imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

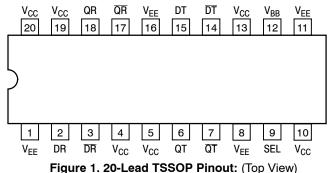
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

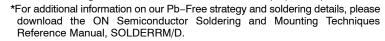
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit

Description

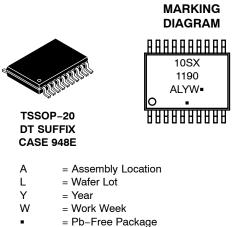

The MC10SX1190 is a differential receiver, differential transmitter specifically designed to drive coaxial cables. It incorporates the output cable drive capability of the MC10EP89 Coaxial Cable Driver with additional circuitry to multiplex the output cable drive source between the cable receiver or the local transmitter inputs. The multiplexer control circuitry is TTL compatible for ease of operation.


The MC10SX1190 is useful as a bypass element for Fibre Channel-Arbitrated Loop (FC-AL) or Serial Storage Architecture (SSA) applications, to create loop style interconnects with fault tolerant, active switches at each device node. This device is particularly useful for back panel applications where small size is desirable.

The EP89 style drive circuitry produces swings approximately 70% larger than a standard PECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize reflections. The 1.4 V output swings allow for proper termination at both ends of the cable, while maintaining the required swing at the receiving end of the cable. Because of the larger output swings, the QT, $\overline{\text{QT}}$ outputs are terminated into the thevenin equivalent of 50 Ω to V_{CC} – 3.0 V instead of 50 Ω to V_{CC} – 2.0 V.

Features

- 2.5 Gb/s Operation
- 425 ps Propagation Delay
- 1.4 V Output Swing on the Cable Driving Output
- Single Positive SUpply Operation Ranges: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{EE} = 0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{EE} = 0 \text{ V}$
- 75 kΩ Internal Input Pull Down Resistors
- ESD Protection: 2000 V Human Body Model, >100 V Machine Model
- These are Pb-Free Devices*



ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

PIN DESCRIPTION

PIN	FUNCTION					
DR/DR	ECL Diff. Inputs from Receive Cable					
QR/QR	ECL Buffered Differential Outputs from Receive Cable					
DT/DT	ECL Differential Input to Transmit Cable					
QT/QT	ECL Buffered Differential Output to Transmit Cable					
SEL	TTL Multiplexer Control Signal					
V _{BB}	Reference Voltage Output					
V _{CC}	ECL Positive Supply					
V _{EE}	ECL Negative, 0 Supply					

TRUTH TABLE

SEL	Function
L	$DR \to QT$
Н	$DT \to QT$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

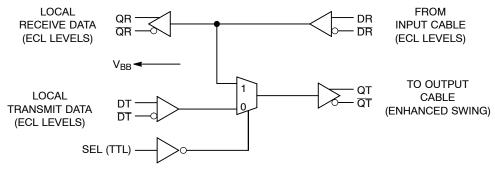


Figure 2. Logic Diagram

Table 1. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	Power Supply Voltage (V _{EE} = 0 V)	0 to +6.0	Vdc	
V_{EE}	Power Supply Voltage (V _{CC} = 0 V)	-6.0 to 0	Vdc	
V _{IN}	Input Voltage ($V_{EE} = 0 V$, V_{IN} not more positive that	0 to +6.0	Vdc	
V _{IN}	Input Voltage ($V_{CC} = 0 \text{ V}, \text{ V}_{IN} \text{ not more negative that}$	-6.0 to 0	Vdc	
I _{OUT}	Output Current	Continuous Surge	50 100	mA
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	Still Air 500 lfpm	90 60	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)		30 to 35	°C/W
T _A	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		-50 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}	Output Voltage High (QR, QR) (Note 2)	2.22	2.35	2.52	2.27	2.39	2.57	2.30	2.40	2.60	V
V _{OL}	Output Voltage Low (QR, QR) (Note 2)	1.35	1.54	1.65	1.37	1.57	1.67	1.40	1.57	1.71	V
V _{OH}	Output Voltage High (QT, QT) (Note 3)	2.13	2.29	2.40	2.18	2.33	2.46	2.20	2.34	2.48	V
V _{OL}	Output Voltage Low (QT, \overline{QT}) (Note 3)	0.50	0.67	1.10	0.48	0.64	1.06	0.44	0.63	1.06	V
I _{CC}	Quiescent Supply Current (Note 4)	30	60	90	30	60	90	30	60	90	mA
VIH	Input Voltage High	2070		2410	2170		2490	2240		2580	mV
V _{IL}	Input Voltage Low	1350		1800	1350		1820	1350		1860	mV
VIH	Input Voltage High SEL (Note 5)	2.0			2.0			2.0			V
V _{IL}	Input Voltage Low SEL (Note 5)			0.8			0.8			0.8	V
V_{BB}	Output Reference Voltage (Note 1)	1.80	1.90	2.05	1.80	1.90	2.05	1.85	1.95	2.05	V

Table 2. DC CHARACTERISTICS (V_{CC} = 3.3 V, V_{EE} = 0 V) (Note 1)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters will track 1:1 V_{CC}. V_{EE} can vary +0.3 V to –0.3 V.

2. QR outputs loaded with 50 Ω to V_{CC} – 2.0 V

3. QT outputs loaded with 50 Ω to V_{CC} – 3.0 V

4. Outputs open circuited.

5. TTL signal threshold is 1.5 V above V_{EE} .

Table 3. DC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$) (Note 6)

			-40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}	Output Voltage High (QR, QR) (Note 7)	3.92	4.05	4.22	3.97	4.09	4.27	4.0	4.10	4.30	V
V _{OL}	Output Voltage Low (QR, QR) (Note 7)	3.05	3.24	3.35	3.07	3.27	3.37	3.10	3.27	3.41	V
V _{OH}	Output Voltage High (QT, QT) (Note 8)	3.83	3.99	4.11	3.88	4.03	4.16	3.90	4.04	4.18	V
V _{OL}	Output Voltage Low (QT,\overline{QT}) (Note 8)	1.90	2.14	2.50	1.85	2.09	2.45	1.85	2.08	2.45	V
I _{CC}	Quiescent Supply Current (Note 9)	30	60	90	30	60	90	30	60	90	mA
V_{IH}	Input Voltage High	3770		4110	3870		4190	3940		4280	mV
V _{IL}	Input Voltage Low	3050		3500	3050		3520	3050		3560	mV
V_{IH}	Input Voltage High SEL (Note 10)	2.0			2.0			2.0			V
V _{IL}	Input Voltage Low SEL (Note 10)			0.8			0.8			0.8	V
V_{BB}	Output Reference Voltage (Note 6)	3.50	3.60	3.75	3.50	3.60	3.75	3.55	3.65	3.75	V
IIL	Input High Current			150			150			150	μA
I _{IH}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. Input and output parameters will track 1:1 V_{CC}. V_{EE} can vary +0.5 V to –0.5 V.

7. QR outputs loaded with 50 Ω to V_{CC} – 2.0 V 8. QT outputs loaded with 50 Ω to V_{CC} – 3.0 V

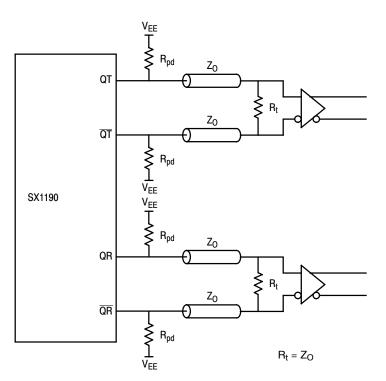
9. Outputs open circuited.

10. TTL signal threshold is 1.5 V above V_{EE}.

			-40°C			25°C to 85°C			
Symbol	Chara	acteristic	Min	Тур	Max	Min	Тур	Max	Unit
t _{pd}	Propagation Delay-to-Output	$\text{DR} \rightarrow \text{QR}$ (Diff) (Notes 12 and 13)	140	240	340	180	280	380	ps
		$DR\toQT\text{ (Diff)}$	300	400	500	350	470	650	
		$DT\toQT\text{ (Diff)}$	280	380	480	350	440	650	
t _{PLH} , t _{PHL}	Propagation Delay (1.5 V to 50% Pt)	$SEL\toQT,\overline{QT}$	400	700	1000	400	700	1000	ps
t _r , t _f	Rise Time (20% to 80%) Fall Time (80% to 20%)	QR, QR	70	140	200	90	155	250	ps
t _r , t _f	Rise Time (20% to 80%) Fall Time 80% to 20%	QT, QT	150	200	280	150	230 230	500	ps
t _{skew}	Within Device Skew (Note 14)			15			15		ps
V _{PP}	Input Swing (Differential Configu	iration)	200		1000	200		1000	mV
V _{CMR}	Common Mode Range (Note 15)	3.0		4.35	3.0		4.35	V
f _{max}	Maximum Operation Frequency		2.5			2.5			Gb/s

Table 4. AC CHARACTERISTICS (V_{CC} = 3.0 V to 5.5 V, V_{EE} = 0 V) (Note 11)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit


operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. V_{EE} can vary +0.3 V to –0.3 V

12. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.

13. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. 14. Duty cycle skew is the difference between t_{PLH} and t_{PHL} propagation delay through a device.

15. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP Min} and 1.0 V.

Typical value for R_{pd} is 160 Ω to 260 Ω , depending on the application. The minimum value of R_{pd} should not be less than 50 Ω .

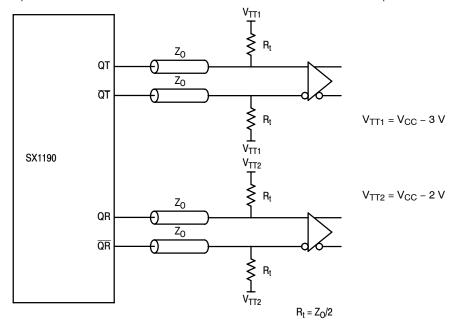
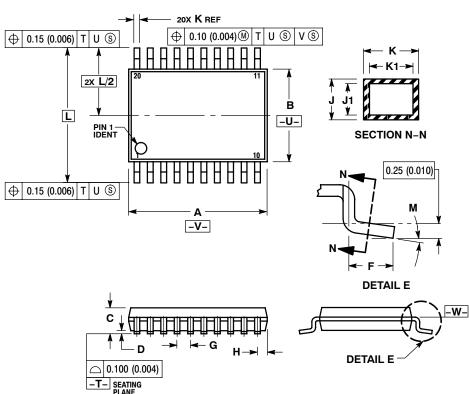


Figure 3. SX1190 Termination Configuration


ORDERING INFORMATION

Device	Package	Shipping [†]
MC10SX1190DT	TSSOP-20*	75 Units / Rail
MC10SX1190DTG	TSSOP-20*	75 Units / Rail
MC10SX1190DTR2	TSSOP-20*	2500 / Tape & Reel
MC10SX1190DTR2G	TSSOP-20*	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb-Free.

PACKAGE DIMENSIONS

TSSOP-20 DT SUFFIX PLASTIC PACKAGE CASE 948E-02 ISSUE B

NOTES:

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION:

MILLIMETER.

MILLINETELT: 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

3. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE

7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.27	0.37	0.011	0.015	
ſ	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
Г	6.40	BSC	0.252	BSC	
М	0°	8°	0°	8°	

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death agolociated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agolociated with such unintended or unauthorized use persons, and reasonable attorney fees andising ormanufacture of the part. SCILLC is an Equal Opportun

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro-ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.