# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# 2:1:9 TTL Clock Driver

### Description

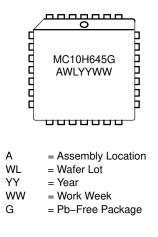
The MC10H645 is a single supply, low skew, TTL I/O 2:1:9 Clock Driver. Devices in the H600 clock driver family utilizes the PLCC–28 for optimal power and signal pin placement.

The device features a 24 mA TTL output stage with AC performance specified into a 50 pF load capacitance. A 2:1 input Mux is provided on chip to allow for distributing both system and diagnostic clock signals or designing clock redundancy into a system. With the SEL input held LOW the DO input will be selected, while the D1 input is selected when the SEL input is forced HIGH.

### Features

- Low Skew Typically 0.65 ns Within Device
- Guaranteed Skew Spec 1.25 ns Part-to-Part
- Input Clock Muxing
- Differential ECL Internal Design
- Single Supply
- Extra TTL and ECL Power/Ground Pins
- These Devices are Pb-Free and are RoHS Compliant\*



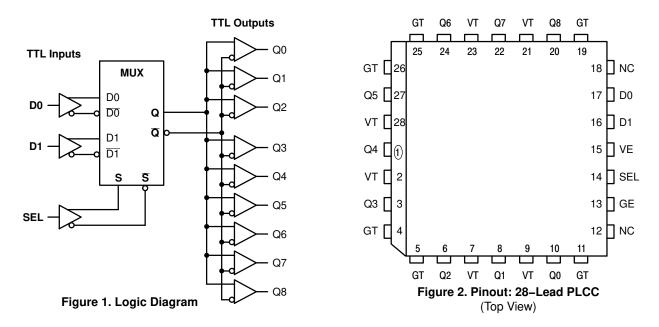

# **ON Semiconductor®**

www.onsemi.com



PLCC FN SUFFIX CASE 776

#### MARKING DIAGRAM




#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2015 April, 2015 – Rev. 7



#### Table 1. PIN NAMES

| PIN     | FUNCTION                     |
|---------|------------------------------|
| GT      | TTL Ground (0 V)             |
| VT      | TTL V <sub>CC</sub> (+5.0 V) |
| VE      | ECL V <sub>CC</sub> (+5.0 V) |
| GE      | ECL Ground (0 V)             |
| Dn      | TTL Signal Input             |
| Q0 – Q8 | TTL Signal Outputs           |
| SEL     | TTL Mux Select               |

## **Table 2. PIN DESCRIPTIONS**

| Pin | Symbol | Description                  | Pin | Symbol | Description                  |
|-----|--------|------------------------------|-----|--------|------------------------------|
| 1   | Q4     | Signal Output (TTL)          | 15  | VE     | ECL V <sub>CC</sub> (+5.0 V) |
| 2   | VT     | TTL V <sub>CC</sub> (+5.0 V) | 16  | D1     | Signal Input (TTL)           |
| 3   | Q3     | Signal Output (TTL)          | 17  | D0     | Signal Input (TTL)           |
| 4   | GT     | TTL Ground (0 V)             | 18  | NC     | No Connection                |
| 5   | GT     | TTL Ground (0 V)             | 19  | GT     | TTL Ground (0 V)             |
| 6   | Q2     | Signal Output (TTL)          | 20  | Q8     | Signal Output (TTL)          |
| 7   | VT     | TTL V <sub>CC</sub> (+5.0 V) | 21  | VT     | TTL V <sub>CC</sub> (+5.0 V) |
| 8   | Q1     | Signal Output (TTL)          | 22  | Q7     | Signal Output (TTL)          |
| 9   | VT     | TTL V <sub>CC</sub> (+5.0 V) | 23  | VT     | TTL V <sub>CC</sub> (+5.0 V) |
| 10  | Q0     | Signal Output (TTL)          | 24  | Q6     | Signal Output (TTL)          |
| 11  | GT     | TTL Ground (0 V)             | 25  | GT     | TTL Ground (0 V)             |
| 12  | NC     | No Connection                | 26  | GT     | TTL Ground (0 V)             |
| 13  | GE     | ECL Ground                   | 27  | Q5     | Signal Output (TTL)          |
| 14  | SEL    | Select Input (TTL)           | 28  | VT     | TTL V <sub>CC</sub> (+5.0 V) |

# Table 3. TRUTH TABLE

| D0               | D1      | SEL       | Q                |
|------------------|---------|-----------|------------------|
| L<br>H<br>X<br>X | X X L H | L L I I I | L<br>H<br>L<br>H |

# Table 4. ABSOLUTE RATINGS (Do not exceed)

| Symbol           | Characteristic          | Value                 | Unit |
|------------------|-------------------------|-----------------------|------|
| VE (ECL)         | Power Supply Voltage    | -0.5 to +7.0          | V    |
| VT (TTL)         | Power Supply Voltage    | -0.5 to +7.0          | V    |
| VI (TTL)         | Input Voltage           | -0.5 to +7.0          | V    |
| V <sub>out</sub> | Disabled 3-State Output | 0.0 to V <sub>T</sub> | V    |
| T <sub>stg</sub> | Storage Temperature     | -65 to 150            | °C   |
| T <sub>amb</sub> | Operating Temperature   | 0.0 to +85            | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

## Table 5. DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$ )

|                  |                         |       | <b>0</b> ° | С    | 25         | °C   | 85         | °C   |      |                                                       |
|------------------|-------------------------|-------|------------|------|------------|------|------------|------|------|-------------------------------------------------------|
| Symbol           | Characterist            | ic    | Min        | Мах  | Min        | Мах  | Min        | Мах  | Unit | Condition                                             |
| I <sub>EE</sub>  | Power Supply Current    | ECL   |            | 30   |            | 30   |            | 30   | mA   | VE Pin                                                |
| I <sub>CCH</sub> |                         | TTL   |            | 30   |            | 30   |            | 30   | mA   | Total all VT pins                                     |
| I <sub>CCL</sub> |                         |       |            | 35   |            | 35   |            | 35   | mA   |                                                       |
| V <sub>OH</sub>  | Output HIGH Voltage     |       | 2.5<br>2.0 |      | 2.5<br>2.0 |      | 2.5<br>2.0 |      | V    | l <sub>OH</sub> = -3.0 mA<br>l <sub>OH</sub> = -15 mA |
| V <sub>OL</sub>  | Output LOW Voltage      |       |            | 0.5  |            | 0.5  |            | 0.5  | V    | I <sub>OL</sub> = 24 mA                               |
| I <sub>OS</sub>  | Output Short Circuit Cu | rrent | -100       | -225 | -100       | -225 | -100       | -225 | mA   | V <sub>OUT</sub> = 0 V                                |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

#### Table 6. TTL DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$ )

|                                    |                                         | 0          | °C        | 25         | °C        | 85         | °C        |      |                                                       |
|------------------------------------|-----------------------------------------|------------|-----------|------------|-----------|------------|-----------|------|-------------------------------------------------------|
| Symbol                             | Characteristic                          | Min        | Max       | Min        | Max       | Min        | Max       | Unit | Condition                                             |
| V <sub>IH</sub><br>V <sub>IL</sub> | Input HIGH Voltage<br>Input LOW Voltage | 2.0        | 0.8       | 2.0        | 0.8       | 2.0        | 0.8       | V    |                                                       |
| IIH                                | Input HIGH Current                      |            | 20<br>100 |            | 20<br>100 |            | 20<br>100 | μΑ   | V <sub>IN</sub> = 2.7 V<br>V <sub>IN</sub> = 7.0 V    |
| IIL                                | Input LOW Current                       |            | -0.6      |            | -0.6      |            | -0.6      | mA   | V <sub>IN</sub> = 0.5 V                               |
| V <sub>OH</sub>                    | Output HIGH Voltage                     | 2.5<br>2.0 |           | 2.5<br>2.0 |           | 2.5<br>2.0 |           | V    | I <sub>OH</sub> = -3.0 mA<br>I <sub>OH</sub> = -24 mA |
| V <sub>OL</sub>                    | Output LOW Voltage                      |            | 0.5       |            | 0.5       |            | 0.5       | V    | I <sub>OL</sub> = 24 mA                               |
| V <sub>IK</sub>                    | Input Clamp Voltage                     |            | -1.2      |            | -1.2      |            | -1.2      | V    | I <sub>IN</sub> = -18 mA                              |
| I <sub>OS</sub>                    | Output Short Circuit Current            | -100       | -225      | -100       | -225      | -100       | -225      | mA   | V <sub>OUT</sub> = 0 V                                |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

