# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



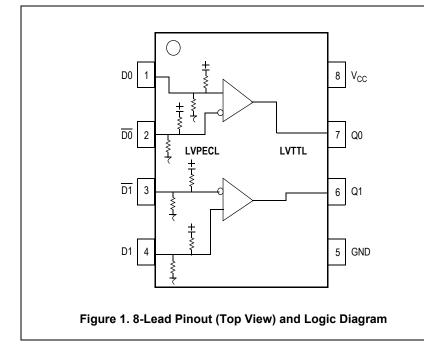
#### 3.3V Dual Differential LVPECL to LVTTL MC100ES60T23 IDT Translator

DATASHEET

**PRODUCT DISCONTINUANCE NOTICE - LAST TIME BUY EXPIRES ON (2/3/13)** 

#### **EF SUFFIX 8-LEAD SOIC PACKAGE Pb-FREE PACKAGE** CASE 751-07

| ORDERING INFORMATION |                |  |  |  |  |  |
|----------------------|----------------|--|--|--|--|--|
| Device Package       |                |  |  |  |  |  |
| MC100ES60T23EF       | SO-8 (Pb-Free) |  |  |  |  |  |
| MC100ES60T23EFR2     | SO-8 (Pb-Free) |  |  |  |  |  |


| PIN DESCRIPTION |                            |  |  |  |  |  |
|-----------------|----------------------------|--|--|--|--|--|
| Pin Function    |                            |  |  |  |  |  |
| Qn              | LVTTL Outputs              |  |  |  |  |  |
| Dn, Dn          | LVPECL Differential Inputs |  |  |  |  |  |
| V <sub>CC</sub> | Positive Supply            |  |  |  |  |  |
| GND             | Negative Supply            |  |  |  |  |  |

### 3.3 V Dual Differential LVPECL to LVTTL Translator

The MC100ES60T23 is a dual differential LVPECL-to-LVTTL translator. The low voltage PECL levels, small package, and dual gate design is ideal for clock translation applications.

#### Features

- Maximum Frequency 500 MHz •
- ٠ **Differential LVPECL Inputs**
- LVPECL Operating Range: V<sub>CC</sub> = 3.0 V to 3.6 V •
- Additive Phase Jitter, RMS: 0.18ps (typical) ٠
- 24 mA LVTTL Compatible Outputs ٠
- 8-Lead SOIC Package
- Ambient Temperature Range: -40°C to +85°C
- 8-Lead Pb-Free Package
- Use replacement part: ICS83023I





#### Table 1. General Specifications

| Characteristics                                        | Value                              |                     |
|--------------------------------------------------------|------------------------------------|---------------------|
| Internal Input Pulldown Resistor                       | ם                                  | 75 kΩ<br>112.5 kΩ   |
| Internal Input Pullup Resistors                        |                                    | 75 kΩ               |
| ESD Protection                                         | Human Body Model<br>Machine Model  | > 2000 V<br>> 200 V |
| $\theta_{JA}$ Thermal Resistance (Junction to Ambient) | 0 LFPM, 8 SOIC<br>500 LFPM, 8 SOIC |                     |

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

#### Table 2. Absolute Maximum Ratings<sup>(1)</sup>

| Symbol              | Parameter                   | Conditions                               | Rating                                         | Unit     |
|---------------------|-----------------------------|------------------------------------------|------------------------------------------------|----------|
| V <sub>SUPPLY</sub> | Power Supply Voltage        | Difference between $V_{CC}$ and $V_{EE}$ | 3.9                                            | V        |
| V <sub>IN</sub>     | Input Voltage               | $V_{CC}$ - $V_{EE} \leq 3.6 V$           | V <sub>CC</sub> + 0.3<br>V <sub>EE</sub> – 0.3 | V<br>V   |
| I <sub>OUT</sub>    | Output Current              | Continuous<br>Surge                      | 50<br>100                                      | mA<br>mA |
| Τ <sub>Α</sub>      | Operating Temperature Range |                                          | -40 to +85                                     | °C       |
| T <sub>STG</sub>    | Storage Temperature Range   |                                          | -65 to +150                                    | °C       |

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

#### Table 3. LVPECL Input DC Characteristics (V<sub>CC</sub> = 3.0 to 3.6 V; V<sub>EE</sub> = 0 V); TA = 40°C to $85^{\circ}$ C

| Symbol           | Characteristic                                  | Min                   | Тур | Max                   | Unit |
|------------------|-------------------------------------------------|-----------------------|-----|-----------------------|------|
| I <sub>CCH</sub> | Power Supply Current (Outputs set to HIGH)      |                       | 19  | 25                    | mA   |
| I <sub>CCL</sub> | Power Supply Current (Outputs set to LOW)       |                       | 6.0 | 33                    | mA   |
| V <sub>IH</sub>  | Input HIGH Voltage                              | V <sub>CC</sub> -1165 |     | V <sub>CC</sub> -880  | mV   |
| V <sub>IL</sub>  | Input LOW Voltage                               | V <sub>CC</sub> -1810 |     | V <sub>CC</sub> -1475 | mV   |
| V <sub>PP</sub>  | Differential Input Voltage <sup>(1)</sup>       | 0.15                  |     | 1.3                   | V    |
| $V_{CMR}$        | Differential Cross Point Voltage <sup>(2)</sup> | V <sub>EE</sub> +1.1  |     | V <sub>CC</sub> -0.65 | V    |
| I <sub>IH</sub>  | Input HIGH Current                              |                       |     | 150                   | μA   |
| Ι <sub>IL</sub>  | Input LOW Current                               | -150                  |     |                       | μA   |

1. V<sub>PP</sub> (DC) is the minimum differential input voltage swing required to maintain device functionality.

2. V<sub>CMR</sub> (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V<sub>CMR</sub> (DC) range and the input swing lies within the V<sub>PP</sub> (DC) specification.

| Symbol          | Characteristic               | Condition                | Min  | Тур  | Max  | Unit |
|-----------------|------------------------------|--------------------------|------|------|------|------|
| V <sub>OH</sub> | Output HIGH Voltage          | I <sub>OH</sub> = –24 mA | 2.4  |      |      | V    |
| V <sub>OL</sub> | Output LOW Voltage           | I <sub>OL</sub> = 24 mA  |      |      | 0.5  | V    |
| I <sub>OS</sub> | Output Short Circuit Current |                          | -140 | -185 | -275 | mA   |

#### Table 4. LVTTL / LVCMOS Output DC Characteristics (V<sub>CC</sub> = 3.0 to 3.6 V); TA = 40°C to $85^{\circ}$ C

#### Table 5. AC Characteristics (V<sub>CC</sub> = 3.0 to 3.6 V; V<sub>EE</sub> = 0 V)<sup>(1)</sup>; TA = 40°C to 85°C

| Symbol                                                                        | Characteristic                                                                                                                    | Characteristic Test Conditions           |                                                                                                        | Min                  | Тур                          | Max                      | Unit                 |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|------------------------------|--------------------------|----------------------|
| f <sub>OUT</sub>                                                              | Output Toggle Frequency <sup>(2)</sup>                                                                                            |                                          |                                                                                                        |                      |                              | 500                      | MHz                  |
| t <sub>PD</sub>                                                               | Propagation Delay                                                                                                                 |                                          |                                                                                                        | 0.95                 |                              | 1.75                     | ns                   |
| t <sub>SK++</sub><br>t <sub>SK</sub><br>t <sub>SKPP</sub><br>t <sub>SKP</sub> | Data Path Skew++ <sup>(3)</sup><br>Data Path Skew <sup>(3)</sup><br>Part-to-Part Skew <sup>(3)</sup><br>Pulse Skew <sup>(3)</sup> |                                          |                                                                                                        |                      |                              | 120<br>140<br>500<br>250 | ps<br>ps<br>ps<br>ps |
| t <sub>JIT</sub>                                                              | Buffer Additive Phase Jitter, RMS;<br>refer to Additive Phase Jitter Section                                                      | CLK0/Q0<br>CLK0/Q0<br>CLK1/Q1<br>CLK1/Q1 | 125MHz, 12kHz - 20MHz<br>156.25MHz, 12kHz - 20MHz<br>125MHz, 12kHz - 20MHz<br>156.25MHz, 12kHz - 20MHz |                      | 0.40<br>0.18<br>0.38<br>0.21 |                          | ps<br>ps<br>ps<br>ps |
| V <sub>PP</sub>                                                               | Input Voltage Swing (Differential) <sup>(4)</sup>                                                                                 |                                          |                                                                                                        | 200                  |                              | 1300                     | mV                   |
| $V_{CMR}$                                                                     | Differential Cross Point Voltage                                                                                                  |                                          |                                                                                                        | V <sub>EE</sub> +1.2 |                              | V <sub>CC</sub> -0.3     | V                    |
| t <sub>r</sub> / t <sub>f</sub>                                               | Output Rise/Fall Times (0.8 V – 2.0 V)                                                                                            |                                          |                                                                                                        | 50                   |                              | 250                      | ps                   |

1. LVTTL output R<sub>L</sub> = 500  $\Omega$  to GND and C<sub>L</sub> = 20 pF to GND. Refer to Figure 2.

f<sub>max</sub> guaranteed for functionality only. V<sub>OL</sub> and V<sub>OH</sub> levels are guaranteed at DC only.
Skews are measured between outputs under identical conditions.

4. 200 mV input guarantees AC Characteristics.



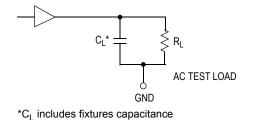
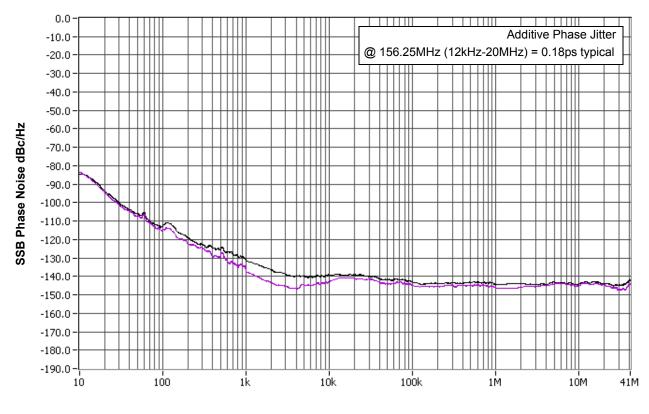
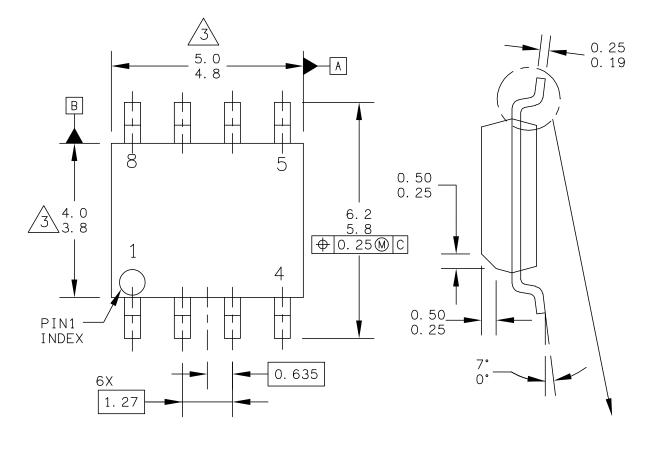



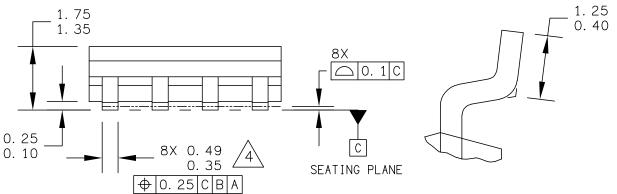

Figure 2. TTL Output Loading Used for Device Evaluation

#### **ADDITIVE PHASE JITTER**

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the dBc Phase Noise. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the

fundamental. When the required offset is specified, the phase noise is called a dBc value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.





#### **Offset From Carrier Frequency (Hz)**

As with most timing specifications, phase noise measurements have issues. The primary issue relates to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is

illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependant on the input source and measurement equipment.

#### PACKAGE DIMENSIONS





| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. |       | MECHANICA | L OUTLINE | PRINT VERSION NO | DT TO SCALE |              |                |             |
|---------------------------------------------------------|-------|-----------|-----------|------------------|-------------|--------------|----------------|-------------|
| Т                                                       | ITLE: |           |           |                  |             | DOCUMENT NO  | ): 98ASB42564B | REV: U      |
|                                                         |       | 8LD       | SOIC      | NARROW           | BODY        | CASE NUMBER  | 8: 751–07      | 07 APR 2005 |
|                                                         |       |           |           |                  |             | STANDARD: JE | DEC MS-012AA   |             |

PAGE 1 OF 2

#### CASE 751-07 ISSUE U 8-LEAD SOIC PACKAGE

### **Revision History Sheet**

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | NC. MECHANICAL OUTLINE |              | PRINT VERSION NOT TO SCALE |             |  |
|---------------------------------------------------------|------------------------|--------------|----------------------------|-------------|--|
| TITLE:                                                  |                        | DOCUMENT NO  | ): 98ASB42564B             | REV: U      |  |
| 8LD SOIC NARROW                                         | BODY                   | CASE NUMBER  | 8: 751–07                  | 07 APR 2005 |  |
|                                                         |                        | STANDARD: JE | DEC MS-012AA               |             |  |

#### CASE 751-07 ISSUE U 8-LEAD SOIC PACKAGE

PAGE 2 OF 2

| Rev | Table | Page | Description of Change                                                                                | Date     |
|-----|-------|------|------------------------------------------------------------------------------------------------------|----------|
| 10  |       | 1    | Product Discontinuance Notice - Last Time Buy Expires on (2/3/13)<br>Use replacement part: ICS83023I | 12/14/12 |

### We've Got Your Timing Solution



6024 Silver Creek Valley Road San Jose, California 95138

Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Technical Support netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.