

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Registered Hex TTL to ECL Translator

Description

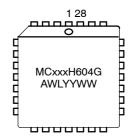
The MC10H/100H604 is a 6-bit, registered, dual supply TTL to ECL translator. The device features differential ECL outputs as well as a choice between either a differential ECL clock input or a TTL clock input. The asynchronous master reset control is an ECL level input.

With its differential ECL outputs and TTL inputs the H604 device is ideally suited for the transmit function of a HPPI bus type board-to-board interface application. The on-chip registers simplify the task of synchronizing the data between the two boards.

The device is available in either ECL standard: the 10H device is compatible with MECL 10KH logic levels while the 100H device is compatible with 100K logic levels.

Features

- Differential 50 Ω ECL Outputs
- Choice Between Differential ECL or TTL Clock Input
- Dual Power Supply
- Multiple Power and Ground Pins to Minimize Noise
- Specified Within-Device Skew
- Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

MARKING DIAGRAM*

xxx = 10 or 100

A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

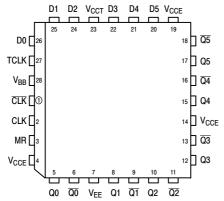
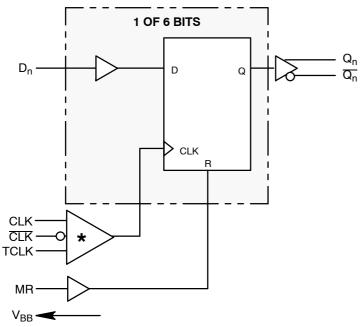



Figure 1. PLCC-28 Pinout (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D0-D5 CLK, CLK TCLK MR Q0-Q5 Q0-Q5 VCCE VCCT VEE	TTL Data Inputs Differential ECL Clock Input TTL Clock Input ECL Master Reset Input True ECL Outputs Inverted ECL Outputs ECL V_{CC} (0 V) = TTL GND TTL V_{CC} (+5.0 V) ECL V_{EE} (-5.2 V)

Table 2. TRUTH TABLE

D _n	MR	TCLK/CLK	Q _n +1
L	L	Z	L
Н	L	Z	Н
Х	Н	X	L

Z = LOW to HIGH Transition

- ★ 1. When using MECL inputs, TCLK must be tied to ground (0 V).
 - 2. When using only one MECL input, the unused MECL input must be tied to V_{BB} , and TCLK must be tied to ground (0 V).
 - 3. When using TCLK, both MECL inputs must be tied to V_{EE} (-5.2 V).

Figure 2. Logic Symbol

Table 3. DC CHARACTERISTICS ($V_{EE} = V_{EE}(Min)$ to $V_{EE}(Max)$; $V_{CCE} = GND$; $V_{CCT} = 5.0 \text{ V} + 10\%$)

		0°C		25°C		85°C		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
I _{EE}	ECL Power Supply Current 10H 100H		130 130		130 140		130 150	mA
I _{CCH}	TTL Power Supply Current		35 45		35 45		35 45	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

 $\textbf{Table 4. 10H ECL DC CHARACTERISTICS} \ (V_{CCT} = +5.0 \ V \pm 10\%; \ V_{EE} = -5.20 \ V \pm 5\%; \ V_{CCE} = GND)$

			0°C		C 25°C		85°C		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{INH} I _{INL}	Input HIGH Current Input LOW Current		0.5	255	0.5	175	0.5	175	μ Α μ Α
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage		-1170 -1950	-840 -1480	-1130 -1950	-810 -1480	-1060 -1950	-720 -1480	mV
V _{BB}	Output Bias Voltage		-1400	-1290	-1370	-1270	-1330	-1210	mV
V _{OH} V _{OL}	Output HIGH Voltage Output LOW Voltage	50 Ω to -2.0 V	-1020 -1950	-840 -1630	-980 -1950	-810 -1630	-910 -1950	-720 -1595	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 5. 100H ECL DC CHARACTERISTICS (V_{CCT} = 5.0 V \pm 10%; V_{EE} = -4.2 V to -5.5 V; V_{CCE} = GND)

			0°C		25°C		85°C		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{INH} I _{INL}	Input HIGH Current Input LOW Current		0.5	255	0.5	175	0.5	175	μ Α μ Α
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage		-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	mV
V _{BB}	Output Bias Voltage		-1400	-1280	-1400	-1280	-1400	-1280	mV
V _{OH} V _{OL}	Output HIGH Voltage Output LOW Voltage	50 Ω to -2.0 V	-1025 -1810	-880 -1620	-1025 -1810	-880 -1620	-1025 -1810	-880 -1620	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 6. TTL DC CHARACTERISTICS ($V_{CCT} = 5.0 \text{ V} \pm 10\%$; $V_{EE} = -5.2 \text{ V} \pm 5\%$ (10H); $V_{EE} = -4.2 \text{ V}$ to -5.5 V (100H); $V_{CCE} = GND$)

			0°	C	25	°C	85	°C	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage		2.0	0.8	2.0	0.8	2.0	0.8	V
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V V _{IN} = 7.0 V		20 100		20 100		20 100	μΑ
I _{IL}	Input LOW Current	V _{IN} = 0.5 V		-0.6		-0.6		-0.6	mA
V _{IK}	Input Clamp Voltage	I _{IN} = -18 mA		-1.2		-1.2		-1.2	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 7. AC CHARACTERISTICS ($V_{CCT} = 5.0 \text{ V} \pm 10\%$; $V_{EE} = -5.2 \text{ V} \pm 5\%$ (10H); $V_{EE} = -4.2 \text{ V}$ to -5.5 V (100H); $V_{CCE} = GND$)

				0°C			25°C			85°C		
Symbol	Parameter	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay CLK to Q to Output TCLK to Q MR to Q	50 Ω to -2.0 V	1.5 2.0 1.5		3.5 4.0 4.0	1.5 2.0 1.5		3.5 4.0 4.0	1.5 2.0 1.5		3.5 4.0 4.0	ns
t _s	Setup Time	50 Ω to -2.0 V	1.5	0.5		1.5	0.5		1.5	0.5		ns
t _H	Hold Time	50 Ω to -2.0 V	1.5	0.5		1.5	0.5		1.5	0.5		ns
t _{PW}	Minimum Pulse Width CLK, MR	50 Ω to –2.0 V		1.0			1.0			1.0		ns
V_{PP}	Minimum Input Swing						150					mV
t _r t _f	Rise/Fall Times	20% – 80%	0.3	1.0	2.0	0.3	1.0	2.0	0.3	1.0	2.0	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10H604FN	PLCC-28	37 Units / Rail
MC10H604FNG	PLCC-28 37 Units / Rail (Pb-Free)	
MC10H604FNR2	PLCC-28	500 / Tape & Reel
MC10H604FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100H604FN	PLCC-28	37 Units / Rail
MC100H604FNG	PLCC-28 37 Units / Ra (Pb-Free)	
MC100H604FNR2	PLCC-28	500 / Tape & Reel
MC100H604FNR2G	PLCC-28 500 / Tape & Re (Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

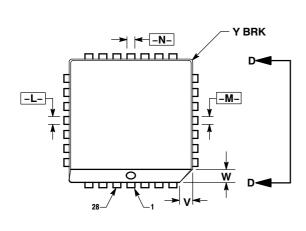
AN1568/D - Interfacing Between LVDS and ECL

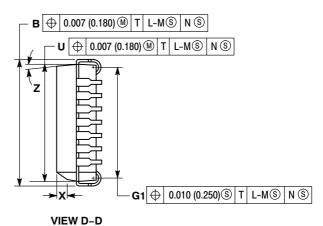
AN1672/D - The ECL Translator Guide

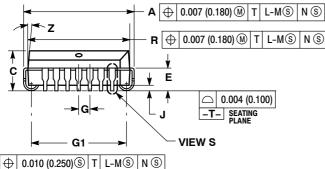
AND8001/D - Odd Number Counters Design

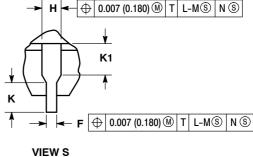
AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices


AND8066/D - Interfacing with ECLinPS


AND8090/D - AC Characteristics of ECL Devices


PACKAGE DIMENSIONS


28 LEAD PLLC

CASE 776-02 **ISSUE F**

NOTES:

- IOLES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS
 PLASTIC BODY AT MOLD PARTING LINE.
 2. DIMENSION G1, TRUE POSITION TO BE
 MEASURED AT DATUM -T-, SEATING PLANE.
 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
- O.010 (0.250) PER SIDE.
 A DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE FOR THOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE INACTIC BODY.

EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H
DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635)

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
c	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Χ	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2°	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1 02	

ECLinPS and MECL are trademarks of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative