: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC144110

MC144110 and MC144111

Digital-to-Analog Converters with Serial Interface
CMOS LSI

1 Introduction

The MC144110 and MC144111 are low-cost 6-bit D/A converters with serial interface ports to provide communication with CMOS microprocessors and microcomputers. The MC144110 contains six static D/A converters; the MC144111 contains four converters.

Due to a unique feature of these DACs, the user is permitted easy scaling of the analog outputs of a system. Over a 5 to 15 V supply range, these DACs may be directly interfaced to CMOS MPUs operating at 5 V .

- Direct R-2R Network Outputs
- Buffered Emitter-Follower Outputs
- Serial Data Input
- Digital Data Output Facilitates Cascading
- Direct Interface to CMOS $\mu \mathrm{P}$
- Wide Operating Voltage Range: 4.5 to 15 V
- Wide Operating Temperature Range: 0 to $85^{\circ} \mathrm{C}$
- Software Information is Contained in Document M68HC11RM/AD

Introduction

Figure 1. Block Diagram

MC144111DW

NC = No Connection
Figure 2. Pin Assignments

Electrical Specifications

2 Electrical Specifications

Table 1. Maximum Ratings
(Voltages referenced to V_{SS})

Ratings	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to +18	V
Input Voltage, All Inputs	$V_{\text {in }}$	-0.5 to $V_{D D}+0.5$	V
DC Input Current, per Pin	1	± 10	mA
$\begin{array}{\|cc\|} \hline \text { Power Dissipation (Per Output) } \\ \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} & \text { MC144110 } \\ & \text { MC144111 } \\ \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} & \mathrm{MC} 144110 \\ & \mathrm{MC} 144111 \end{array}$	POH	$\begin{aligned} & 30 \\ & 50 \\ & 10 \\ & 20 \end{aligned}$	mW
$\begin{array}{cl} \text { Power Dissipation (Per Package) } \\ \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} & \text { MC144110 } \\ & \text { MC144111 } \\ \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} & \text { MC144110 } \\ & \text { MC144111 } \end{array}$	P_{D}	$\begin{aligned} & 100 \\ & 150 \\ & 25 \\ & 50 \end{aligned}$	mW
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to + 150	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields; however, it is advised that precautions be taken to avoid application of voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation it is recommended that $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

Table 2. Electrical Characteristics
(Voltages referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=0$ to $85^{\circ} \mathrm{C}$ unless otherwise indicated)

Symbol	Parameter	Test Conditions	V_{DD}	Min	Max	Unit
V_{IH}	High-Level Input Voltage ($\mathrm{D}_{\text {in }}, \overline{\mathrm{ENB}}, \mathrm{CLK}$)		$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 3.0 \\ 3.5 \\ 4 \end{gathered}$	-	V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage ($\mathrm{D}_{\mathrm{in}}, \overline{\mathrm{ENB}}, \mathrm{CLK}$)		5 10 15	-	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
$\mathrm{IOH}^{\text {a }}$	High-Level Output Current ($\mathrm{D}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	5	- 200	-	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {l }}$	Low-Level Output Current ($\mathrm{D}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$	5	200	-	$\mu \mathrm{A}$
I_{DD}	Quiescent Supply Current MC144110 MC144111	$\mathrm{I}_{\text {out }}=0 \mu \mathrm{~A}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	-	$\begin{gathered} 12 \\ 8 \end{gathered}$	mA
$\mathrm{I}_{\text {in }}$	Input Leakage Current ($\mathrm{D}_{\text {in }}, \overline{\mathrm{ENB}}, \mathrm{CLK}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or 0 V	15	-	± 1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {nonl }}$	Nonlinearity Voltage (Rn Out)	See Figure 3	5 10 15	-	$\begin{aligned} & 100 \\ & 200 \\ & 300 \end{aligned}$	mV

MC144110 Technical Data, Rev. 2

Table 2. Electrical Characteristics (continued)
(Voltages referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=0$ to $85^{\circ} \mathrm{C}$ unless otherwise indicated)

