Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # Presettable Divide-By-N Counter The MC14018B contains five Johnson counter stages which are asynchronously presettable and resettable. The counters are synchronous, and increment on the positive going edge of the clock. Presetting is accomplished by a logic 1 on the preset enable input. Data on the Jam inputs will then be transferred to their respective \overline{Q} outputs (inverted). A logic 1 on the reset input will cause all \overline{Q} outputs to go to a logic 1 state. Division by any number from 2 to 10 can be accomplished by connecting appropriate \overline{Q} outputs to the data input, as shown in the Function Selection table. Anti-lock gating is included in the MC14018B to assure proper counting sequence. #### **Features** - Fully Static Operation - Schmitt Trigger on Clock Input - Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range - Pin-for-Pin Replacement for CD4018B - Pb-Free Packages are Available* ### MAXIMUM RATINGS (Voltages Referenced to V_{SS}) | Symbol | Parameter | Value | Unit | |------------------------------------|---|-------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current (DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature
(8–Second Soldering) | 260 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # ON Semiconductor® http://onsemi.com MARKING DIAGRAMS PDIP-16 P SUFFIX CASE 648 SOIC-16 D SUFFIX CASE 751B A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Indicator ### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. # **PIN ASSIGNMENT** # **FUNCTIONAL TRUTH TABLE** | Clock | Reset | Preset
Enable | Jam
Input | Qn | |-------|-------|------------------|--------------|------------------------| | / | 0 | 0 | Χ | Qn | | | 0 | 0 | Х | \overline{D}_{n}^{*} | | X | 0 | 1 | 0 | 1 | | X | 0 | 1 | 1 | 0 | | X | 1 | Х | Х | 1 | ^{*}D_n is the Data input for that stage. Stage 1 has Data brought out to Pin 1. # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|----------------------|--------------------------| | MC14018BCP | PDIP-16 | 500 Units / Rail | | MC14018BCPG | PDIP-16
(Pb-Free) | 500 Units / Rail | | MC14018BD | SOIC-16 | 48 Units / Rail | | MC14018BDG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC14018BDR2 | SOIC-16 | 2500 Units / Tape & Reel | | MC14018BDR2G | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | | - 5 | 5°C | | 25°C | | 125 | 5°C | | |--|-----------|-----------------|------------------------|-----------------------------------|----------------------|-----------------------------------|--|----------------------|-----------------------------------|----------------------|------| | Characteristic | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | _
_
_ | 0.05
0.05
0.05 | _
_
_ | 0
0
0 | 0.05
0.05
0.05 | _
_
_ | 0.05
0.05
0.05 | Vdc | | V _{in} = 0 or V _{DD} | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | _
_
_ | 4.95
9.95
14.95 | 5.0
10
15 | _
_
_ | 4.95
9.95
14.95 | _
_
_ | Vdc | | Input Voltage
($V_O = 4.5 \text{ or } 0.5 \text{ Vdc}$)
($V_O = 9.0 \text{ or } 1.0 \text{ Vdc}$)
($V_O = 13.5 \text{ or } 1.5 \text{ Vdc}$) | "0" Level | V _{IL} | 5.0
10
15 | | 1.5
3.0
4.0 | _ | 2.25
4.50
6.75 | 1.5
3.0
4.0 | | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | _
_
_ | 3.5
7.0
11 | 2.75
5.50
8.25 | _
_
_ | 3.5
7.0
11 | _
_
_ | Vdc | | $\begin{aligned} & \text{Output Drive Current} \\ & (\text{V}_{\text{OH}} = 2.5 \text{ Vdc}) \\ & (\text{V}_{\text{OH}} = 4.6 \text{ Vdc}) \\ & (\text{V}_{\text{OH}} = 9.5 \text{ Vdc}) \\ & (\text{V}_{\text{OH}} = 13.5 \text{ Vdc}) \end{aligned}$ | Source | I _{OH} | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | _
_
_
_ | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | _
_
_
_ | - 1.7
- 0.36
- 0.9
- 2.4 | _
_
_
_ | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | _
_
_ | 0.51
1.3
3.4 | 0.88
2.25
8.8 | _
_
_ | 0.36
0.9
2.4 | _
_
_ | mAdc | | Input Current | | l _{in} | 15 | _ | ± 0.1 | _ | ±0.00001 | ± 0.1 | _ | ± 1.0 | μAdc | | Input Capacitance (V _{in} = 0) | | C _{in} | _ | _ | _ | _ | 5.0 | 7.5 | _ | _ | pF | | Quiescent Current
(Per Package) | | I _{DD} | 5.0
10
15 | _
_
_ | 5.0
10
20 | _
_
_ | 0.005
0.010
0.015 | 5.0
10
20 | _
_
_ | 150
300
600 | μAdc | | Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outp buffers switching) | ent, | I _T | 5.0
10
15 | | | $I_T = (0$ | .).3 μΑ/kHz) f
).7 μΑ/kHz) f
l.0 μΑ/kHz) f | + I _{DD} | | | μAdc | Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. To calculate total supply current at loads other than 50 pF: $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001. # SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$) | | | ., | | All Types | | | |---|--|------------------------|-------------------|-------------------|---------------------|------| | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ
(Note 6) | Max | Unit | | Output Rise and Fall Time $t_{TLH},t_{THL}=(1.35\text{ ns/pF})C_L+32\text{ ns}\\t_{TLH},t_{THL}=(0.6\text{ ns/pF})C_L+20\text{ ns}\\t_{TLH},t_{THL}=(0.4\text{ ns/pF})C_L+20\text{ ns}$ | t _{TLH} , t _{THL} | 5.0
10
15 | _
_
_ | 100
50
40 | 200
100
80 | ns | | Propagation Delay Time Clock to \overline{Q} t_{PLH} , t_{PHL} = (0.90 ns/pF) C_L + 265 ns t_{PLH} , t_{PHL} = (0.36 ns/pF) C_L + 102 ns t_{PLH} , t_{PHL} = (0.26 ns/pF) C_L + 72 ns | t _{PLH} ,
t _{PHL} | 5.0
10
15 | _
_
_ | 310
120
85 | 620
240
170 | ns | | Reset to \overline{Q}
$t_{PLH} = (0.90 \text{ ns/pF}) C_L + 325 \text{ ns}$
$t_{PLH} = (0.36 \text{ ns/pF}) C_L + 132 \text{ ns}$
$t_{PLH} = (0.26 \text{ ns/pF}) C_L + 81 \text{ ns}$ | | 5.0
10
15 | _
_
_ | 370
150
100 | 740
300
200 | ns | | Preset Enable to \overline{Q}
t_{PLH} , t_{PHL} = (0.90 ns/pF) C_L + 325 ns
t_{PLH} , t_{PHL} = (0.36 ns/pF) C_L + 132 ns
t_{PLH} , t_{PHL} = (0.26 ns/pF) C_L + 81 ns | | 5.0
10
15 | _
_
_ | 370
150
100 | 740
300
200 | ns | | Setup Time Data (Pin 1) to Clock | t _{su} | 5.0
10
15 | 200
100
80 | 0
0
0 | _
_
_ | ns | | Jam Inputs to Preset Enable | | 5.0
10
15 | 200
100
80 | 0
0
0 | _
_
_ | ns | | Data (Jam Inputs)-to-Preset
Enable Hold Time | t _h | 5.0
10
15 | 540
500
480 | 270
250
240 | _
_
_ | ns | | Clock Pulse Width | t _{WH} | 5.0
10
15 | 400
200
160 | 200
100
80 | _
_
_ | ns | | Reset or Preset Enable Pulse Width | t _{WH} | 5.0
10
15 | 290
130
110 | 145
65
55 | _
_
_ | ns | | Clock Rise and Fall Time | t _{TLH} , t _{THL} | 5.0
10
15 | | No Limit | | ns | | Clock Pulse Frequency | f _{cl} | 5.0
10
15 | _
_
_ | 2.5
6.5
8.0 | 1.25
3.25
4.0 | MHz | - 5. The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. Figure 1. Switching Time Waveforms ### **FUNCTION SELECTION** | Counter
Mode | Connect
Data Input
(Pin 1) to: | Comments | | | | | | | |--|---|---|---|-------------|---------------|-------------|-------------|---------------| | Divide by 10 Divide by 8 Divide by 6 Divide by 4 Divide by 2 | Q5
Q4
Q3
Q2
Q1 | No external components needed. | | | LO | GIC DIAGI | RAM | | | Divide by 9
Divide by 7
Divide by 5
Divide by 3 | $ \overline{Q}5 \bullet \overline{Q}4 $ $ \overline{Q}4 \bullet \overline{Q}3 $ $ \overline{Q}3 \bullet \overline{Q}2 $ $ \overline{Q}2 \bullet \overline{Q}1 $ | Gate package needed
to provide AND
function. Counter
Skips all 1's state | | JAM 1 | JAM 2 | JAM 3 | JAM 4 | JAM 5 | | | (| | CLOCK
SHAPER | D S Q C R P | D S Q C Q R P | D S Q C R P | D S Q C R P | D S Q C R P | | | PRESET E | NABLE 10 0 | | | | | | | | | | | V _{DD} = PIN 16
V _{SS} = PIN 8 | 5 | | 7 \sqrt{6} | 11 0 | 13 J
Q4 Q5 | # **PACKAGE DIMENSIONS** PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE T - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | | |-----|-------|-------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | | В | 0.250 | 0.270 | 6.35 | 6.85 | | | С | 0.145 | 0.175 | 3.69 | 4.44 | | | D | 0.015 | 0.021 | 0.39 | 0.53 | | | F | 0.040 | 0.70 | 1.02 | 1.77 | | | G | 0.100 | BSC | 2.54 | BSC | | | Н | 0.050 | BSC | 1.27 BSC | | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.110 | 0.130 | 2.80 | 3.30 | | | L | 0.295 | 0.305 | 7.50 | 7.74 | | | М | 0 ° | 10 ° | 0° | 10 ° | | | S | 0.020 | 0.040 | 0.51 | 1.01 | | # **PACKAGE DIMENSIONS** ## SOIC-16 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751B-05 ISSUE J #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights on the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.