Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # **4-Bit Full Adder** The MC14008B 4-bit full adder is constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. This device consists of four full adders with fast internal look-ahead carry output. It is useful in binary addition and other arithmetic applications. The fast parallel carry output bit allows high-speed operation when used with other adders in a system. #### **Features** - Look-Ahead Carry Output - Diode Protection on All Inputs - All Outputs Buffered - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range - Pin-for-Pin Replacement for CD4008B - This Device is Pb–Free and is RoHS Compliant ### MAXIMUM RATINGS (Voltages Referenced to V_{SS}) | Symbol | Parameter | Value | Unit | |------------------------------------|--|-------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current
(DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | T _L | Lead Temperature
(8–Second Soldering) | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. # ON Semiconductor® http://onsemi.com SOIC-16 D SUFFIX CASE 751B #### **PIN ASSIGNMENT** | A4 [| 1● | | v _{DD} | |-------------------|----|----|------------------| | B3 [| 2 | 15 |] B4 | | A3 [| 3 | 14 | C _{out} | | B2 [| 4 | 13 |] S4 | | A2 [| 5 | 12 |] S3 | | B1 [| 6 | 11 |] S2 | | A1 [| 7 | 10 | S1 | | V _{SS} [| 8 | 9 | C _{in} | | | | | | # **MARKING DIAGRAM** A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Indicator #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. TRUTH TABLE (One Stage) | C _{in} | В | Α | C _{out} | S | |-----------------|---|---|------------------|---| | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 0 | 1 | | 0 | 1 | 0 | 0 | 1 | | 0 | 1 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | 1 | | 1 | 0 | 1 | 1 | 0 | | 1 | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 1 | ### **BLOCK DIAGRAM** # **ORDERING INFORMATION** | Device | Package | Shipping [†] | | | |--------------|----------------------|--------------------------|--|--| | MC14008BDR2G | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | | -55 | 5°C | 25°C | | 125 | 125°C | | | |---|-----------|-----------------|------------------------|-------------------------------|----------------------|-------------------------------|---|----------------------|-------------------------------|----------------------|------| | Characteristic | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | | 0.05
0.05
0.05 | | 0
0
0 | 0.05
0.05
0.05 | | 0.05
0.05
0.05 | Vdc | | V _{in} = 0 or V _{DD} | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage
$(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$
$(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$
$(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$ | "0" Level | V _{IL} | 5.0
10
15 | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | | 3.5
7.0
11 | | Vdc | | Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $ | Source | I _{OH} | 5.0
5.0
10
15 | -3.0
-0.64
-1.6
-4.2 | -
-
- | -2.4
-0.51
-1.3
-3.4 | -4.2
-0.88
-2.25
-8.8 | -
-
- | -1.7
-0.36
-0.9
-2.4 | -
-
- | mAdc | | $ \begin{aligned} &(\text{V}_{\text{OL}} = 0.4 \text{ Vdc}) \\ &(\text{V}_{\text{OL}} = 0.5 \text{ Vdc}) \\ &(\text{V}_{\text{OL}} = 1.5 \text{ Vdc}) \end{aligned} $ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | -
-
- | 0.51
1.3
3.4 | 0.88
2.25
8.8 | -
-
- | 0.36
0.9
2.4 | -
-
- | mAdc | | Input Current | | I _{in} | 15 | - | ±0.1 | - | ±0.00001 | ±0.1 | - | ±1.0 | μAdc | | Input Capacitance (V _{in} = 0) | | C _{in} | - | - | - | - | 5.0 | 7.5 | - | - | pF | | Quiescent Current
(Per Package) | | I _{DD} | 5.0
10
15 | -
-
- | 5.0
10
20 | | 0.005
0.010
0.015 | 5.0
10
20 | -
-
- | 150
300
600 | μAdc | | Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching) | | I _T | 5.0
10
15 | | | $I_T = (3$ | I.7 μA/kHz) f
3.4 μA/kHz) f
5.0 μA/kHz) f | + I _{DD} | | | μAdc | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, V = ($V_{DD} - V_{SS}$) in volts, f in kHz is input frequency, and k = 0.005. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. To calculate total supply current at loads other than 50 pF: # SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, $T_A = 25^{\circ}C$) | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ
(Note 6) | Max | Unit | |--|-------------------------------------|------------------------|-----|-----------------|-----|------| | Output Rise and Fall Time | t _{TLH} , | | | | | ns | | t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ | t _{THL} | 5.0 | _ | 100 | 200 | | | t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ | | 10 | - | 50 | 100 | | | t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$ | | 15 | - | 40 | 80 | | | Propagation Delay Time | t _{PLH} , t _{PHL} | | | | | ns | | Sum in to Sum Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ | | 5.0 | _ | 400 | 800 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 127 \text{ ns}$ | | 10 | _ | 160 | 320 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 90 \text{ ns}$ | | 15 | _ | 115 | 230 | | | Sum In to Carry Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 220 \text{ ns}$ | | 5.0 | _ | 305 | 610 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 112 \text{ ns}$ | | 10 | - | 145 | 290 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 85 \text{ ns}$ | | 15 | _ | 110 | 220 | | | Carry In to Sum Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 290 \text{ ns}$ | | 5.0 | _ | 375 | 750 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 122 \text{ ns}$ | | 10 | _ | 155 | 310 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 90 \text{ ns}$ | | 15 | - | 115 | 230 | | | Carry In to Carry Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 85 \text{ ns}$ | | 5.0 | _ | 170 | 340 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 42 \text{ ns}$ | | 10 | _ | 75 | 150 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 30 \text{ ns}$ | | 15 | _ | 55 | 110 | | - 5. The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. **Figure 1. Typical Source Current** Characteristics Test Circuit Figure 2. Typical Sink Current **Characteristics Test Circuit** Figure 3. Dynamic Power Dissipation Test Circuit and Waveform Figure 4. Switching Time Test Circuit and Waveforms Figure 5. Logic Diagram # **TYPICAL APPLICATION** Calculation of 16-bit adder speed: t_P total = t_P (Sum to Carry) + t_P (Carry to Sum) + 2 t_P (Carry to Carry) The guaranteed 16-bit adder speed at 10 V, 25°C, C_L = 50 pF is: $t_p \text{ total} = 290 + 310 + 300 = 900 \text{ ns}$ Figure 6. Using the MC14008B in a 16-Bit Adder Configuration #### PACKAGE DIMENSIONS # SOIC-16 CASE 751B-05 #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR - PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|---------|--------|-------|-------| | DIM | MIN MAX | | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | ### **SOLDERING FOOTPRINT** ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, a customer application in which the product is presented in surface and the support of expense customic life of the results in life or to report of the results in life or to results a report of the results in life or to results a report of the results in life or to results a report of the results in life or to results a report of the results in life or to results a report of the results and the results are reported to re or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative