | L | а | b | NOTE: The Exposed Pad (EP) on package bottom must be attached to a heat–sinking conduit. The Exposed Pad may only be electrically connected to V_{EE}. Figure 1. QFN-20 Pinout (Top View) **Table 3. ATTRIBUTES** | Character | istics | Value | Value | | | | |--------------------------------------|-----------------------------|---------------------------|-------------------------------|--|--|--| | Internal Input Pulldown Resistor | | 75 kΩ | | | | | | Internal Input Pullup Resistor | N/A | | | | | | | ESD Protection | > 2 kV
> 150 V
> 2 kV | | | | | | | Moisture Sensitivity, Indefinite Tim | ne Out of Drypack (Note 1) | Pb Pkg | Pb-Free Pkg | | | | | | SOIC
TSSOP
QFN | Level 1
Level 1
N/A | Level 3
Level 3
Level 1 | | | | | Flammability Rating | UL 94 V-0 | @ 0.125 in | | | | | | Transistor Count | 140 D | evices | | | | | | Meets or exceeds JEDEC Spec E | | | | | | | ^{1.} For additional information, see Application Note AND8003/D. **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|---|-------------|--------------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 6 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -6 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6
-6 | V
V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | 20 TSSOP
20 TSSOP | 140
100 | °C/W | | θ_{JC} | Thermal Resistance (Junction-to-Case) | Standard Board | 20 TSSOP | 23 to 41 | °C/W | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | 20 SOIC
20 SOIC | 90
60 | °C/W
°C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | 20 SOIC | 33 to 35 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | QFN-20
QFN-20 | 47
33 | °C/W | | θ_{JC} | Thermal Resistance (Junction-to-Case) | Standard Board | QFN-20 | 18 | °C/W | | T _{sol} | Wave Solder Pb-Free | <2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C | | 265
265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 5. 10EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|--|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 45 | 61 | 75 | 45 | 63 | 75 | 45 | 65 | 75 | mA | | V _{OH} | Output HIGH Voltage (Note 3) | 2165 | 2290 | 2415 | 2230 | 2355 | 2480 | 2290 | 2415 | 2540 | mV | | V _{OL} | Output LOW Voltage (Note 3) | 1365 | 1490 | 1615 | 1430 | 1555 | 1680 | 1490 | 1615 | 1740 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2090 | | 2415 | 2155 | | 2480 | 2215 | | 2540 | mV | | V _{IL} | Input LOW Voltage (Single–Ended) | 1365 | | 1690 | 1460 | | 1755 | 1490 | | 1815 | mV | | V _{BB} | Output Voltage Reference | 1790 | 1890 | 1990 | 1855 | 1955 | 2055 | 1915 | 2015 | 2115 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 4) | 2.0 | | 3.3 | 2.0 | | 3.3 | 2.0 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 2. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. - 3. All loading with 50 Ω to V_{CC} 2.0 V. - V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 6. 10EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 5) | | | | -40°C | | | 25°C | • | | 85°C | | | |--------------------|--|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 45 | 61 | 75 | 45 | 63 | 75 | 45 | 65 | 75 | mA | | V _{OH} | Output HIGH Voltage (Note 6) | 3865 | 3990 | 4115 | 3930 | 4055 | 4180 | 3990 | 4115 | 4240 | mV | | V _{OL} | Output LOW Voltage (Note 6) | 3065 | 3190 | 3315 | 3130 | 3255 | 3380 | 3190 | 3315 | 3440 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3790 | | 4115 | 3855 | | 4180 | 3915 | | 4240 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3065 | | 3390 | 3130 | | 3455 | 3190 | | 3515 | mV | | V _{BB} | Output Voltage Reference | 3490 | 3590 | 3690 | 3555 | 3655 | 3755 | 3615 | 3715 | 3815 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 7) | 2.0 | | 5.0 | 2.0 | | 5.0 | 2.0 | | 5.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 5. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V. - 6. All loading with 50 Ω to V_{CC} 2.0 V. - 7. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 7. 10EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 8) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|---|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 45 | 61 | 75 | 45 | 63 | 75 | 45 | 65 | 75 | mA | | V _{OH} | Output HIGH Voltage (Note 9) | -1135 | -1010 | -885 | -1070 | -945 | -820 | -1010 | -885 | -760 | mV | | V _{OL} | Output LOW Voltage (Note 9) | -1935 | -1810 | -1685 | -1870 | -1745 | -1620 | -1810 | -1685 | -1560 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1210 | | -885 | -1145 | | -820 | -1085 | | -760 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | -1935 | | -1610 | -1870 | | -1545 | -1810 | | -1485 | mV | | V _{BB} | Output Voltage Reference | -1510 | -1410 | -1310 | -1445 | -1345 | -1245 | -1385 | -1285 | -1185 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 10) | V _{EE} | +2.0 | 0.0 | V _{EE} | +2.0 | 0.0 | V _{EE} | +2.0 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. Table 8. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 11) | | | | –40°C | | | 25°C | | | 85°C | | | |--------------------|---|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 50 | 61 | 75 | 50 | 63 | 77 | 55 | 66 | 80 | mA | | V _{OH} | Output HIGH Voltage (Note 12) | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | | V _{OL} | Output LOW Voltage (Note 12) | 1305 | 1480 | 1605 | 1305 | 1480 | 1605 | 1305 | 1480 | 1605 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2075 | | 2420 | 2075 | | 2420 | 2075 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1305 | | 1675 | 1305 | | 1675 | 1305 | | 1675 | mV | | V_{BB} | Output Voltage Reference | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 13) | 2.0 | | 3.3 | 2.0 | | 3.3 | 2.0 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. ^{8.} Input and output parameters vary 1:1 with V_{CC}. ^{9.} All loading with 50 Ω to V_{CC} – 2.0 V. ^{10.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. ^{11.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. ^{12.} All loading with 50 Ω to V_{CC} – 2.0 V. 13. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 9. 100EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 14) | | | | –40°C | | | 25°C | | | 85°C | | | |--------------------|---|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 50 | 61 | 75 | 50 | 63 | 77 | 55 | 66 | 80 | mA | | V _{OH} | Output HIGH Voltage (Note 15) | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV | | V _{OL} | Output LOW Voltage (Note 15) | 3005 | 3180 | 3305 | 3005 | 3180 | 3305 | 3005 | 3180 | 3305 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3775 | | 4120 | 3775 | | 4120 | 3775 | | 4120 | mV | | V _{IL} | Input LOW Voltage (Single–Ended) | 3005 | | 3375 | 3005 | | 3375 | 3005 | | 3375 | mV | | V _{BB} | Output Voltage Reference | 3475 | 3575 | 3675 | 3475 | 3575 | 3675 | 3475 | 3575 | 3675 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 16) | 2.0 | | 5.0 | 2.0 | | 5.0 | 2.0 | | 5.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. Table 10. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 17) | | | | –40°C | | | 25°C | | | 85°C | | | |--------------------|---|-------------------|-------|-------|-------------------|-------|-------|-----------------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 50 | 61 | 75 | 50 | 63 | 77 | 55 | 66 | 80 | mA | | V _{OH} | Output HIGH Voltage (Note 18) | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | | V _{OL} | Output LOW Voltage (Note 18) | -1995 | -1820 | -1695 | -1995 | -1820 | -1695 | -1995 | -1820 | -1695 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1225 | | -880 | -1225 | | -880 | -1225 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1995 | | -1625 | -1995 | | -1625 | -1995 | | -1625 | mV | | V_{BB} | Output Voltage Reference | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 19) | V _{EE} - | +2.0 | 0.0 | V _{EE} - | +2.0 | 0.0 | V _{EE} | +2.0 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. ^{14.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V. ^{15.} All loading with 50 Ω to V_{CC} – 2.0 V. ^{16.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. ^{17.} Input and output parameters vary 1:1 with V_{CC} . ^{18.} All loading with 50 Ω to V_{CC} – 2.0 V_{CC} = 2.0 V_{CC} = 2.0 V_{CC} = 2.0 V_{CC} = 1.1 with V_{CC} = 1.1 with V_{CC} = 1.1 with V_{CC} = 1.2 V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 11. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 20) | | | | –40°C | | | 25°C | | | 85°C | | | |--|--|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(See Figure 2 F _{max} /JITTER) | | > 3 | | | > 3 | | | > 3 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to Output Differential $ \begin{array}{c} \text{D to Q, } \overline{\text{Q}} \\ \text{SEL to Q, } \overline{\text{Q}} \\ \text{COM_SEL to Q, } \overline{\text{Q}} \end{array} $ | 250
250
250 | 340
340
350 | 450
450
450 | 270
270
270 | 360
340
360 | 470
470
470 | 300
300
300 | 400
400
400 | 500
500
500 | ps | | t _{SKEW} | Within–Device Skew (Note 21)
Device to Device Skew | | 50 | 100
200 | | 50 | 100
200 | | 50 | 100
200 | ps | | t _{JITTER} | Random Clock Jitter
(See Figure 2 F _{max} /JITTER) | | 0.2 | < 1 | | 0.2 | < 1 | | 0.2 | < 1 | ps | | V _{PP} | Input Voltage Swing
(Differential Configuration) | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | t _r
t _f | Output Rise/Fall Times Q, Q (20% – 80%) | 70 | 120 | 170 | 80 | 130 | 180 | 100 | 150 | 230 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 20. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. 21. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. Figure 2. F_{max}/Jitter @ 25°C Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|-----------------------|-----------------------| | MC10EP56DTG | TSSOP-20
(Pb-Free) | 75 Units / Rail | | MC10EP56DTR2G | TSSOP-20
(Pb-Free) | 2500 / Tape & Reel | | MC10EP56MNG | QFN-20
(Pb-Free) | 92 Units / Rail | | MC10EP56MNTXG | QFN-20
(Pb-Free) | 3000 / Tape & Reel | | MC100EP56DWG | SOIC-20
(Pb-Free) | 38 Units / Rail | | MC100EP56DWR2G | SOIC-20
(Pb-Free) | 1000 / Tape & Reel | | MC100EP56DTG | TSSOP-20
(Pb-Free) | 75 Units / Rail | | MC100EP56DTR2G | TSSOP-20
(Pb-Free) | 2500 / Tape & Reel | | MC100EP56MNG | QFN-20
(Pb-Free) | 92 Units / Rail | | MC100EP56MNTXG | QFN-20
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques **AN1406/D** – Designing with PECL (ECL at +5.0 V) $\textbf{AN1503/D} \qquad - \quad \mathsf{ECLinPS}^{\,\,\mathsf{TM}} \,\, \mathsf{I/O} \,\, \mathsf{SPiCE} \,\, \mathsf{Modeling} \,\, \mathsf{Kit}$ AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### **PACKAGE DIMENSIONS** - NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | |-----|-------------|-------|--|--| | DIM | MIN | MAX | | | | Α | 2.35 | 2.65 | | | | A1 | 0.10 | 0.25 | | | | В | 0.35 | 0.49 | | | | С | 0.23 | 0.32 | | | | D | 12.65 | 12.95 | | | | E | 7.40 | 7.60 | | | | е | 1.27 | BSC | | | | Н | 10.05 | 10.55 | | | | h | 0.25 | 0.75 | | | | L | 0.50 | 0.90 | | | | θ | 0 ° | 7 ° | | | #### PACKAGE DIMENSIONS #### TSSOP-20 CASE 948E-02 ISSUE C #### NOTES: - DIMENSIONING AND TOLERANCING PER - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 BSC | | | | • 0 | • 0 | • 0 | • 0 | #### **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS # **QFN20, 4x4, 0.5P**CASE 485E ISSUE B DIMENSIONS: MILLIMETERS *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subscilaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all ap #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative