

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3/5V ECL Differential Phase-Frequency Detector

Description

The MC100LVEL40 is a three state phase frequency-detector intended for phase-locked loop applications which require a minimum amount of phase and frequency difference at lock. Advanced design significantly reduces the dead zone of the detector. For proper operation, the input edge rate of the R and V inputs should be less than 5 ns. The device is designed to work with a 3.3 V power supply.

When the reference (R) and the feedback (FB) inputs are unequal in frequency and/or phase the differential up (U) and down (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO.

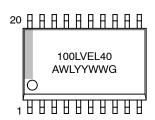
The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01~\mu F$ capacitor and limit current sourcing or sinking to 0.5~mA. When not used, V_{BB} should be left open.

For application information, refer to AND8040/D, "Phase Lock Loop Operation."

The 100 Series Contains Temperature Compensation

Features

- 250 MHz Typical Bandwidth
- PECL Mode Operating Range:
 V_{CC} = 3.0 V to 5.5 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -5.5 V
- Internal Input Pulldown Resistor
- Pb-Free Packages are Available*

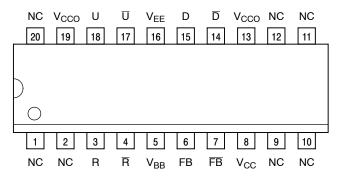

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

SO-20 DW SUFFIX CASE 751D

A = Assembly Location


WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

^{*}For additional marking information, refer to Application Note AND8002/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
U, Ū D, D FB, FB R, R V _{BB} V _{CC} , V _{CCO} V _{EE} NC	ECL Up Differential Outputs ECL Down Differential Outputs ECL Feedback Differential Inputs ECL Reference Differential Inputs Reference Voltage Output Positive Supply Negative Supply No Connect

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View)

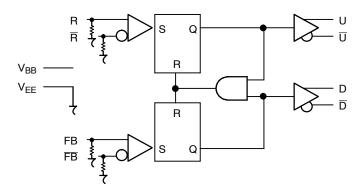


Figure 2. Logic Diagram

Table 2. ATTRIBUTES

Charact	Value		
ESD Protection	> 2	kV	
Moisture Sensitivity (Note 1)	Pb Pkg	Pb-Free Pkg	
	SOIC-20	Level 1	Level 3
Flammability Rating	UL 94 V-0	@ 0.125 in	
Transistor Count	356 D	evices	
Meets or exceeds JEDEC Spec	EIA/JESD78 IC Latchup Test		

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8 to 0	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	6 to 0 -6 to 0	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 SOIC-20	90 306	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20	30 to 35	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. LVPECL DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}, V_{EE} = 0 \text{ V}$ (Note 2)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		38	45		38	47		38	47	mA
V _{OH}	Output HIGH Voltage (Note 3)		2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 3)		1605	1745	1490	1595	1380	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single-Ended)			2420	2135		2420	2135		2420	mV
V_{IL}	Input LOW Voltage (Single-Ended)			1825	1490		1825	1490		1825	mV
V_{BB}	Output Voltage Reference			2.04	1.92		2.04	1.92		2.04	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 7) Vpp < 500 mV Vpp ≧ 500 mV			3.3 3.3	1.2 1.4		3.3 3.3	1.2 1.4		3.3 3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current Others R, FB	0.5 -300			0.5 -300			0.5 -300			μ Α μ Α

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±D.3 V.
 Outputs are terminated through a 50 Ω resistor to V_{CC} 2 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and

Table 5. LVNECL DC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -3.0 V (Note 5)

		−40°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		38	45		38	47		38	47	mA
V _{OH}	Output HIGH Voltage (Note 6)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 6)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 7) Vpp < 500 mV Vpp ≧ 500 mV	-2.0 -1.8		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	V V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current Others R, FB	0.5 -300			0.5 -300			0.5 -300			μ Α μ Α

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V.
- 6. All loading with 50 Ω resistor to V_{CC} 2 V.
- V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 6. AC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 8)

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Fmax	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
t _{PLH} t _{PHL}	Propagation Delay R to U, FB to D	430 1200		630 1400	450 1250		650 1450	480 1370		680 1590	ps
V _{PP}	Input Swing (Differential Configuration) (Note 9)	150		1000	150		1000	150		1000	mV
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _r , t _f	Output Rise/Fall Times	175		475	175		475	175		475	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 8. V_{EE} can vary ±[0.3 V.
- 9. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of 410.



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10LVEL40DW	SOIC-20	38 Units / Rail
MC10LVEL40DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC10LVEL40DWR2	SOIC-20	1000 / Tape & Reel
MC10LVEL40DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

 $\textbf{AN1503/D} \quad \quad - \quad \text{ECLinPS} \ ^{\text{\tiny{TM}}} \ \text{I/O SPiCE Modeling Kit}$

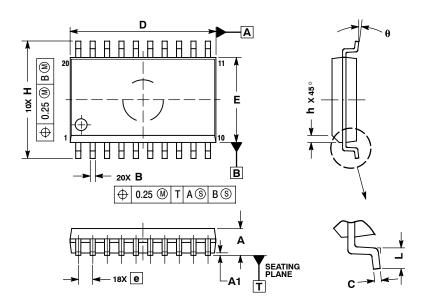
AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SO-20 WB CASE 751D-05 ISSUE G

NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR
- DIMENSION B DOES NOT INCLUDE DAMBAI PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS						
DIM	MIN	MAX					
Α	2.35	2.65					
A1	0.10	0.25					
В	0.35	0.49					
С	0.23	0.32					
D	12.65	12.95					
Е	7.40	7.60					
е	1.27	BSC					
Н	10.05	10.55					
h	0.25	0.75					
L	0.50	0.90					
A	0 0	7 0					

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of fits products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically discibility including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative