imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor Technical Data

Smart Front Corner Light Switch (Triple 10 mOhm and Dual 35 mOhm)

The 10XS3535 is designed for low voltage automotive and industrial lighting applications. Its five low $R_{DS(ON)}$ MOSFETs (three 10 m Ω , two 35 m Ω) can control the high sides of five separate resistive loads (bulbs, Xenon-HID modules and LEDs). This device is powered by SMARTMOS technology.

Programming, control and diagnostics are accomplished using a 16-bit SPI interface (3.3 V or 5.0 V). Each output has its own pulsewidth modulation (PWM) control via the SPI. The 10XS3535 has highly sophisticated failure mode handling to provide high availability of the outputs. Its multiphase control and output edge shaping improves electromagnetic compatibility (EMC) behavior.

The 10XS3535 is packaged in a power-enhanced 12 x 12 mm nonleaded PQFN package with exposed tabs.

Features

- Triple 10 m Ω and dual 35 m Ω high side switches
- 16-bit SPI communication interface with daisy chain capability
 Current sense output with SPI-programmable multiplex switch
- and board temperature feedback
- Digital diagnosis feature
- PWM module with multiphase feature including prescaler
- LEDs control including accurate current sensing and low dutycycle capability
- Fully protected switches
- · Over-current shutdown detection
- · Power net and reverse polarity protection
- Low-power mode
- Fail mode functions including autorestart feature
- External smart power switch control including current recopy

10XS3535

ORDERING INFORMATION				
Device (For Tape and Reel, add R2 Suffix)	Temperature Range (T _A)	Package		
MC10XS3535HFK				
MC10XS3535DHFK	-40 to 125 °C	24 PQFN		
* MC10XS3535JHFK				

* Recommended for all new designs

Figure 1. 10XS3535 Simplified Application Diagram

Freescale Semiconductor, Inc. reserves the right to change the detail specifications, as may be required, to permit improvements in the design of its products.

© Freescale Semiconductor, Inc., 2010-2013. All rights reserved.

Document Number: MC10XS3535 Rev. 9.0, 4/2013

√RoHS

DEVICE VARIATIONS

Table 1. MC10XS3535 Device Variations

Part Number	Package	Temp.	Comment
MC10XS3535HFK	24 PQFN		Initial release
MC10XS3535DHFK	98ART10511D	-40 to 125 °C	D version is more robust against V _{BAT} interrupt
MC10XS3535JHFK	24 PQFN 98ASA00426D		D version with enhancement MSL3 performance

MC10XS3535

INTERNAL BLOCK DIAGRAM

PIN CONNECTIONS

Table 2. 10XS3535 Pin Definitions

A functional description of each pin can be found in the Functional Pin Description section beginning on Page 20.

Pin Number	Pin Name	Pin Function	Formal Name	Definition
1	FETIN	Input	External FET Input	This pin is the current sense recopy of the external SMART MOSFET.
2	IGN	Input	Ignition Input (Active High)	This input wakes the device. It also controls the Outputs 1 and 2 in case of Fail mode activation. This pin has a passive internal pull-down.
3	RST	Input	Reset	This input wakes the device. It is also used to initialize the device configuration and fault registers through SPI. This digital pin has a passive internal pull-down.
4	FLASHER	Input	Flasher Input (Active High)	This input wakes the device. This pin has a passive internal pull-down.
5	CLOCK	Input/Output	Clock Input	This pin state depends on $\overrightarrow{\text{RST}}$ logic level. As long as $\overrightarrow{\text{RST}}$ input pin is set to logic [0], this pin is pulled up in order to report wake event. Otherwise, the PWM frequency and timing are generated from this digital clock input by the PWM module. This pin has a passive internal pull-down.
6	LIMP	Input	Limp Home Input (Active High)	The Fail mode can be activated by this digital input. This pin has a passive internal pull-down.
7	FOG	Input	FOG Input (Active high)	This input wakes the device. This pin has a passive internal pull-down.
8	CS	Input	Chip Select (Active Low)	When this digital signal is high, SPI signals are ignored. Asserting this pin low starts a SPI transaction. The transaction is signaled as completed when this signal returns high. This pin has a passive internal pull-up resistance.
9	SCLK	Input	SPI Clock Input	This digital input pin is connected to the master microcontroller providing the required bit shift clock for SPI communication. This pin has a passive internal pull-down resistance.

MC10XS3535

Table 2. 10XS3535 Pin Definitions (continued)

A functional description of each pin can be found in the Functional Pin Description section beginning on Page 20.

Pin Number	Pin Name	Pin Function	Formal Name	Definition
10	SI	Input	Master-Out Slave- In	This data input is sampled on the positive edge of the SCLK. This pin has a passive internal pull-down resistance.
11	VCC	Power	Logic Supply	SPI Logic power supply.
12	SO	Output	Master-In Slave- Out	SPI data is sent to the MCU by this pin. This data output changes on the negative edge of SCLK and when $\overline{\text{CS}}$ is high, this pin is high-impedance.
13	FETOUT	Output	External FET Gate	This pin controls an external SMART MOSFET by logic level. This output is also called OUT6. If OUT6 is not used in the application, this output pin is set to logic high when the current sense output becomes valid when CSNS sync SPI bit is set to logic [1].
14,17,23	GND	Ground	Ground	This pin is the ground for the logic and analog circuitry of the device. $^{(1)}$
15	VBAT	Power	Battery Input	Power supply pin.
16	CP	Output	Charge Pump	This pin is the connection for an external tank capacitor (for internal use only).
22 18	OUT1 OUT5	Output	Output 1 Output 5	Protected 35 m Ω high side power output to the load.
21 20 19	OUT2 OUT3 OUT4	Output	Output 2 Output 3 Output 4	Protected 10 m Ω high side power output to the load.
24	CSNS	Output	Current Sense Output	This pin is used to output a current proportional to OUT1:OUT5, FET in current, and it is used externally to generate a ground-referenced voltage for the microcontroller to monitor output current. Moreover, this pin can report a voltage proportional to the temperature on the GND flag. OUT1:OUT5, FET in current sensing and Temperature feedback choice is SPI programmable.

Notes

1. The pins 14, 17 and 23 must be shorted on the board.

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Table 3. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit
ELECTRICAL RATINGS			
Over-voltage Test Range (all OUT[1:5] ON with nominal DC current)	V _{BAT}		V
Maximum Operating Voltage		28	
Load Dump (400 ms) @ 25 °C		40	
Reverse Polarity Voltage Range (all OUT[1:5] ON with nominal DC current)	V _{BAT}		V
2.0 Min @ 25 °C		-18	
VCC Supply Voltage	V _{CC}	-0.3 to 5.5	V
OUT[1:5] Voltage	V _{OUT}		V
Positive		40	
Negative (ground disconnected)		-16	
Digital Current in Clamping Mode (SI, SCLK, \overline{CS} , \overline{RST} , IGN, FLASHER, LIMP and FOG)	I _{IN}	±1.0	mA
FETIN Input Current	I _{FETIN}	+10	mA
		-1.0	
SO, FETOUT, CLOCK and CSNS Outputs Voltage	V _{SO}	-0.3 to V _{CC} +0.3	V
Outputs clamp energy using single pulse method (L = 2 mH; R = 0 Ω ;			
$V_{BAT} = 14 V @ 150 °C initial)$			mJ
OUT[1,5]	E _{1,5}	30	
001[2:4]	E _{2,3,4}	100	
ESD Voltage ⁽²⁾	V _{ESD}		V
Human Body Model (HBM)		±2000	
Human Body Model (HBM) OUT [1:5], VPWR, and GND		±8000	
Charge Device Model (CDM)			
Corner Pins (1, 13, 19, 21) All Other Pins (2-12, 14-18, 20, 22-24)		±750 ±500	

Notes

 ESD testing is performed in accordance with the Human Body Model (HBM) (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω) and the Charge Device Model.

Table 3. Maximum Ratings (continued)

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit
THERMAL RATINGS			
Operating Temperature			°C
Ambient	Τ _Α	-40 to 125	
Junction	Т _Ј	-40 to 150	
Peak Package Reflow Temperature During Reflow ^{(3), (4)}	T _{PPRT}	Note 4	°C
Storage Temperature	T _{STG}	-55 to 150	°C
THERMAL RESISTANCE			
Thermal Resistance, Junction to Case ⁽⁵⁾	$R_{ ext{ heta}JC}$	1.0	°K/W

Notes

3. Pin soldering temperature limit is for 40 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

4. Freescale's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

5. Typical value guaranteed per design.

STATIC ELECTRICAL CHARACTERISTICS

Table 4. Static Electrical Characteristics

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
POWER INPUTS (VBAT, VCC)	I		1	1	•
Battery Supply Voltage Range	V _{BAT}				V
Full Performance & Short Circuit		7.0	-	20.0	
Extended Voltage Range ⁽⁶⁾		6.0	-	28.0	
Battery Supply Under-voltage (UV flag is set ON)	V _{BATUV}	5.0	5.5	6.0	V
Battery Supply Over-voltage (OV flag is set ON)	V _{BATOV}	27.5	30	32.5	V
Battery Voltage Clamp ⁽⁹⁾	VBATCLAMP	40	-	48	V
Battery Supply Power on Reset ⁽¹⁰⁾					V
If V_{BAT} < 5.5 V, V_{BAT} = V_{CC}	V _{BATPOR1}	2.0	-	3.0	
If $V_{BAT} < 5.5 \text{ V}, V_{CC} = 0$	V _{BATPOR2}	2.0	-	4.0	
VBAT Supply Current @ 25 °C and V_{BAT} = 12 V and V_{CC} = 5 V					
Sleep State Current, Outputs Opened	IBATSLEEP1	-	0.5	5.0	μA
Sleep State Current, Outputs Grounded Normal Mode, IGN = 5 V, RST = 5 V, Outputs Open	IBATSLEEP2	-	0.5	5.0	μA
	IBAT	-	10.0	20.0	mA
Digital Supply Voltage Range, Full Performance	V _{CC}	3.0	-	5.5	V
Digital Supply Undervoltage (VCC Failure)	V _{CCUV}	2.2	2.5	2.8	V
Sleep Current Consumption on V_{CC} @ 25 °C and V_{BAT} = 12 V	ICCSLEEP				μA
Output OFF		-	0.2	5.0	
Supply Current Consumption on V_{CC} and $V_{BAT} = 12 V$	I _{CC}				mA
No SPI		-	-	2.6	
		-	-	5.0	
LOGIC INPUT/OUTPUT (IGN, CS, CSNS, SI, SCLK, CLOCK, SO, FLASH	ER, RST, LIMP, F	OG)			1
Input High Logic Level ⁽¹⁾	V _{IH}	2.0	-	-	V
Input Low Logic Level ⁽⁷⁾	V _{IL}	-	-	0.8	V
Voltage Threshold for wake-up (IGN, FLASHER, FOG and RST)	V _{IGNTH}	1.0	-	2.2	V
Input Clamp Voltage (IGN, FLASHER, LIMP, FOG, CS, SCLK, SI, RST)	V _{CL_POS}				V
I = 1.0 mA		7.5	-	13	
Input Forward Voltage (IGN, FLASHER, LIMP, FOG, CS, SCLK, SI, RST)	V _{CL_NEG}				V
I = -1.0 mA	_	-2.0	-	-0.3	
Input Passive Pull-up Resistance on CS input ⁽⁸⁾	R _{UP}	100	200	400	kΩ
Input Passive Pull-down Resistance on SI, SCLK, FLASHER, IGN, FOG,	R _{DWN}	100	200	500	kΩ
CLOCK, LIMP and RST pins ⁽⁸⁾					
SO High-state Output Voltage	V _{SOH}				
I _{OH} = 1.0 mA		0.8	0.95	-	V _{CC}
SO Low-state Output Voltage	V _{SOL}				V
I _{OL} = -1.6 mA		-	0.2	0.4	

Notes

6. In extended mode, the functionality is guaranteed but not the electrical parameters.

7. Valid for $\overline{\text{RST}}$, SI, SCLK, $\overline{\text{CS}}$, CLOCK, IGN, FLASHER, FOG, and LIMP pins.

8. Valid for the following input voltage range: -0.3 V to VCC + 0.3 V.

9. Outputs shorted to ground, I_{OUT} = + 500 mA and I_{OUT} =OCHI (guaranteed by design).

10. Please refer to Loss of Supply Lines section for more details.

CLOCK Output Voltage reporting wake-up event (I_{CLOCK} = 1.0 mA)

MC10XS3535

Vcc

0.8

V_{CLOCKH}

0.95

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LOGIC INPUT/OUTPUT (IGN, CS, CSNS) (CONTINUED)	•			•	•
CSNS Tri-state Leakage Current	I _{CSNSLEAK}				μΑ
VCC = 5.5 V, CSNS = 5.5 V		-5.0	0	1.0	
VCC = 5.0 V, CSNS = 5.5 V		-10	0	1.0	
VCC = 5.0 V, CSNS = 4.5 V		-1.0	0	1.0	
Current Sense Output Clamp Voltage	V _{CSNS}				V
CSNS open and I _{OUT[1:5]} = I _{FSR}		5.0	6.0	7.0	
OUTPUTS (OUT 1-5)	•				
Output Leakage Current in OFF state	IOUTLEAK				μA
Sleep mode, Outputs Grounded		-	0	2.0	
Normal mode, Outputs Grounded		-	20	25	
Output Negative Clamp Voltage	V _{OUT}				V
I _{OUT} = - 500 mA, Outputs OFF		-22.0	-	-16.0	
Current Sense Output Precision ⁽¹¹⁾	δl _{CS} /l _{CS}				%
Full-Scale Range (FSR) for LED Control bit = 0					
0.75 FSR		-14	-	14	
0.50 FSR		-15	-	15	
0.25 FSR		-17	-	17	
0.10 FSR		-22	-	22	
Full-Scale Range for LED Control bit = 1 (OUT1 and OUT5 only)					
0.187 FSR = 0.75 FSR _{LED}		-13	-	13	
0.125 FSR = 0.50 FSR _{LED}		-13	-	13	
0.062 FSR = 0.25 FSR _{LED}		-20	-	20	
0.025 FSR = 0.10 FSR _{LED}		-30	-	30	

Notes

11. 10 V < V_{BAT} < 16 V. $\delta I_{CS}/I_{CS}$ = (measured I_{CS} - targeted I_{CS})/ targeted I_{CS} with targeted I_{CS} = 5 mA

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Current Sense Output Precision with one calibration point (50% FSR, V_{BAT} = 13.5 at 25 $^{\circ}C^{(13)}$		-6.0	-	6.0	%
Current Sense Output Precision with one calibration point (50% FSR _{LED} , V _{BAT =} 13.5 V at 25 °C ⁽¹³⁾		-6.0	Ι	6.0	%
Temperature Drift of Current Sense Output ⁽¹²⁾	$\Delta I_{CS} / \Delta T$	_	±280	±400	ppm/°C
V_{BAT} = 13.5 V, $I_{OUT1,5}$ = 2.8 A, I_{OUT2-4} = 5.5 A, reference taken at T_{A} =25 $^{\circ}\text{C}$					
Minimum Output Current Reported in CSNS for OUT[2-4] ⁽¹⁵⁾	I _{10MIN} (CSNS)				mA
10 V \leq VBAT \leq 16 V	· · · · ·	250	-	-	
Minimum Output Current Reported in CSNS for OUT[1,5] ⁽¹⁵⁾	I _{35MIN(CSNS)}				mA
10 V \leq VBAT \leq 16 V		65	-	-	
Minimum Output Current Reported in CSNS for OUT[2-4] in LED Mode ⁽¹⁵⁾	I10MIN(CSNS)LED				mA
10 V \leq VBAT \leq 16 V		140	-	-	
Minimum Output Current Reported in CSNS for OUT[1,5] in LED Mode ⁽¹⁵⁾	I35MIN(CSNS)LED				mA
10 V \leq VBAT \leq 16 V		40	-	-	
Over-temperature Shutdown	T _{OTS}	155	175	195	°C
Thermal Prewarning ⁽¹⁴⁾	T _{OTSWARN}	110	125	140	°C
Output Voltage Threshold	V _{OUT_TH}	0.475	0.5	0.525	VBAT

Notes

12. Based on statistical data. Not production tested. $\Delta I_{CS} / \Delta T = [(measured I_{CS} at T_1 - measured I_{CS} at T_2) / measured I_{CS} at room] / (T_1 - T_2).$

13. Based on statistical analysis covering 99.74% of parts, except 10% of FSR. Please refer to Current Sense section for more details.

14. Parameter guaranteed by design; however, it is not production tested.

15. Output current value computed after leakage current removal (open load condition)

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
PARKING LIGHT OUT1	•				
Output Drain-to-Source ON Resistance (I _{OUT =} 2.8 A, T _A = 25 °C)	R _{DS(ON)25}				mΩ
V _{BAT} = 13.5 V		-	-	35	
V _{BAT} = 7.0 V		-	-	55	
Output Drain-to-Source ON Resistance (I_{OUT} = 2.8 A, V_{BAT} = 13.5 V,	R _{DS(ON)150}				mΩ
$T_A = 150 \ ^{\circ}C)^{(14)}$		-	-	59.5	
Output Drain-to-Source ON Resistance (I_{OUT} = 1.5 A, T_A = 25 °C) for LED	R _{DS(ON)25_LED}				mΩ
Control = 1		_	-	70	
V _{BAT} = 13.5 V		-	-	110	
V _{BAT} = 7.0 V					
Output Drain-to-Source ON Resistance ($I_{OUT} = 1.5 \text{ A}$, $V_{BAT} = 13.5 \text{ V}$,	R _{DS(ON)150_LED}				mΩ
$T_A = 150 \text{ °C}$) for LED Control = 1 ⁽¹⁴⁾		-	-	119	
Reverse Output ON Resistance (I _{OUT} = -2.8 A, T _A = 25 °C) ⁽¹⁶⁾	R _{SD(ON)}				mΩ
V _{BAT =} -12 V		-	-	70	
High Over-current Shutdown Threshold 1	I _{OCHI1}	28.0	35.0	43.5	Α
V _{BAT =} 16 V, T _A = -40 °C		30.2	36.0	41.8	
V _{BAT =} 16 V, T _A = 25 °C		29.4	35.0	40.6	
V _{BAT =} 16 V, T _A = 125 °C		28.3	33.8	39.3	

Notes

16. Source-to-Drain ON Resistance (Reverse Drain-to-Source ON Resistance) with negative polarity V_{BAT}.

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
PARKING LIGHT OUT1 (CONTINUED)		1	1	1	
High Over-current Shutdown Threshold 2	I _{OCHI2}	12.3	15.4	18.5	А
Low Over-current Shutdown Threshold	I _{OCLO}	5.7	7.2	8.9	А
Open Load-current Threshold in ON State ⁽¹⁷⁾	I _{OL}	0.05	0.2	0.5	Α
Open Load-current Threshold in ON State with LED ⁽¹⁸⁾	IOLLED				mA
$V_{OUT} = V_{BAT} - 0.8 V$		4.0	10.0	20.0	
Current Sense Full-Scale Range ⁽¹⁹⁾	I _{CS FSR}	-	5.7	-	А
Current Sense Full-Scale Range ⁽¹⁹⁾ depending on LED Control = 1	ICS FSR LED	-	1.6	-	А
Severe short-circuit impedance range ⁽²⁰⁾	R _{SC1(OUT1)}	350	-	-	mΩ
				1	1
Output Drain-to-Source ON Resistance ($I_{OUT} = 5.5 \text{ A}$, $I_A = 25 \text{ °C}$)	R _{DS(ON)}			40	mΩ
$v_{BAT} = 13.5 v$		-	-	10	
V _{BAT} = 7.0 V		-	-	15	
Output Drain-to-Source ON Resistance ($I_{OUT} = 5.5 \text{ A}$, $V_{BAT} = 13.5 \text{ V}$,	R _{DS(ON)}				mΩ
$T_A = 150 \ ^{\circ}C)^{(20)}$		-	-	17.0	
Reverse Source-to-Drain ON Resistance $(I_{OUT} = -5.5 \text{ A}, T_A = 25 \text{ °C})^{(21)}$	R _{SD(ON)}				mΩ
V _{BAT =} -12 V		-	-	20	
High Over-current Shutdown Threshold 1	I _{OCHI1}	63.2	79.0	94.8	А
V _{BAT =} 16 V, T _{A =} -40 °C		67.2	80.0	92.8	
V _{BAT =} 16 V, T _{A =} 25 °C		66.3	79.0	91.7	
V _{BAT} = 16 V, T _A = 125 °C		62.5	74.5	86.5	
High Over-current Shutdown Threshold 2	I _{OCHI2}	26.2	32.8	39.4	А
Low Over-current Shutdown Threshold	I _{OCLO}				А
Optional Xenon Bulb		17.6	22.0	26.4	
Optional H7 Bulb		12.1	15.2	18.3	
Open Load Current Threshold in ON State ⁽²²⁾	I _{OL}	0.1	0.4	1.0	А
Open Load Current Threshold in ON State with LED ⁽²³⁾	I _{OLLED}				mA
$V_{OL} = V_{BAT} - 0.8 V$		4.0	10.0	20.0	
Current Sense Full-scale Range ⁽²⁴⁾	I _{CS FSR}				А
Optional Xenon Bulb		-	21.9	-	
Optional H7 Bulb		-	12.5	-	
Severe short-circuit impedance range ⁽²⁰⁾	R _{SC1(OUT2)}	100	_	_	mΩ

Notes

17. OLLED1, bit D0 in SI data is set to [0].

18. OLLED1, bit D0 in SI data is set to [1].

19. For typical value of I_{CS FSR, I_{CSNS} = 5.0 mA. If the range is exceeded, no current clamp and the precision is no more guaranteed.}

20. Parameter guaranteed by design; however, it is not production tested.

21. Source-to-Drain ON Resistance (Reverse Drain-to-Source ON Resistance) with negative polarity V_{BAT}.

22. OLLED2, bit D1 in SI data is set to [0].

23. OLLED2, bit D1 in SI data is set to [1].

24. For typical value of I_{CS FSR}, I_{CSNS =} 5.0 mA. If the range is exceeded, no current clamp and the precision is no more guaranteed

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
HIGH BEAM OUT3	•	•	•	•	•
Output Drain-to-Source ON Resistance ($I_{OUT} = 5.5 \text{ A}, T_A = 25 \text{ °C}$)	R _{DS(ON)25}				mΩ
V _{BAT} = 13.5 V		-	-	10	
V _{BAT} = 7.0 V		-	-	15	
Output Drain-to-Source ON Resistance ($I_{OUT} = 5.5 \text{ A}$, $V_{BAT} = 13.5 \text{ V}$	R _{DS(ON)150}				mΩ
$T_{A} = 150 \ ^{\circ}C)^{(25)}$		-	-	17.0	
Reverse Source-to-Drain ON Resistance (I_{OUT} = -5.5 A, T_A = 25 °C) ⁽²⁶⁾	R _{SD(ON)25}				mΩ
V _{BAT =} -12 V					
		-	-	20	
High Over-current Shutdown Threshold 1	I _{OCHI1}	65.6	82.0	98.4	Α
V _{BAT} = 16 V, T _A = -40 °C		70.1	83.5	96.9	
V _{BAT =} 16 V, T _{A =} 25 °C		68.8	82.0	95.2	
V _{BAT} = 16 V, T _A = 125 °C		65.5	78.0	90.5	
High Over-current Shutdown Threshold 2	I _{OCHI2}	27.5	34.4	41.3	А
Low Over-current Shutdown Threshold	I _{OCLO}	12.5	15.7	18.9	A
Open Load Current Threshold in ON State ⁽²⁷⁾	I _{OL}	0.1	0.4	1.0	Α
Open Load Current Threshold in ON State with LED ⁽²⁸⁾	IOLLED				mA
V _{OL =} V _{BAT} - 0.8 V		4.0	10.0	20.0	
Current Sense Full-scale Range ⁽²⁹⁾	I _{CS FSR}	-	12.7	-	Α
Severe short-circuit impedance range ⁽²⁵⁾	R _{SC1(OUT3)}	100	-	-	mΩ

Notes

25. Parameter guaranteed by design; however, it is not production tested.

26. Source-to-Drain ON Resistance (Reverse Drain-to-Source ON Resistance) with negative polarity V_{BAT}.

27. OLLED3, bit D2 in SI data is set to [0].

28. OLLED3, bit D2 in SI data is set to [1].

29. For typical value of I_{CS FSR}, I_{CSNS =} 5.0 mA. If the range is exceeded, no current clamp and the precision is no more guaranteed.

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
FOG LIGHT OUT4			1		1
Output Drain-to-Source ON Resistance (I_{OUT} = 5.5 A, T_A = 25 °C)	R _{DS(ON)25}				mΩ
V _{BAT} = 13.5V		_	-	10	
V _{BAT} = 7.0V		-	-	15	
Output Drain-to-Source ON Resistance ($I_{OUT} = 5.5 \text{ A}$, $V_{BAT} = 13.5 \text{ V}$,	R _{DS(ON)150}				mΩ
$T_{A} = 150 \ ^{\circ}C)^{(30)}$		-	-	17.0	
Reverse Source-to-Drain ON Resistance (I_{OUT} = -5.5 A, T_A = 25 °C) ⁽³¹⁾	R _{SD(ON)25}				mΩ
V _{BAT} = -12 V		-	-	20	
High Over-current Shutdown Threshold 1	I _{OCHI1}	63.2	79.0	94.8	А
V _{BAT} = 16 V, T _A = -40 °C		67.2	80.0	92.8	
V _{BAT =} 16 V, T _{A =} 25 °C		66.3	79.0	91.7	
V _{BAT} = 16 V, T _A = 125 °C		62.5	74.5	86.5	
High Over-current Shutdown Threshold 2	I _{OCHI2}	26.2	32.8	39.4	А
Low Over-current Shutdown Threshold	I _{OCLO}	12.1	15.2	18.3	А
Open Load Current Threshold in ON State ⁽³²⁾	I _{OL}	0.1	0.4	1.0	А
Open Load Current Threshold in ON State with LED ⁽³³⁾	IOLLED				mA
V _{OL =} V _{BAT} - 0.8 V		4.0	10.0	20.0	
Current Sense Full-scale Range ⁽³⁴⁾	I _{CS FSR}	_	12.5	-	А
Severe short-circuit impedance range ⁽³⁰⁾	R _{SC1(OUT4)}	100	-	-	mΩ
FLASHER OUT5					
Output Drain-to-Source ON Resistance (I_{OUT} = 2.8 A, T_A = 25 °C)	R _{DS(ON)25}				mΩ
V _{BAT} = 13.5 V		-	-	35	
	1	1	1	EE	1

vBA1 = 13.3 v					
V _{BAT} = 7.0 V		-	-	55	
Output Drain-to-Source ON Resistance (I_{OUT} = 2.8 A, V_{BAT} = 13.5 V,	R _{DS(ON)150}				mΩ
$T_{A} = 150 \ ^{\circ}C)^{(35)}$		-	-	59.5	
Output Drain-to-Source ON Resistance ($I_{OUT} = 1.5 \text{ A}$, $T_A = 25 \text{ °C}$) for LED	R _{DS(ON)25_LED}				mΩ
Control = 1		-	-	70	
V _{BAT} = 13.5 V		-	-	110	
V _{BAT} = 7.0 V					
Output Drain-to-Source ON Resistance (I_{OUT} = 1.5 A, V_{BAT} = 13.5 V,	R _{DS(ON)150_LED}				mΩ
$T_A = 150 \text{ °C}$) for LED Control = 1 ⁽³⁵⁾		-	-	119	
Reverse Source-to-Drain ON Resistance $(I_{OUT} = -2.8 \text{ A}, T_J = 25 \text{ °C})^{(36)}$	R _{SD(ON)25}				mΩ
V _{BAT =} -12 V		_	_	70	

Notes

30. Parameter guaranteed by design; however, it is not production tested.

31. Source-to-Drain ON Resistance (Reverse Drain-to-Source ON Resistance) with negative polarity VBAT.

32. OLLED4, bit D3 in SI data is set to [0].

33. OLLED4, bit D3 in SI data is set to [1].

34. For typical value of $I_{CS FSR}$, I_{CSNS} = 5.0mA. If the range is exceeded, no current clamp and the precision is no more guaranteed.

Characteristics noted under conditions 3.0 V \leq V_{CC} \leq 5.5 V, 7.0 V \leq V_{BAT} \leq 2 0V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_{A =} 25 °C under nominal conditions, unless otherwise noted.

Symbol	Min	Тур	Мах	Unit
	L			1
I _{OCHI1}	28.0	35.0	43.5	Α
	30.2	36.0	41.8	
	29.4	35.0	40.6	
	28.3	33.8	39.3	
I _{OCHI2}	12.3	15.4	18.5	А
I _{OCLO}	5.7	7.2	8.9	А
I _{OL}	0.05	0.2	0.5	Α
I _{OLLED}				mA
	4.0	10.0	20.0	
I _{CS FSR}	-	5.7	-	А
ICS FSR_LED	-	1.6	-	А
R _{SC1(OUT5)}	350	-	-	mΩ
·				
V _{H MAX}	0.8	-	-	V _{CC}
V _{H MIN}	-	0.2	0.4	V
I _{FETIN}	-	5.0	-	mA
V _{CLIN}				V
	5.3	-	13	
V _{DRIN}				V
	0.0	-	0.4	
I _{FETINLEAK}				μA
	-1.0	-	5.0	
	-1.0	-	1.0	
	Symbol IOCHI1 IOCHI2 IOCLO IOL IOL IOLED ICS FSR ICS FSR_LED RSC1(OUT5) VH MAX VH MIN IFETIN VCLIN VDRIN IFETINLEAK	Symbol Min IOCHI1 28.0 30.2 29.4 28.3 29.4 28.3 10CHI2 IOCHI2 12.3 IOCLO 5.7 IOL 0.05 IOLLED 4.0 ICS FSR - ICS FSR_LED - RSC1(OUT5) 350 VH MAX 0.8 VH MIN - IFETIN - VCLIN 5.3 VDRIN 0.0 IFETINLEAK -1.0 -1.0 -1.0	Symbol Min Typ IOCHI1 28.0 35.0 30.2 36.0 29.4 35.0 28.3 33.8 IOCHI2 12.3 15.4 IOCLO 5.7 7.2 IOL 0.05 0.2 IOLED 4.0 10.0 ICS FSR - 5.7 ICS FSR_LED - 1.6 RSC1(OUT5) 350 - VH MAX 0.8 - VH MIN - 0.2 IFETIN 5.3 - VORIN 0.0 - IFETINLEAK -1.0 - IFETINLEAK -1.0 -	Symbol Min Typ Max IOCHI1 28.0 35.0 43.5 30.2 36.0 41.8 29.4 35.0 40.6 28.3 33.8 39.3 IOCHI2 12.3 15.4 18.5 IOCLO 5.7 7.2 8.9 IOL 0.05 0.2 0.5 IOL 0.05 0.2 0.5 IOLLED 4.0 10.0 20.0 ICS FSR - 5.7 - ICS FSR_LED - 1.6 - RSC1(OUT5) 350 - - VH MAX 0.8 - - VH MIN - 0.2 0.4 IFETIN - 5.0 - VCLIN 5.3 - 13 VDRIN 0.0 - 0.4 IFETINLEAK -1.0 - 5.0 -1.0 - 1.0 1.0

Analog Temperature Feedback Range	T _{FEED_RANGE}	-40		150	°C
Analog Temperature Feedback at T_A = 25 °C with 5.0 k Ω > R_{CSNS} > 500 Ω	$V_{T_{FEED}}$	920	1025	1140	mV
Analog Temperature Feedback Derating with 5.0 k Ω > R_{CSNS} > 500 $\Omega^{(35)}$	V_{DT_FEED}	10.9	11.3	11.7	mV/°C
Analog Temperature Feedback Precision ⁽³⁵⁾	V _{DT_ACC}	-15	Ι	15	°C
Analog Temperature Feedback Precision with calibration point at 25 $^\circ C$ $^{(35)}$	V _{DT_ACC_CAL}	-5.0	_	5.0	°C

Notes

35. Parameter guaranteed by design; however, it is not production tested.

36. Source-to-Drain ON Resistance (Reverse Drain-to-Source ON Resistance) with negative polarity VBAT.

37. OLLED5, bit D4 in SI data is set to [0].

38. OLLED5, bit D4 in SI data is set to [1].

39. For typical value of I_{CS FSR}, I_{CSNS =} 5.0 mA. If the range is exceeded, no current clamp and the precision is no more guaranteed.

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 5. Dynamic Electrical Characteristics

Characteristics noted under conditions $3.0V \le V_{CC} \le 5.5V$, $7.0V \le V_{BAT} \le 20V$, $-40^{\circ}C \le T_A \le 125^{\circ}C$, GND = 0V, unless otherwise noted. Typical values noted reflect the approximate parameter means at $T_A = 25^{\circ}C$ under nominal conditions, unless otherwise noted.

Characteristic		Min	Тур	Мах	Unit
POWER OUTPUTS TIMING (OUT1 TO OUT5)	•			•	
Current Sense Valid Time on resistive load only ⁽⁴⁰⁾ SR bit = 0 SR bit = 1	t _{CSNS(VAL)}	-	90 45	150 75	μS
Current Sense Synchronization Time on FETOUT SR bit = 0 SR bit = 1	t _{CSNS(SYNC)}	-	130 70	185 110	μS
Current Sense Settling Time on resistive load only ⁽⁴⁰⁾	t _{CSNS(SET)}	-	10	30	μS
Driver Output Positive Slew Rate (30% to 70% @ V _{BAT} = 14 V) SR bit = 0	SR _R				V/µs
I_{OUT} = 2.8 A for OUT1 and OUT5 I_{OUT} = 5.5 A for OUT2, OUT3, and OUT4		0.10 0.14	0.25 0.30	0.56 0.56	
SR bit = 1 I _{OUT} =0.7 A for OUT1 and OUT5 I _{OUT} = 1.4 A for OUT2, OUT3, and OUT4		0.20 0.30	0.40 0.55	0.80 1.05	
Driver Output Negative Slew Rate (70% to 30% @ V_{BAT} = 14 V) SR bit = 0 I_{OUT} = 2.8 A for OUT1 and OUT5 I_{OUT} = 5.5 A for OUT2, OUT3, and OUT4 SR bit = 1 I_{OUT} = 0.7 A for OUT1 and OUT5 I_{OUT} = 1.4 A for OUT2, OUT3, and OUT4	SR _F	0.10 0.14 0.20 0.30	0.25 0.30 0.40 0.55	0.56 0.56 0.80 1.05	V/µs
Driver Output Matching Slew Rate (SR _R /SR _F) (70% to 30% @ V _{BAT} = 14 V @ 25 °C) SR bit = 0: I_{OUT} = 2.8 A for OUT1 and OUT5 and I_{OUT} = 5.5 A for OUT2/3/4 SR bit = 1: I_{OUT} = 0.7 A for OUT1 and OUT5 and I_{OUT} = 1.4 A for OUT2/3/4	∆SR	0.8 0.8	1.0 1.0	1.2 1.2	
Driver Output Turn-ON Delay (SPI ON Command [No PWM, \overline{CS} Positive Edge] to Output = 50% V _{BAT} @ V _{BAT} = 14 V) (see <u>Figure 6</u>) SR bit = 0: I _{OUT} = 2.8 A for OUT1 and OUT5 and I _{OUT} = 5.5 A for OUT2/3/4	t _{DLYON}	50	_	120	μS
SR bit = 1: I_{OUT} = 0.7 A for OUT1 and OUT5 and I_{OUT} = 1.4 A for OUT2/3/4 Driver Output Turn-OFF Delay (SPI OFF command [CS Positive Edge] to Output = 50% V _{BAT} @ V _{BAT} = 14 V) (see Figure 6)	t _{DLYOFF}	25	_	65	μs
SR bit = 0: I_{OUT} = 2.8 A for OUT1 and OUT5 and I_{OUT} = 5.5 A for OUT2/3/4 SR bit = 1: I_{OUT} = 0.7 A for OUT1 and OUT5 and I_{OUT} = 1.4 A for OUT2/3/4		50 25		120 65	

Notes

40. Not production tested.

Table 5. Dynamic Electrical Characteristics

Characteristics noted under conditions $3.0V \le V_{CC} \le 5.5V$, $7.0V \le V_{BAT} \le 20V$, $-40^{\circ}C \le T_A \le 125^{\circ}C$, GND = 0V, unless otherwise noted. Typical values noted reflect the approximate parameter means at $T_A = 25^{\circ}C$ under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
POWER OUTPUTS TIMING (OUT1 TO OUT5) (CONTINUED)					
Driver Output Matching Time ($t_{DLY(ON)} - t_{DLY(OFF)}$) @ Output = 50% V _{BAT} with V _{BAT} = 14 V, f _{PWM} = 240 Hz, δ_{PWM} = 50%, @ 25 °C	Δt_{RF}				μS
SR bit = 0: I_{OUT} = 2.8 A for OUT1 and OUT5 and I_{OUT} = 5.5 A for OUT2/3/4		-30	-	30	
SR bit = 1: I_{OUT} = 0.7 A for OUT1 and OUT5 and I_{OUT} = 1.4 A for OUT2/3/4		-15	-	15	
PWM MODULE					
Nominal PWM Frequency Range ⁽⁴¹⁾	f _{PWM}	30.0	-	400	Hz

Nominal PWM Frequency Range ⁽⁴¹⁾	PWM	30.0	-	400	ΠZ
Clock Input Frequency Range	f _{CLK}	7.68	_	51.2	kHz
Output PWM Duty Cycle maximum range for 11 V < VBAT < 18 $V^{(41), (42)}$	PWM_MAX	4.0	-	96	%
Output PWM Duty Cycle linear range for 11 V < VBAT < 18 $V^{(43)}$	PWM_LIN	5.5	-	96	%
Output PWM Duty Cycle range for full diagnostic for 11 V < VBAT < 18 $V^{(44)}$	PWM_DIAG				%
200 Hz Output PWM frequency		5.5	-	96	
400 Hz Output PWM frequency		11	-	90	

Notes

41. Not production tested.

42. The PWM ratio is measured at V_{OUT} = 50% of V_{BAT} in nominal range of PWM frequency. It is possible to put the device fully on (PWM duty cycle = 100%) and fully off (PWM duty cycle = 0%). Between 4%-96%, OCHI_{1,2}, OCLO and open load are available in ON state. See Figure 6, Output Slew Rate and Time Delays.

43. Linear range is defined by output duty cycle to SPI duty cycle configuration +/-1 LSB. For values outside linear duty cycle range, a calibration curve is available.

44. Full diagnostic corresponds to the availability of the following features: output current sensing, output status and open load detection. Not production tested.

Table 5. Dynamic Electrical Characteristics

Characteristics noted under conditions $3.0V \le V_{CC} \le 5.5V$, $7.0V \le V_{BAT} \le 20V$, $-40^{\circ}C \le T_A \le 125^{\circ}C$, GND = 0V, unless otherwise noted. Typical values noted reflect the approximate parameter means at $T_A = 25^{\circ}C$ under nominal conditions, unless otherwise noted.

Characteristic		Min	Тур	Мах	Unit
WATCHDOG TIMING			•	L	L
Watchdog Timeout (SPI Failure)	t _{WDTO}	50	75	100	ms
I/O PLAUSIBILITY CHECK TIMING			•		
Fault Shutdown Delay Time (from Overtemperature or OCHI1 or OCHI2 or OCLO or UV Fault Detection to Output = 50% V _{BAT} without round shaping feature for turn off)		_	7.0	30	μs
Under-voltage Deglitch Time ⁽⁴⁵⁾	t _{UV}	0.8	1.25	2.0	μS
High Over-current Threshold Time 1 for OUT1 and OUT5 for OUT2, OUT3, and OUT4	t ₁	7.0 14	10 20	13.5 26	ms
High Over-current Threshold Time 2 for OUT1 and OUT5 for OUT2, OUT3, and OUT4	t ₂	52.5 105	75 150	97.5 195	ms
Autorestart Period for OUT1 and OUT5 for OUT2, OUT3, and OUT4	t _{AUTORST}	52.5 105	75 150	97.5 195	ms
Autorestart Over-current Shutdown Delay Time for OUT1 and OUT5 for OUT2, OUT3, and OUT4	t _{ochi_auto}	3.5 7.0	5.0 10.0	6.5 13.0	ms
Limp Home Input pin Deglicher Time	t _{LIMP}	7.0	10.0	13.0	ms
Cyclic Open Load Detection Timing with LED ⁽⁴⁶⁾	t _{OLLED}	105	150	195	ms
Flasher Toggle Timeout	t _{FLASHER}	1.4	2.3	3.0	S
Fog Toggle Timeout	t _{FOG}	1.4	2.3	3.0	S
Ignition Toggle Timeout	t _{IGNITION}	1.4	2.3	3.0	S
Clock Input Low Frequency Detection Range	f _{LCLK DET}	1.0	2.0	4.0	kHz
Clock Input High Frequency Detection Range	fHCLK DET	100	200	400	kHz

Notes

45. This time is measured from the $V_{BAT(UV)}$ level to the fault reporting. Parameter guaranteed in testmode.

46. IOLLEDn bit (where "n" corresponds to respective outputs 1 through 5) in SI data is set to logic [1]. Refer to Table <u>8. Serial Input Address</u> and Configuration Bit Map, page <u>29</u>.

Table 5. Dynamic Electrical Characteristics

Characteristics noted under conditions $3.0V \le V_{CC} \le 5.5V$, $7.0V \le V_{BAT} \le 20V$, $-40^{\circ}C \le T_A \le 125^{\circ}C$, GND = 0V, unless otherwise noted. Typical values noted reflect the approximate parameter means at $T_A = 25^{\circ}C$ under nominal conditions, unless otherwise noted.

Characteristic		Min	Тур	Мах	Unit
SPI INTERFACE CHARACTERISTICS					
Maximum Frequency of SPI Operation	f _{SPI}	_	_	3.0	MHz
Rising Edge of $\overline{\text{CS}}$ to Falling Edge of $\overline{\text{CS}}$ (Required Setup Time) ⁽⁴⁷⁾	t _{cs}	_	_	1.0	us
Falling Edge of \overline{CS} to Rising Edge of SCLK (Required Setup Time) ⁽⁴⁷⁾	t _{LEAD}	-	-	500	ns
Required High State Duration of SCLK (Required Setup Time) ⁽⁴⁷⁾	t _{WSCLKH}	-	-	167	ns
Required Low State Duration of SCLK (Required Setup Time) ⁽⁴⁷⁾		-	-	167	ns
Falling Edge of SCLK to Rising Edge of \overline{CS} (Required Setup Time) ⁽⁴⁷⁾		-	50	167	ns
SI to Falling Edge of SCLK (Required Setup Time) ⁽⁴⁸⁾		-	25	83	ns
Falling Edge of SCLK to SI (Required Setup Time) ⁽⁴⁸⁾		-	25	83	ns
SO Rise Time	t _{RSO}				ns
C _L = 80 pF		-	25	50	
SO Fall Time	t _{FSO}				ns
C _L = 80 pF		-	25	50	
SI, CS, SCLK, Incoming Signal Rise Time ⁽⁴⁸⁾	t _{RSI}	-	-	50	ns
SI, CS, SCLK, Incoming Signal Fall Time ⁽⁴⁸⁾	t _{FSI}	-	-	50	ns
Time from Falling Edge of SCLK to SO Low-impedance ⁽⁴⁹⁾		-	-	145	ns
Time from Rising Edge of SCLK to SO High-impedance ⁽⁵⁰⁾		-	65	145	ns

Notes

47. Maximum setup time required for the 10XS3535 is the minimum guaranteed time needed from the microcontroller.

48. Rise and Fall time of incoming SI, CS, and SCLK signals suggested for design consideration to prevent the occurrence of double pulsing.

49. Time required for output status data to be available for use at SO. 1.0 k Ω on pull-up on \overline{CS} .

50. Time required for output status data to be terminated at SO. 1.0 k Ω on pull-up on \overline{CS} .

TIMING DIAGRAMS

Figure 4. Input Timing Switching Characteristics

Figure 5. SCLK Waveform and Valid SO Data Delay Time

Figure 6. Output Slew Rate and Time Delays

Figure 7. Current Sensing Time Delays

FUNCTIONAL DESCRIPTION

INTRODUCTION

The 10XS3535 is designed for low-voltage automotive and industrial lighting applications. Its five low $R_{DS(ON)}$ MOSFETs (three 10 m Ω and two 35 m Ω) can control the high sides of

five separate resistive loads (bulbs). Programming, control, and diagnostics are accomplished using a 16-bit SPI interface.

FUNCTIONAL PIN DESCRIPTION

SUPPLY VOLTAGE (VBAT)

The VBAT pin of the 10XS3535 is the power supply of the device. In addition to its supply function, this tab contributes to the thermal behavior of the device by conducting the heat from the switching MOSFETs to the printed circuit board.

SUPPLY VOLTAGE (VCC)

This is an external voltage input pin used to supply the digital portion of the circuit and the gate driver of the external SMART MOSFET.

GROUND (GND)

This pin is the ground of the device.

CLOCK INPUT / WAKE-UP OUTPUT (CLOCK)

When the part is in Normal Mode (\overline{RST} =1), the PWM frequency and timing are generated from the rising edge of clock input by the PWM module. The clock input frequency is the selectable factor 2⁷ = 128 or 2⁸ = 256 of the PWM frequency per output, depending PR bit value.

The OUT1:6 can be controlled in the range of 4% to 96% with a resolution of 7 bits of duty cycle (bits D[6:0]).

The following	table	describes	the	PWM	resolution.

On/Off (Bit D7)	Duty cycle (7 bits resolution)	Output state
0	х	OFF
1	0000000	PWM (1/128 duty cycle)
1	0000001	PWM (2/128 duty cycle)
1	0000010	PWM (3/128 duty cycle)
1	1111111	fully ON

The timing includes four programmable PWM switching phases (0° , 90° , 180° , and 270°) to improve overall EMC behavior of the light module.

The amplitude of the input current is divided by four while the frequency is 4 times the original one. The two following pictures illustrate this behavior.

The synchronization of the switching phases between different IC is provided by an SPI command in combination with the $\overline{\text{CS}}$ input. The bit in the SPI is called PWM sync (initialization register).

In Normal mode, no PWM feature (100% duty cycle) is provided in the following instances:

- •with the following SPI configuration: D7:D0=FF.
- In case of clock input signal failure (out of f_{PWM}), the outputs state depends of D7 bit value (D7=1=ON) in Normal mode.

In Fail mode, the ouputs state depend on IGN, FLASHER, and FOG pins.

If \overline{RST} =0, this pin reports the wake-up event for wake=1 when VBAT and VCC are in operational voltage range.

LIMP HOME INPUT (LIMP)

The Fail mode of the component can be activated by this digital input port. The signal is "high active", meaning the Fail mode can be activated by a logic high signal at the input.

IGNITION INPUT (IGN)

The ignition input wakes the device. It also controls the Fail mode activation. The signal is "high active", meaning the component is active in case of a logic high at the input.

FLASHER INPUT (FLASHER)

The flasher input wakes the device. It also controls the Fail Mode activation. The signal is "high active", meaning the component is active in case of a logic high at the input.

FOG INPUT (FOG)

The fog input wakes the device. It also controls the Fail Mode activation. The signal is "high active", meaning the component is active in case of a logic high at the input.

RESET INPUT (RST)

This input wakes the device when the \overrightarrow{RST} pin is at logic [1]. It is also used to initialize the device configuration and the SPI faults registers when the signal is low. All SI/SO registers described <u>Table 8</u> and <u>Table 11</u> are reset. The fault management is not affected by RST.

CURRENT SENSE OUTPUT (CSNS)

The current sense output pin is an analog current output or a voltage proportional to the temperature on the GND flag. The routing to the external resistor is SPI programmable.

This current sense monitoring may be synchronized in case of the OUT6 is not used. So, the current sense monitoring can be synchronized with a rising edge on the FETOUT pin ($t_{CSNS(SYNC)}$) if CSNS sync SPI bit is set to logic [1]. Connection of the FETOUT-pin to a MCU input pin allows the MCU to sample the CSNS-pin during a valid time-slot. Since this falling edge is generated at the end of this time-slot, upon a switch-off command, this feature may be used to implement maximum current control.

CHARGE PUMP (CP)

An external capacitor is connected between this pin and the VBAT pin. It is used as a tank for the internal charge pump. Its value is 100 nF \pm 20%, 25 V maximum.

FETOUT OUTPUT (FETOUT)

This output pin is used to control an external MOSFET (OUT6).

The high level of the FETOUT Output is V_{CC} , if VBAT and V_{CC} are available, in case FETOUT is a controlled ON.

FETOUT is not protected if there is a short-circuit or undervoltage on VBAT.

In case of a reverse battery, OUT6 is OFF.

FETIN INPUT (FETIN)

This input pin gives the current recopy of the external MOSFET. It can be routed on CSNS output by a SPI command.

SPI PROTOCOL DESCRIPTION

The SPI interface has a full-duplex, three-wire, synchronous data transfer with four I/O lines associated with it: Serial Clock (SCLK), Serial Input (SI), Serial Output (SO), and Chip Select (\overline{CS}).

The SI/SO pins of the 10XS3535 device follow a first-in, first-out (D15 to D0) protocol, with both input and output words transferring the most significant bit (MSB) first. All inputs are compatible with 3.3 V and 5.0 V CMOS logic levels, supplied by $V_{CC}.$

The SPI lines perform the following functions:

SERIAL CLOCK (SCLK)

The SCLK pin clocks the internal shift registers of the 10XS3535 device. The SI pin accepts data into the input shift register on the falling edge of the SCLK signal, while the SO pin shifts data information out of the SO line driver on the rising edge of the SCLK signal. It is important that the SCLK pin be in a logic low state whenever \overline{CS} makes any transition. For this reason, it is recommended the SCLK pin be in a logic [0] whenever the device is not accessed (\overline{CS} logic [1] state). SCLK has a passive pull-down, R_{DWN} . When \overline{CS} is logic [1], signals at the SCLK and SI pins are ignored and SO is tristated (high-impedance) (see Figure 8).

Figure 8. Single 16-Bit Word SPI Communication

SERIAL INPUT (SI)

The SI pin is a serial interface command data input pin. Each SI bit is read on the falling edge of SCLK. A 16-bit stream of serial data is required on the SI pin, starting with D15 to D0. SI has a passive pull-down, R_{DOWN}.

SERIAL OUTPUT (SO)

The SO data pin is a tri-stateable output from the shift register. The SO pin remains in a high-impedance state until the \overline{CS} pin is put into a logic [0] state. The SO data is capable of reporting the status of the output, the device configuration, and the state of the key inputs. The SO pin changes state on the rising edge of SCLK and reads out on the falling edge of SCLK.

CHIP SELECT (CS)

The $\overline{\text{CS}}$ pin enables communication with the master device. When this pin is in a logic [0] state, the device is capable of transferring information to, and receiving information from, the master device. The 10XS3535 device latches in data from the Input Shift registers to the addressed registers on the rising edge of $\overline{\text{CS}}$. The device transfers status information from the power output to the Shift register on the falling edge of $\overline{\text{CS}}$. The SO output driver is enabled when $\overline{\text{CS}}$ is logic [0]. $\overline{\text{CS}}$ should transition from a logic [1] to a logic [0] state only when SCLK is a logic [0]. $\overline{\text{CS}}$ has a passive pull-up, R_{UP} .

FUNCTIONAL DEVICE OPERATION

OPERATIONAL MODES

SLEEP MODE

The Sleep mode is the default mode of the 10XS3535. This is the state of the device after first applying battery voltage (V_{BAT}) and prior to any I/O transitions. This is also the state of the device when IGN, FOG, FLASHER, and RST are logic [0] (wake=0). In the Sleep mode, the outputs and all internal circuitry are OFF to minimize current draw. In addition, all SPI-configurable features of the device are reset. The 10XS3535 will transit to two modes (Normal and Fail) depending on wake and fail signals (see Fig13).

The transition to the other modes is according following signals:

- Wake = IGN or IGN_ON or FLASHER or FLASHER_ON or RST or FOG or FOG_ON
- Fail = VCC fail or SPI fail or External limp

NORMAL MODE

The 10XS3535 is in Normal mode when:

- Wake = 1
- Fail = 0

In Normal operating mode the power outputs are under full control of the SPI as follows:

- The outputs 1 to 6, including multiphase timing and selectable slew-rate, are controlled by the programmable PWM module.
- The outputs 1 to 5 are switched OFF in case of an under-voltage on VBAT.
- The outputs 1 to 5 are protected by the selectable overcurrent double window and over-temperature shutdown circuit.
- The digital diagnosis feature transfers status of the smart outputs via SPI.
- The analog current sense output (current recopy feature) can be routed by SPI.
- The outputs 1 and 5 can be configured to control LED loads: R_{DS(ON)} is increased by a factor of 2 and the current recopy ratio is scaled by a factor of 4.
- The SPI reports NM=1 in this mode.

The figure below describes the PWM, outputs and overcurrent behavior in Normal mode.

FAIL MODE

The 10XS3535 is in Fail mode when:

- Wake = 1
- Fail = 1

In Fail mode:

- The outputs are under control of external pins (see <u>Table 6</u>)
- The outputs are fully protected in case of an overload, over-temperature and under-voltage (on VBAT or on VCC).
- The SPI reports continuously the content of address 11, disregard to previous requested output data word.
- Analog current sense is not available.
- · Output 2 is configured in Xenon mode.
- In case of an overload (OCHI2 or OCLO) conditions or under-voltage on VBAT, the outputs are under control of autorestart feature.
- In case of serious overload condition (OCHI1 or OT) the corresponding output is latched OFF until a new wakeup event (wake=0 then 1).

Table 6. Limp Home Output State

Output 1	Output 2	Output 3	Output 4	Output 5	External Switch
Parking Light	Low Beam	High Beam	Fog Light	Flasher	Spare
IGN Pin	IGN Pin	OFF	FOG Pin	FLASHER Pin	OFF