imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

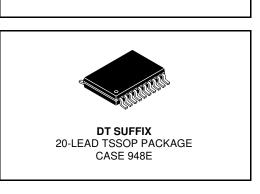
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

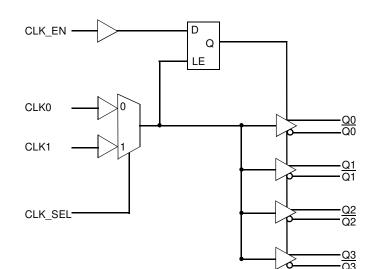
MOTOROLA


SEMICONDUCTOR TECHNICAL DATA

3.3V LVCMOS to LVPECL 1:4 **Fanout Buffer**

The MC100ES6535 is a low skew, high performance 3.3 V 1-to-4 LVCMOS to LVPECL fanout buffer. The ES6535 has two selectable inputs that allow LVCMOS or LVTTL input levels which translate to LVPECL outputs. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/ deassertion of the clock enable pin. The ES6535 is ideal for high performance clock distribution applications.

Features


- 4 differential LVPECL outputs
- 2 selectable LVCMOS/LVTTL inputs
- 1 GHz maximum output frequency
- Translates LVCMOS/LVTTL levels to LVPECL levels ٠
- 30 ps maximum output skew •
- 190 ps part-to-part skew
- 3.3 V operating range
- 20-lead TSSOP package
- Ambient temperature range -40°C to +85°C

MC100ES6535

ORDERING INFORMATION

Device	Package
MC100ES6535DT	TSSOP-20
MC100ES6535DTR2	TSSOP-20

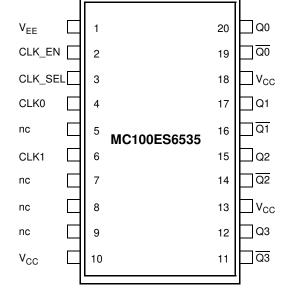


Figure 2. 20-Lead Pinout (Top View)

Figure 1. Logic Diagram

MOTOROLA ct, intelligence everywhere digitaldna For More Information On This Pro

Table 1. PIN DESCRIPTION

Number	Name	Ту	/pe	Description	
1	V _{EE}	Power		Negative supply pin	
2	CLK_EN	Input	Pullup ^a	Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced low, \overline{Q} outputs are forced high. LVCMOS/LVTTL interface levels	
3	CLK_SEL	Input	Pulldown ^a	Clock select input. When HIGH, selects CLK1 input. When LOW, selects CLK0 input. LVCMOS/LVTTL interface levels	
4	CLK0	Input	Pulldown ^a	LVCMOS/LVTTL clock input	
6	CLK1	Input	Pulldown ^a	LVCMOS/LVTTL clock input	
5, 7, 8, 9	nc	Unused		No connect	
10, 13, 18	V _{CC}	Power		Positive supply pin	
11, 12	Q3, <u>Q3</u>	Output		LVPECL differential output pair	
14, 15	Q2, <u>Q2</u>	Output		LVPECL differential output pair	
16, 17	Q1, <u>Q1</u>	Output		LVPECL differential output pair	
19, 20	Q0, <u>Q0</u>	Output		LVPECL differential output pair	
a Pullup and F	Pulldown refer to in	nternal input resis	stors.		

Table 2. CONTROL INPUT FUNCTION TABLE^a

	Inputs		Outputs		
CLK_EN	CLK_SEL	Selected Source	Q0:Q3	Q0:Q3	
0	0	CLK0	Disabled; LOW	Disabled; HIGH	
0	1	CLK1	Disabled; LOW	Disabled; HIGH	
1	0	CLK0	Enabled	Enabled	
1	1	CLK1	Enabled	Enabled	

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge. In the active mode, the state а of the outputs are a function of the CLK0 and CLK1 inputs as described in Table 3.

Table 3. CLOCK INPUT FUNCTION TABLE

Inputs	Outputs		
CLK0 or CLK1	Q0:Q3	Q0:Q3	
0	LOW	HIGH	
1	HIGH	LOW	

Table 4. GENERAL SPECIFICATIONS

Charact	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor		75 kΩ
ESD Protection	Human Body Model Machine Model	4000 V 200 V
θ _{JA} Thermal Resistance (Junction-to-Ambient)	0 LFPM, 20 TSSOP 500 LFPM, 20 TSSOP	140°C/W 100°C/W
Meets or exceeds JEDEC Spec	EIA/JESD78 IC Latchup Test	

Table 5. ABSOLUTE MAXIMUM RATINGS^a

Symbol	Rating	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between $V_{CC} \& V_{EE}$	3.9	V
V _{IN}	Input Voltage	V_{CC} - $V_{EE} \le 3.6 V$	V _{CC} + 0.3	V
			V _{EE} - 0.3	V
l _{out}	Output Current	Continuous	50	mA
		Surge	100	mA
T _A	Operating Temperature Range		-40 to +85	°C
T _{store}	Storage Temperature Range		-65 to +150	°C

Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 6. DC CHARACTERISTICS (V_{CC} = 3.135 V to 3.8 V; V_{EE} = 0 V)

			-40°C			0°C to 85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current			35			45	mA
V _{OH} ^a	Output HIGH Voltage	V _{CC} -1150	V _{CC} -1020	V _{CC} -800	V _{CC} -1200	V _{CC} -970	V_{CC} -750	mV
V _{OL}	Output LOW Voltage	V _{CC} -1950	V _{CC} -1620	V _{CC} -1250	V _{CC} -2000	V _{CC} -1680	V _{CC} -1300	mV

a Outputs are terminated through a 50 Ω resistor to V_{CC}-2 volts.

Table 7. LVTTL / LVCMOS INPUT DC CHARACTERISTICS (V_{CC} = 3.135 V to 3.8 V)

				-40°C			0°C to 85°C		
Symbol	Characteristic	Condition	Min	Тур	Max	Min	Тур	Max	Unit
I _{IN}	Input Current	$V_{IN} = V_{CC}$			±150			±150	μΑ
V _{IK}	Input Clamp Voltage	l _{IN} = -18 mA			-1.2			-1.2	V
V _{IH}	Input HIGH Voltage		2.0		V _{CC+} 0.3	2.0		V _{CC+} 0.3	V
V _{IL}	Input LOW Voltage				0.8			0.8	V

а

MC100ES6535

Table 8. AC CHARACTERISTICS ($V_{CC} = 3.135 \text{ V} \text{ to } 3.8 \text{ V}, \text{ V}_{EE} = 0 \text{ V})$
-------------------------------	---

				-40°C			25°C			85°C		
Symbol	Charac	teristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Freq	uency			1			1			1	GHz
t _{PD}	Propagation Delay to C	Output Differential	150	350	500	175	360	550	200	380	600	ps
t _{SKEW}	Skew	Output-to-Output		20	30		20	30		20	30	ps
		Part-to-Part			190			190			190	ps
t _{JITTER}	Cycle-to-Cycle Jitter	RMS (1σ)			1			1			1	ps
VoutPP	Output Peak-to-Peak V	/oltage	350	750		350	750		350	750		mV
t _r /t _f	Output Rise/Fall Time	(20%–80% @ 50 MHz)	50		400	50		400	50		400	ps

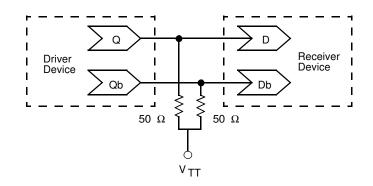
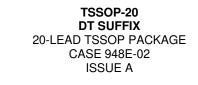
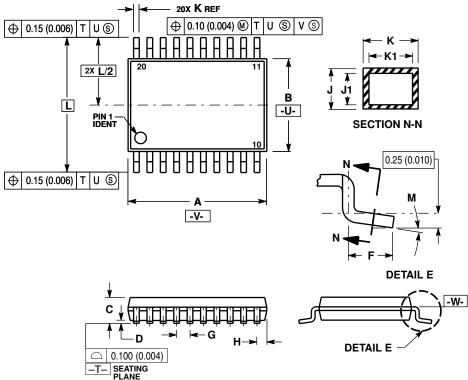




Figure 3. Typical Termination for Output Driver and Device Evaluation

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD
- DIMÉNSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND BE ARE TO BE DETERMINED
- 7. DIMENSION A AND BE ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
К	0.19	0.30	0.007	0.012	
K1	K1 0.19 0.25		0.007 0.01		
L	6.40 BSC		0.252 BSC		
М	0°	8°	0°	8°	

```
NOTES
```

MC100ES6535

NOTES

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners.

© Motorola, Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE: http://motorola.com/semiconductors

For More Information On This Product, Go to: www.freescale.com