imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V / 5V ECL Coaxial Cable Driver

Description

The MC10EP89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in digital video broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver produces swings 70% larger than a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.6 V (5 V) and 1.4 V (3.3 V) swing allow for termination at both ends of the cable, while maintaining a 800 mV (5 V) and 700 mV (3.3 V) swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard V_{CC}-2.0 V. All of the DC parameters are tested with a 50 Ω to V_{CC}-3.0 V load. The driver accepts a standard differential ECL input and can run off of the digital video broadcast standard -5.0 V supply.

Features

- 310 ps Typical Propagation Delay
- Maximum Frequency > 2 GHz Typical
- 1.6 V (5 V) and 1.4 V (3.3 V) V_{OUTpp} Swing
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- Pb-Free Packages are Available

Contraction of the second

CASE 751

TSSOP-8

DT SUFFIX

CASE 948R

8 8 8 8 8 8

HP89

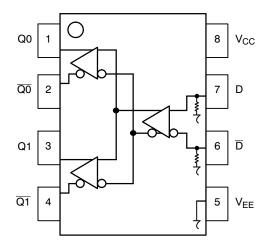
ALYW-

1 8 8 8 8

ο •

DFN8 MN SUFFIX CASE 506AA

A = Assembly Location


- L = Wafer Lot
- Y = Year
- W = Work Week
- D = Date Code

= Pb-Free Package
(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D*, <u>D</u> *	ECL Data Inputs
Q0, Q1, <u>Q0</u> , <u>Q1</u>	ECL Data Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply

* Pins will default LOW when left open.

Figure 1. 8-Lead Pinout (Top View) and Logic
--

Table 2. ATTRIBUTES

Characteristics	Va	lue
Internal Input Pulldown Resistor	75	kΩ
Internal Input Pullup Resistor	N	/A
ESD Protection Human Body Mode Machine Mode Charged Device Mode	> 20	⊧ kV 00 V 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg
SOIC- TSSOP- DFN	B Level 1	Level 1 Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL-94 V-0	@ 0.125 in
Transistor Count	152 D	evices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	-	

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg} Storage Temperature Range				-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	8 SOIC 8 SOIC	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	8 TSSOP 8 TSSOP	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	8 TSSOP	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	24	30	36	26	34	40	30	36	42	mA
V _{OH}	Output HIGH Voltage (Note 3)	2130	2255	2405	2180	2336	2455	2200	2400	2475	mV
V _{OL}	Output LOW Voltage (Note 3)	500	784	1100	480	786	1100	440	882	1060	mV
VIH	Input HIGH Voltage (Single-Ended)	2070		2410	2170		2490	2240		2580	mV
VIL	Input LOW Voltage (Single-Ended)	1350		1800	1350		1820	1350		1855	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

Table 4. DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -0.3 V.

3. All loading with 50 Ω to V_{CC} – 3.0 V.

4. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

			–40°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	27	34	41	30	37	44	33	40	47	mA
V _{OH}	Output HIGH Voltage (Note 6)	3830	3955	4105	3880	4037	4155	3900	4102	4175	mV
V _{OL}	Output LOW Voltage (Note 6)	1900	2205	2500	1850	2265	2450	1850	2177	2450	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA

Table 5. DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 5)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.5 V to -0.5 V.

6. All loading with 50 Ω to V_{CC} – 3.0 V. 7. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C	25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	24	30	36	26	34	40	30	36	42	mA
V _{OH}	Output HIGH Voltage (Note 9)		-1145	-895	-1120	-964	-845	-1100	-900	-825	mV
V _{OL}	Output LOW Voltage (Note 9)	-2800	-2516	-2200	-2820	-2514	-2220	-2860	-2478	-2240	mV
VIH	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
VIL	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	-1	.3	0.0	-1	.3	0.0	-1	.3	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

Table 6. DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -3.3 V (Note 8)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

8. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -0.3 V.

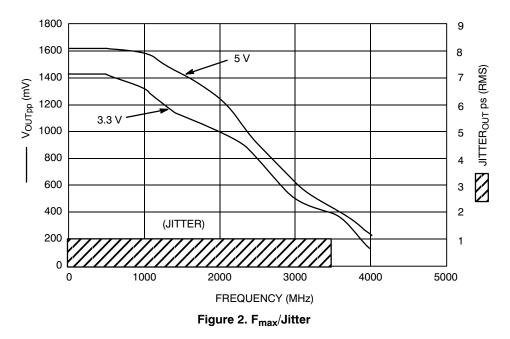
9. All loading with 50 Ω to V_{CC} – 3.0 V. 10. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C	25°C				85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	27	34	41	30	37	44	33	40	47	mA
V _{OH}	Output HIGH Voltage (Note 12)		-1045	-895	-1120	-964	-845	-1100	-900	-825	mV
V _{OL}	Output LOW Voltage (Note 12)	-3100	-2795	-2500	-3150	-2835	-2550	-3150	-2824	-2550	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	-3	3.2	0.0	-3	3.2	0.0	-3	3.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

Table 7. DC CHARACTERISTICS, NECL V_{CC} = 0V, V_{FF} = -5.2 (Note 11)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.7 V to -0.3 V.


12. All loading with 50 Ω to V_{CC} – 3.0 V. 13. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle (See Figure 2 F _{max} /JITTER)		> 2			> 2			> 2		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	220	280	340	250	310	370	270	330	390	ps
t _{SKEW}	Within Device SkewQ, QDevice to Device Skew (Note 15)		5.0	20 120		5.0	20 120		5.0	20 120	ps
t _{JITTER}	Cycle-to-Cycle Jitter (See Figure 2 F _{max} /JITTER)		.5	< 1		.5	< 1		.5	< 1	ps
V _{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall TimesQ, \overline{Q} (20% - 80%)	175	250	325	200	275	350	225	295	375	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}-3.0 V.

15. Skew is measured between outputs under identical transitions.

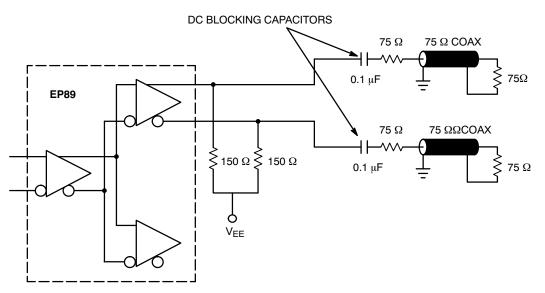


Figure 3. Cable Driver Termination Configuration

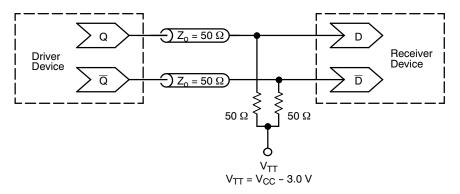
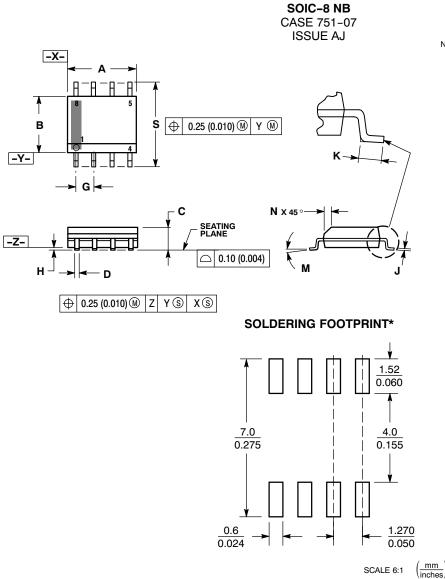


Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)


ORDERING INFORMATION

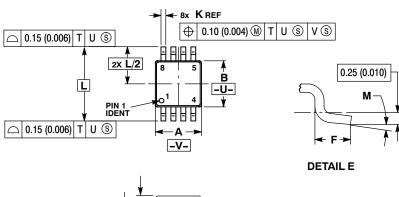
Device	Package	Shipping [†]
MC10EP89D	SOIC-8	98 Units / Rail
MC10EP89DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC10EP89DR2	SOIC-8	2500 / Tape & Reel
MC10EP89DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC10EP89DT	TSSOP-8	100 Units / Rail
MC10EP89DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC10EP89DTR2	TSSOP-8	2500 / Tape & Reel
MC10EP89DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC10EP89MNR4	DFN8	1000 / Tape & Reel
MC10EP89MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel

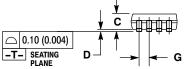
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

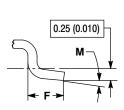
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1642/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

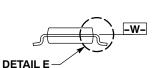
PACKAGE DIMENSIONS

NOTES:

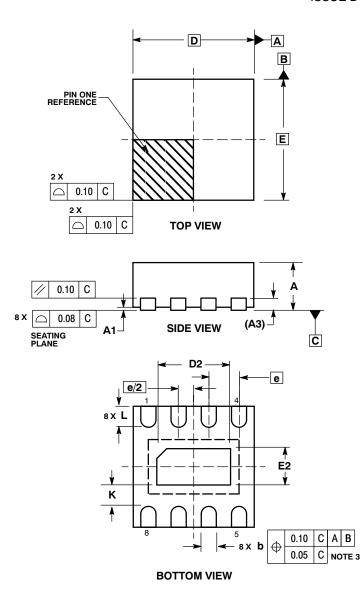

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


0.7.84					
	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.05	0 BSC	
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
к	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**


NOTES:	

- VUTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.000) DED SIDE
- OR GAILE BUHRS SMALL NUT EACEED 0.13 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PHOTHUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026	BSC	
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193 BSC		
М	0°	6 °	0°	6 °	

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

NOTES: 1. DIMENSIONING AND TOLERANCING PER 2

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 3.

4

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
A3	0.20 REF		
b	0.20	0.30	
D	2.00 BSC		
D2	1.10	1.30	
Е	2.00 BSC		
E2	0.70	0.90	
е	0.50 BSC		
κ	0.20		
L	0.25	0.35	

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights or other rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and the provided in SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are some provided in sections and sections are some provided in SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are some provided in the section of the sect intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative