imall

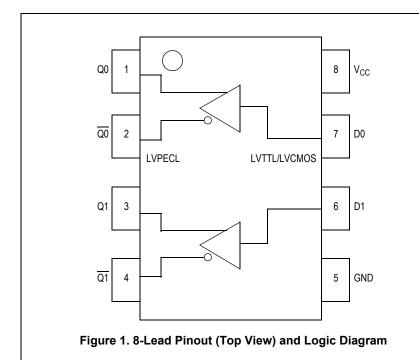
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


3.3V Dual LVTTL/LVCMOS-to-Differential MC100ES60T22 **LVPECL** Translator

DATA SHEET

The MC100ES60T22 is a low skew dual LVTTL/LVCMOS to differential LVPECL translator. The low voltage PECL levels, small package, and dual gate design are ideal for clock translation applications.

Features

- 280 ps typical propagation delay •
- 100 ps max output-to-output skew •
- LVPECL operating range: V_{CC} = 3.135 V to 3.8 V ٠
- 8-lead SOIC and 8-lead TSSOP packages ٠
- Ambient temperature range -40°C to +85°C
- 8-lead SOIC Pb-free package available •

CASE 1640-01

ORDERING INFORMATION					
Device	Package				
MC100ES60T22D	SOIC-8				
MC100ES60T22DR2	SOIC-8				
MC100ES60T22EF	SOIC-8 (Pb-Free)				
MC100ES60T22EFR2	SOIC-8 (Pb-Free)				
MC100ES60T22DT	TSSOP-8				
MC100ES60T22DTR2	TSSOP-8				
MC100ES60T22EJ	TSSOP-8 (Pb-Free)				
MC100ES60T22EJR2	TSSOP-8 (Pb-Free)				

PIN DESCRIPTION					
Pin Function					
D0, D1	LVTTL/LVCMOS Inputs				
Qn, <mark>Qn</mark>	LVPECL Differential Outputs				
V _{CC}	Positive Supply				
GND	Negative Supply				

Table 1. General Specifications

Charac	Characteristics			
Internal Input Pulldown Resistor		75 kΩ		
Internal Input Pullup Resistor		75 kΩ		
ESD Protection	Human Body Model Machine Model	> 2000 V > 200 V		
θ_{JA} Thermal Resistance (Junction-to-Ambient)	0 LFPM, 8 SOIC 500 LFPM, 8 SOIC 0 LFPM, 8 TSSOP 500 LFPM, 8 TSSOP	190°C/W 130°C/W 185°C/W 140°C/W		

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 2. Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} – 0.3	V V
l _{out}	Output Current	Continuous Surge	50 100	mA mA
T _A	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		–65 to +150	°C

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 3. DC Characteristics (V_{CC} = 3.135 V to 3.8 V; V_{EE} = 0 V)

			-40°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH} ⁽¹⁾	Output HIGH Voltage	V _{CC} – 1150	V _{CC} – 1020	V _{CC} – 800	V _{CC} – 1200	V _{CC} – 970	V _{CC} – 750	mV
V _{OL} ⁽¹⁾	Output LOW Voltage	V _{CC} – 1950	V _{CC} – 1620	V _{CC} – 1250	V _{CC} – 2000	V _{CC} – 1680	V _{CC} – 1300	mV

1. Outputs are terminated through a 50 Ω resistor to V_CC – 2 volts.

Table 4. LVTTL / LVCMOS Input DC Characteristics (V_{CC} = 3.135 V to 3.8 V)

			-40°C			0°C to 85°C				
Symbol	Characteristic	Condition	Min	Тур	Max	Min	Тур	Max	Unit	
I _{IN}	Input Current	V _{IN} = V _{CC}			±150			±150	μA	
V _{IK}	Input Clamp Voltage	I _{IN} = –18 mA			-1.2			-1.2	V	
V _{IH}	Input HIGH Voltage		2.0		V _{CC} +0.3	2.0		V _{CC} +0.3	V	
V _{IL}	Input LOW Voltage				0.8			0.8	V	

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency			1			1			1	GHz
t _{PLH,} t _{PHL}	Propagation Delay	100	260	400	100	280	400	100	280	450	ps
t _{SKEW}	Skew part-to-part			300			300			350	ps
t _{JITTER}	Cycle-to-Cycle Jitter RMS (1σ)			1			1			1	ps
V _{outPP}	Output Peak-to-Peak Voltage	350	750		350	750		350	750		mV
t _r / t _f	Output Rise/Fall Times (20% – 80%)	50		400	50		400	50		400	ps

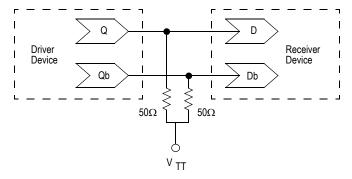
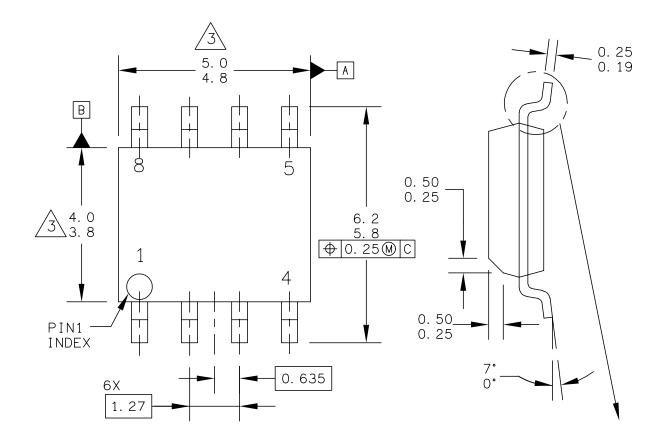
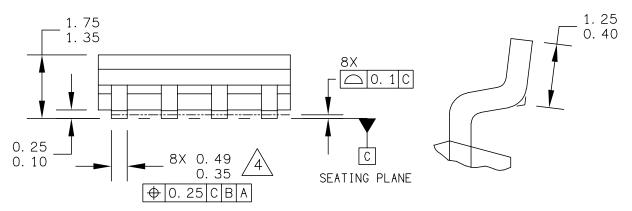




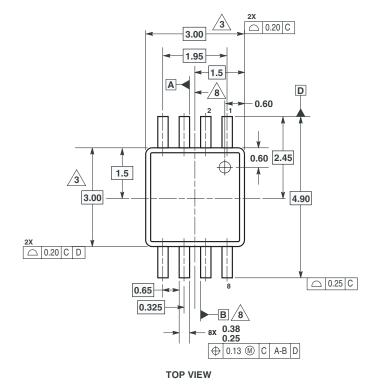
Figure 2. Typical Termination for Output Driver and Device Evaluation

PACKAGE DIMENSIONS

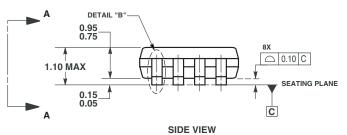
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	DT TO SCALE	
TITLE:		DOCUMENT NO	: 98ASB42564B	REV: U
8LD SOIC NARROW	BODY	CASE NUMBER	: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	PAGE 1 OF 2

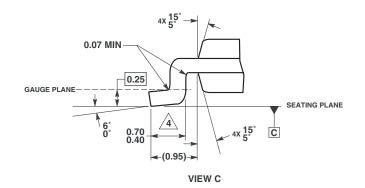
CASE 751-07 ISSUE U 8-LEAD SOIC PACKAGE

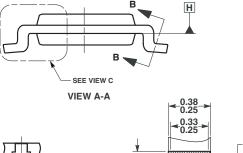
PACKAGE DIMENSIONS

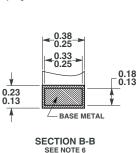

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW	BODY	CASE NUMBER	2: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	


PAGE 2 OF 2


CASE 751-07 ISSUE U 8-LEAD SOIC PACKAGE



DETAIL "B" DAMBAR PROTRUSION

NOTES:

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 DIMENSIONS ARE IN MILLIMETERS.

- This dimension does not include mold flash or protrusions
 And Are MEASURED at DATUM H, MOLD FLASH OR PROTRUSIONS,
 SHALL NOT EXCEED 0.15mm PER SIDE.
- A. DIMENSION IS THE LENGTH OF TERMINAL FOR SOLDERING TO A SUBSTRATE.
- THE LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.14mm SEE DETAIL "B" AND SECTION B-B.

Section B= to be determined at 0.10 to 0.25mm FROM THE LEAD TIP.
 THIS PART IS COMPLIANT WITH JEDEC REGISTRATION MO-187 AA.
 DATUMS A AND B TO BE DETERMINED DATUM PLANE H.

CASE 1640-01 ISSUE O 8-LEAD TSSOP PACKAGE

6024 Silver Creek Valley Road San Jose, California 95138

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT **Technical Support**

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.