## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## MC14067B

## Analog Multiplexers / Demultiplexers

The MC14067 multiplexer/demultiplexer is a digitally controlled analog switch featuring low ON resistance and very low leakage current. This device can be used in either digital or analog applications.

The MC14067 is a 16 -channel multiplexer/demultiplexer with an inhibit and four binary control inputs A, B, C, and D. These control inputs select $1-$ of -16 channels by turning ON the appropriate analog switch (see MC14067 truth table.)

## Features

- Low OFF Leakage Current
- Matched Channel Resistance
- Low Quiescent Power Consumption
- Low Crosstalk Between Channels
- Wide Operating Voltage Range: 3 to 18 V
- Low Noise
- Pin for Pin Replacement for CD4067B
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}$ )

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | DC Supply Voltage Range | -0.5 to +18.0 | V |
| $\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$ | Input or Output Voltage Range <br> (DC or Transient) | -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$ | V |
| $\mathrm{I}_{\text {in }}$ | Input Current (DC or Transient), <br> per Control Pin | $\pm 10$ | mA |
| $\mathrm{I}_{\mathrm{sw}}$ | Switch Through Current | $\pm 25$ | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation, per Package <br> (Note 1) | 500 | mW |
| $\mathrm{~T}_{\mathrm{A}}$ | Ambient Temperature Range | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature <br> (8-Second Soldering) | 260 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating:

Plastic "P and D/DW" Packages: - $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}$ ). Unused outputs must be left open.

## ON Semiconductor ${ }^{\circledR}$

http://onsemi.com


SOIC-24 DW SUFFIX CASE 751E

## MARKING DIAGRAM


14067B

- AWLYYWWG


A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G}=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

## MC14067B

TRUTH TABLE

| Control Inputs |  |  |  |  | Selected Channel |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | Inh |  |
| X | X | X | X | 1 | None |
| 0 | 0 | 0 | 0 | 0 | X0 |
| 1 | 0 | 0 | 0 | 0 | X1 |
| 0 | 1 | 0 | 0 | 0 | X2 |
| 1 | 1 | 0 | 0 | 0 | X3 |
| 0 | 0 | 1 | 0 | 0 | X4 |
| 1 | 0 | 1 | 0 | 0 | X5 |
| 0 | 1 | 1 | 0 | 0 | X6 |
| 1 | 1 | 1 | 0 | 0 | X7 |
| 0 | 0 | 0 | 1 | 0 | X8 |
| 1 | 0 | 0 | 1 | 0 | X9 |
| 0 | 1 | 0 | 1 | 0 | X10 |
| 1 | 1 | 0 | 1 | 0 | X11 |
| 0 | 0 | 1 | 1 | 0 | X12 |
| 1 | 0 | 1 | 1 | 0 | X13 |
| 0 | 1 | 1 | 1 | 0 | X14 |
| 1 | 1 | 1 | 1 | 0 | X15 |


| PIN AS | NM | ENT |
| :---: | :---: | :---: |
| $\longdiv { 1 \bullet }$ | 24 | $\mathrm{V}_{\mathrm{DD}}$ |
| X7 [ 2 | 23 | X8 |
| X6 ${ }^{\text {¢ }}$ | 22 | X9 |
| X5 [4 | 21 | X10 |
| X4 5 | 20 | X11 |
| X3 $\square_{6}$ | 19 | X12 |
| X2 7 | 18 | X13 |
| X1 ${ }^{\text {¢ }} 8$ | 17 | X14 |
| X0 0 | 16 | X15 |
| A 10 | 15 | INHIBIT |
| B [ 11 | 14 | 7 C |
| $\mathrm{V}_{\text {S }} 12$ | 13 | D |

FUNCTIONAL DIAGRAM


ELECTRICAL CHARACTERISTICS

| Characteristic | Symbol | $V_{\text {DD }}$ | Test Conditions | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  |  | $125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Typ ${ }^{(2)}$ | Max | Min | Max |  |

SUPPLY REQUIREMENTS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}$ )

| Power Supply Voltage Range | $V_{\text {DD }}$ | - |  | 3.0 | 18 | 3.0 | - | 18 | 3.0 | 18 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Quiescent Current Per Package | $\mathrm{I}_{\mathrm{DD}}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & \text { Control Inputs: } V_{\text {in }}= \\ & V_{S S} \text { or } V_{D D}, \\ & \text { Switch } I / O: V_{S S} \leq V_{I / O} \leq \\ & V_{D D} \text {, and } \\ & \Delta V_{\text {switch }} \leq 500 \mathrm{mV}{ }^{(3)} \end{aligned}$ |  | $\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$ | - | $\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$ | $\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$ | - | $\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$ | $\mu \mathrm{A}$ |
| Total Supply Current (Dynamic Plus Quiescent, Per Package | $\mathrm{I}_{\mathrm{D}(\mathrm{AV})}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ only (The channel component, ( $\left.\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}\right) / R_{\text {on }}$, is not included.) |  $(0.07 \mu \mathrm{~A}$ <br> Typical $(0.20 \mu \mathrm{~A}$ <br>  $(0.36 \mu \mathrm{~A}$ |  |  |  |  |  |  | $\mu \mathrm{A}$ |

CONTROL INPUTS — INHIBIT, A, B, C, D (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}$ )

| Low-Level Input Voltage | $\mathrm{V}_{\mathrm{IL}}$ | 5.0 | $\mathrm{R}_{\text {on }}=$ per spec, |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 10 | $\mathrm{l}_{\text {off }}=$ per spec | - | 1.5 | - | 2.25 | 1.5 | - | 1.5 | V |
|  |  | 15 |  | - | 3.0 | - | 4.50 | 3.0 | - | 3.0 |  |
|  |  |  | - | 4.0 | - | 6.75 | 4.0 | - | 4.0 |  |  |
| High-Level Input Voltage | $\mathrm{V}_{\mathrm{IH}}$ | 5.0 | $\mathrm{R}_{\text {on }}=$ per spec, | 3.5 | - | 3.5 | 2.75 | - | 3.5 | - | V |
|  |  | 10 | $\mathrm{l}_{\text {off }}=$ per spec | 7.0 | - | 7.0 | 5.50 | - | 7.0 | - |  |
|  |  | 15 |  | 11 | - | 11 | 8.25 | - | 11 | - |  |
| Input Leakage Current | $\mathrm{I}_{\text {in }}$ | 15 | $\mathrm{~V}_{\text {in }}=0$ or $\mathrm{V}_{\mathrm{DD}}$ | - | $\pm 0.1$ | - | $\pm 0.00001$ | $\pm 0.1$ | - | 1.0 | $\mu \mathrm{~A}$ |
| Input Capacitance | $\mathrm{C}_{\text {in }}$ | - |  | - | - | - | 5.0 | 7.5 | - | - | pF |

SWITCHES IN/OUT AND COMMONS OUT/IN - X, Y (Voltages Referenced to VSS)

| Recommended Peak-toPeak Voltage Into or Out of the Switch | $\mathrm{V}_{1 / \mathrm{O}}$ | - | Channel On or Off | 0 | $\mathrm{V}_{\mathrm{DD}}$ | 0 | - | $\mathrm{V}_{\mathrm{DD}}$ | 0 | $V_{\text {DD }}$ | $V_{p-p}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended Static or Dynamic Voltage Across the Switch (3) (Figure 1) | $\Delta \mathrm{V}_{\text {switch }}$ | - | Channel On | 0 | 600 | 0 | - | 600 | 0 | 300 | mV |
| Output Offset Voltage | $\mathrm{V}_{\mathrm{OO}}$ | - | $\mathrm{V}_{\text {in }}=0 \mathrm{~V}$, No Load | - | - | - | 10 | - | - | - | $\mu \mathrm{V}$ |
| ON Resistance | $\mathrm{R}_{\text {on }}$ | $\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{gathered} \Delta \mathrm{V}_{\text {switch }} \leq 500 \mathrm{mV} \\ \mathrm{~V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \text { (Control), and } \mathrm{V}_{\text {in }} \\ 0 \text { to } \mathrm{V}_{\mathrm{DD}} \text { (Switch) } \end{gathered}$ |  | $\begin{aligned} & \hline 800 \\ & 400 \\ & 220 \end{aligned}$ | - | $\begin{gathered} 250 \\ 120 \\ 80 \end{gathered}$ | $\begin{gathered} \hline 1050 \\ 500 \\ 280 \end{gathered}$ | - | $\begin{gathered} \hline 1300 \\ 550 \\ 320 \end{gathered}$ | $\Omega$ |
| $\Delta$ ON Resistance Between Any Two Channels in the Same Package | $\Delta \mathrm{R}_{\text {on }}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ |  | - | $\begin{aligned} & 70 \\ & 50 \\ & 45 \end{aligned}$ | - | $\begin{aligned} & 25 \\ & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & \hline 70 \\ & 50 \\ & 45 \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & - \end{aligned}$ | $\begin{aligned} & 135 \\ & 95 \\ & 65 \end{aligned}$ | $\Omega$ |
| Off-Channel Leakage Current (Figure 2) | 1 off | 15 | $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ <br> (Control) Channel to Channel or Any One Channel | - | $\pm 100$ | - | $\pm 0.05$ | $\pm 100$ | - | $\pm 1000$ | nA |
| Capacitance, Switch I/O | $\mathrm{C}_{1 / \mathrm{O}}$ | - | Inhibit $=\mathrm{V}_{\mathrm{DD}}$ | - | - | - | 10 | - | - | - | pF |
| Capacitance, Common O/I | $\mathrm{C}_{\mathrm{O} / 1}$ | - | $\begin{aligned} & \hline \text { Inhibit }=V_{D D} \\ & (M C 14067 B) \\ & (M C 14097 B) \end{aligned}$ | - | - | - | $\begin{aligned} & 100 \\ & 60 \end{aligned}$ | - | - | - | pF |
| Capacitance, Feedthrough (Channel Off) | $\mathrm{C}_{1 / 0}$ |  | Pins Not Adjacent Pins Adjacent | - | - | - | 0.47 | - | - | - | pF |

2. Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
3. For voltage drops across the switch $\left(\Delta \mathrm{V}_{\text {switch }}\right)>600 \mathrm{mV}$ ( $>300 \mathrm{mV}$ at high temperature), excessive $\mathrm{V}_{\mathrm{DD}}$ current may be drawn; i.e. the current out of the switch may contain both $\mathrm{V}_{\mathrm{DD}}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

| Characteristic | Symbol | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \\ \mathrm{Vdc} \end{gathered}$ | Typ ${ }^{(4)}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Times Channel Input-to-Channel Output ( $\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$ ) MC14067B | $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ <br> (Figure 3) | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$ | $\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$ | ns |
| Propagation Delay Times Channel Input-to-Channel Output ( $\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$ ) MC14067B | $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}$ <br> (Figure 3) | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$ | ns |
| Control Input-to-Channel Output Channel Turn-On Time ( $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ ) MC14067B | $\mathrm{t}_{\text {PZH, }}, \mathrm{t}_{\text {PZL }}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{gathered} 240 \\ 115 \\ 75 \end{gathered}$ | $\begin{aligned} & 600 \\ & 290 \\ & 190 \end{aligned}$ | ns |
| Channel Turn-Off Time ( $\mathrm{R}_{\mathrm{L}}=300 \mathrm{k} \Omega$ ) MC14067B | (Figure 4) $\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\mathrm{PLZ}}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{gathered} 250 \\ 120 \\ 75 \end{gathered}$ | $\begin{aligned} & 625 \\ & 300 \\ & 190 \end{aligned}$ | ns |
| Channel Turn-Off Time ( $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ ) MC14067B | (Figure 4) | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 625 \\ & 450 \\ & 350 \end{aligned}$ | ns |
| Any Pair of Address Inputs to Output MC14067B | $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{gathered} 280 \\ 115 \\ 85 \end{gathered}$ | $\begin{aligned} & 700 \\ & 290 \\ & 215 \end{aligned}$ | ns |
| Second Harmonic Distortion $\left(R_{L}=10 k \Omega, f=1 \mathrm{kHz}, V_{\text {in }}=5 V_{p-p}\right)$ | - | 10 | 0.3 | - | \% |
| ON Channel Bandwidth $\begin{aligned} & {\left[R_{L}=50 \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{S S}\right)_{p-p}(\text { sine-wave })\right]} \\ & 20 \text { Log10 }\left(V_{\text {out }} / V_{\text {in }}\right)=-3 \mathrm{~dB} \end{aligned}$ | BW <br> (Figure 5) | 10 | 15 | - | MHz |
| Off Channel Feedthrough Attenuation $\begin{aligned} & {\left[R_{L}=50 \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{S S}\right)_{p-p}(\text { sine-wave })\right]} \\ & f_{\text {in }}=20 \mathrm{MHz}-\mathrm{MC} 14067 \mathrm{~B} \end{aligned}$ | (Figure 5) | 10 | -40 | - | dB |
| $\begin{aligned} & \text { Channel Separation } \\ & \quad\left[R_{L}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {in }}=1 / 2\left(\mathrm{~V}_{\mathrm{DD}}-V_{S S}\right)_{\mathrm{p}-\mathrm{p}}(\text { sine-wave })\right] \quad f_{\text {in }}=20 \mathrm{MHz} \end{aligned}$ | (Figure 6) | 10 | -40 | - | dB |
| Crosstalk, Control Inputs-to-Common O/I $\begin{aligned} & \left(\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,\right. \\ & \text { Control } \left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \text { Inhibit }=\mathrm{V}_{\mathrm{SS}}\right) \end{aligned}$ | (Figure 7) | 10 | 30 | - | mV |

4. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

ORDERING INFORMATION

| Device | Package | Shipping ${ }^{\dagger}$ |
| :---: | :---: | :---: |
| MC14067BDWG | SOIC-24 <br> (Pb-Free) | 30 Units / Rail |
| NLV14067BDWG* |  |  |
| MC14067BDWR2G | $\begin{aligned} & \hline \text { SOIC-24 } \\ & \text { (Pb-Free) } \end{aligned}$ | 1000 Units / Tape \& Reel |
| NLV14067BDWR2G* |  |  |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.


Figure 1. $\Delta \mathrm{V}$ Across Switch


Figure 3. Propagation Delay Test Circuit and Waveforms $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out }}$


Figure 2. Off Channel Leakage


Figure 4. Turn-On and Delay Turn-Off Test Circuit and Waveforms

## MC14067B

$\mathrm{A}, \mathrm{B}$, and C inputs used to turn ON or OFF the switch under test.


Figure 5. Bandwidth and Off-Channel Feedthrough Attenuation


Figure 6. Channel Separation (Adjacent Channels Used for Setup)


Figure 7. Crosstalk, Control to Common O/I


Figure 8. Channel Resistance ( $\mathbf{R O N}_{\mathrm{ON}}$ ) Test Circuit


Figure 9. Propagation Delay, Any Pair of Address Inputs to Output


Figure 10. $\mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V}$


Figure 12. $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$


Figure 11. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.0 \mathrm{~V}$


Figure 13. Comparison at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=-\mathrm{V}_{\mathrm{SS}}$

## MC14067B

## APPLICATIONS INFORMATION

Figure A illustrates use of the Analog Multiplexer / Demultiplexer. The $0-$ to- 5 V Digital Control signal is used to directly control a $5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ analog signal.

The digital control logic levels are determined by $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$. The $\mathrm{V}_{\mathrm{DD}}$ voltage is the logic high voltage; the $\mathrm{V}_{\mathrm{SS}}$ voltage is logic low. For the example. $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}=$ logic high at the control inputs; $\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}=0 \mathrm{~V}=$ logic low.

The maximum analog signal level is determined by $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$. The analog voltage must swing neither higher than $\mathrm{V}_{\mathrm{DD}}$ nor lower than $\mathrm{V}_{\mathrm{SS}}$. The example shows a $5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
signal which allows no margin at either peak. If voltage transients above $\mathrm{V}_{\mathrm{DD}}$ and/or below $\mathrm{V}_{\mathrm{SS}}$ are anticipated on the analog channels, external diodes $\left(\mathrm{D}_{\mathrm{x}}\right)$ are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.
The absolute maximum potential difference between $V_{D D}$ and $\mathrm{V}_{\mathrm{SS}}$ is 18.0 volts. Most parameters are specified up to 15 V which is the recommended maximum difference between $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$.


Figure A. Application Example


Figure B. External Germanium or Schottky Clipping Diodes

## PACKAGE DIMENSIONS

SOIC-24 WB<br>CASE 751E-04<br>ISSUE F



1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD AND ARE MEASURED BETWEEN 0.10 AND 0.25 FROM THE LEAD TIP.
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
5. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

| DIM | MILLIMETERS |  |
| :---: | :---: | :---: |
|  | MIN | MAX |
| $\mathbf{A}$ | 2.35 | 2.65 |
| A1 | 0.13 | 0.29 |
| $\mathbf{b}$ | 0.35 | 0.49 |
| $\mathbf{c}$ | 0.23 | 0.32 |
| $\mathbf{D}$ | 15.25 | 15.54 |
| $\mathbf{E}$ | 10.30 |  |

RECOMMENDED SOLDERING FOOTPRINT*


PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold sor ildirectly, its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