# Table 7. AC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$ )

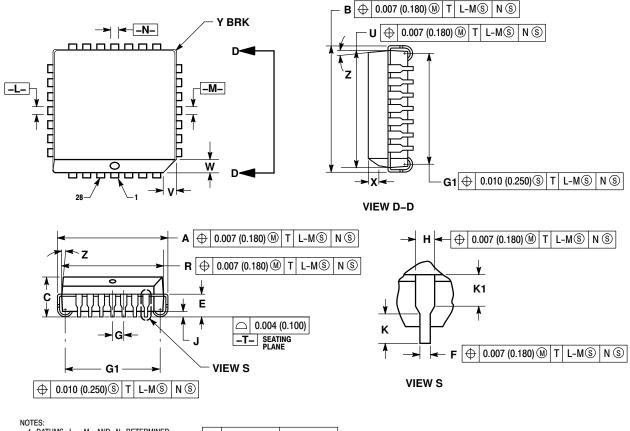
|                                  |                                                     |       | 0          | °C         | 25         | °C         | 85°C       |            |      |            |
|----------------------------------|-----------------------------------------------------|-------|------------|------------|------------|------------|------------|------------|------|------------|
| Symbol                           | Characteristic                                      |       | Min        | Max        | Min        | Max        | Min        | Max        | Unit | Condition  |
| t <sub>PLH</sub>                 | Propagation Delay $D_0$ to Output Only              | Q0–Q8 | 4.8        | 5.8        | 4.8        | 5.8        | 5.2        | 6.2        | ns   | CL = 50 pF |
| t <sub>PLH</sub>                 | Propagation Delay<br>D <sub>1</sub> to Output       |       | 4.8        | 5.8        | 4.8        | 5.8        | 5.2        | 6.2        | ns   |            |
| t <sub>PHL</sub>                 | Propagation Delay $D_0$ to Output $D_1$ to Output   |       | 4.8<br>4.8 | 5.8<br>5.8 | 4.8<br>4.8 | 5.8<br>5.8 | 5.2<br>5.2 | 6.2<br>6.2 | ns   |            |
| t <sub>skpp</sub>                | Part-to-Part Skew<br>D <sub>0</sub> to Output Only  |       |            | 1.0        |            | 1.0        |            | 1.0        | ns   |            |
| t <sub>skwd</sub> *              | Within–Device Skew<br>D <sub>0</sub> to Output Only |       |            | 0.65       |            | 0.65       |            | 0.65       | ns   |            |
| t <sub>PLH</sub>                 | Propagation Delay<br>SEL to Q                       | Q0–Q8 | 4.5        | 6.5        | 5.0        | 7.0        | 5.2        | 7.2        | ns   | CL = 50 pF |
| t <sub>r</sub><br>t <sub>f</sub> | Output Rise/Fall Time<br>0.8V to 2.0V               | Q0–Q8 | 0.5<br>0.5 | 2.5<br>2.5 | 0.5<br>0.5 | 2.5<br>2.5 | 0.5<br>0.5 | 2.5<br>2.5 | ns   | CL = 50 pF |
| t <sub>S</sub>                   | Setup Time<br>SEL to D                              |       | 1.0        |            | 1.0        |            | 1.0        |            | ns   |            |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

\*Within-Device Skew defined as identical transitions on similar paths through a device.

# Table 8. DUTY CYCLE SPECIFICATIONS (0°C $\leq$ T\_A $\leq$ 85°C; Duty Cycle Measured Relative to 1.5 V)

| Symbol | Characteristic                                                                          |                             | Min                  | Nom | Мах                   | Unit          | Condition   |
|--------|-----------------------------------------------------------------------------------------|-----------------------------|----------------------|-----|-----------------------|---------------|-------------|
| PW     | Range of $V_{CC}$ and CL to Meet Min Pulse Width (HIGH or LOW) at $f_{out} \leq 50 MHz$ | V <sub>CC</sub><br>CL<br>PW | 4.875<br>10.0<br>9.0 | 5.0 | 5.125<br>50.0<br>11.0 | V<br>pF<br>ns | All Outputs |


#### **ORDERING INFORMATION**

| Device        | Package              | Shipping <sup>†</sup> |
|---------------|----------------------|-----------------------|
| MC10H645FNG   | PLCC-28<br>(Pb-Free) | 37 Units / Rail       |
| MC10H645FNR2G | PLCC-28<br>(Pb-Free) | 500 / Tape & Reel     |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### PACKAGE DIMENSIONS





- DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
  DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
  DIMENSIONS R AND U DO NOT INCLUDE NOUNCING THE MEMORY AND FE MOUNT FE MOUNT
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER
- OIMENSIONING AND TOLENNING PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: INCH.
  THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE DLASTIC FORM PLASTIC BODY
- 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

|     | INC   | HES   | MILLIN | IETERS |
|-----|-------|-------|--------|--------|
| DIM | MIN   | MAX   | MIN    | MAX    |
| Α   | 0.485 | 0.495 | 12.32  | 12.57  |
| В   | 0.485 | 0.495 | 12.32  | 12.57  |
| C   | 0.165 | 0.180 | 4.20   | 4.57   |
| Е   | 0.090 | 0.110 | 2.29   | 2.79   |
| F   | 0.013 | 0.021 | 0.33   | 0.53   |
| G   | 0.050 | BSC   | 1.27   | BSC    |
| Н   | 0.026 | 0.032 | 0.66   | 0.81   |
| J   | 0.020 |       | 0.51   |        |
| K   | 0.025 |       | 0.64   |        |
| R   | 0.450 | 0.456 | 11.43  | 11.58  |
| U   | 0.450 | 0.456 | 11.43  | 11.58  |
| V   | 0.042 | 0.048 | 1.07   | 1.21   |
| W   | 0.042 | 0.048 | 1.07   | 1.21   |
| X   | 0.042 | 0.056 | 1.07   | 1.42   |
| Y   |       | 0.020 |        | 0.50   |
| Z   | 2 °   | 10°   | 2 °    | 10°    |
| G1  | 0.410 | 0.430 | 10.42  | 10.92  |
| K1  | 0.040 |       | 1.02   |        |

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.om/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product as product or circuit, and specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable autorney fees arising out of, directly or indirectly, any claim of personal injury or death mas occiated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC was negligent regarding the design or manufacture of the part. SCILLC was negligent regarding the design or manufacture of the part. SCILLC

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC10H645/D