Symbol	Parameter	Test Conditions	V_{DD}	Min	Max	Unit
$\mathrm{V}_{\text {step }}$	Step Size (Rn Out)	See Figure 4	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 19 \\ & 39 \\ & 58 \end{aligned}$	$\begin{aligned} & 137 \\ & 274 \\ & 411 \end{aligned}$	mV
$\mathrm{V}_{\text {offset }}$	Offset Voltage from $\mathrm{V}_{\text {SS }}$	$\mathrm{D}_{\text {in }}=\$ 00$, See Figure 3	-	-	1	LSB
I_{E}	Emitter Leakage Current	$\mathrm{V}_{\text {Rn Out }}=0 \mathrm{~V}$	15	-	10	$\mu \mathrm{A}$
$\mathrm{h}_{\text {FE }}$	DC Current Gain	$\begin{aligned} & \mathrm{I}_{\mathrm{E}}=0.1 \text { to } 10.0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-	40	-	-
$V_{B E}$	Base-to-Emitter Voltage Drop	$\mathrm{I}_{\mathrm{E}}=1.0 \mathrm{~mA}$	-	0.4	0.7	V

3 Switching Characteristics

Table 3. Switching Characteristics
(Voltages referenced to $V_{S S}, T_{A}=0$ to $85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	V_{DD}	Min	Max	Unit
t_{wH}	Positive Pulse Width, CLK (Figures 5 and 6)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} \hline 2 \\ 1.5 \\ 1 \end{gathered}$	-	$\mu \mathrm{S}$
$t_{\text {wL }}$	Negative Pulse Width, CLK (Figure 5 and 6)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 5 \\ 3.5 \\ 2 \end{gathered}$	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {su }}$	Setup Time, ENB to CLK (Figures 5 and 6)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 5 \\ 3.5 \\ 2 \end{gathered}$	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {su }}$	Setup Time, $\mathrm{D}_{\text {in }}$ to CLK (Figures 5 and 6)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 1000 \\ & 750 \\ & 500 \end{aligned}$	-	ns
$t_{\text {h }}$	Hold Time, CLK to ENB (Figures 5 and 6)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} \hline 5 \\ 3.5 \\ 2 \end{gathered}$	-	$\mu \mathrm{S}$
$t_{\text {h }}$	Hold Time, CLK to $\mathrm{D}_{\text {in }}$ (Figures 5 and 6)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 5 \\ 3.5 \\ 2 \end{gathered}$	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Times	5-15	-	2	$\mu \mathrm{S}$
$\mathrm{C}_{\text {in }}$	Input Capacitance	5-15	-	7.5	pF

Switching Characteristics

LINEARITY ERROR (integral linearity). A measure of how straight a device's transfer function is, it indicates the worst-case deviation of linearity of the actual transfer function from the best-fit straight line. It is normally specified in parts of an LSB.

Figure 3. D/A Transfer Function

Figure 4. Definition of Step Size

Figure 5. Serial Input, Positive Clock

Figure 6. Serial Input, Negative Clock
Table 4. Number of Channels vs Clocks Required

Number of Channels Required	Number of Clock Cycles	Outputs Used on MC144110	Outputs Used on MC144111
1	6	Q1/R1	Q1/R1
2	12	Q1/R1, Q2/R2	Q1/R1, Q2/R2
3	18	Q1/R1, Q2/R2, Q3/R3	Q1/R1, Q2/R2, Q3/R3
4	24	Q1/R1, Q2/R2, Q3/R3, Q4/R4	Q1/R1, Q2/R2, Q3/R3, Q4/R4
5	30	Q1/R1, Q2/R2, Q3/R3, Q4/R4, Q5/R5	Not Applicable
6	36	Q1/R1, Q2/R2, Q3/R3, Q4/R4, Q5/R5, Q6/R6	Not Applicable

Pin Descriptions

4 Pin Descriptions

4.1 INPUTS

$D_{\text {in }}$

Data Input

Six-bit words are entered serially, MSB first, into digital data input, D_{in}. Six words are loaded into the MC144110 during each D/A cycle; four words are loaded into the MC144111.
The last 6-bit word shifted in determines the output level of pins Q1 Out and R1 Out. The next-to-last 6-bit word affects pins Q2 Out and R2 Out, etc.

ENB

Negative Logic Enable

The $\overline{\mathrm{ENB}}$ pin must be low (active) during the serial load. On the low-to-high transition of $\overline{\mathrm{ENB}}$, data contained in the shift register is loaded into the latch.

CLK

Shift Register Clock

Data is shifted into the register on the high-to-low transition of CLK. CLK is fed into the D-input of a transparent latch, which is used for inhibiting the clocking of the shift register when $\overline{\text { ENB }}$ is high.

The number of clock cycles required for the MC144110 is usually 36 . The MC144111 usually uses 24 cycles. See Table 4 for additional information.

4.2 OUTPUTS

Dout
Data Output
The digital data output is primarily used for cascading the DACs and may be fed into $D_{\text {in }}$ of the next stage.

R1 Out through Rn Out
 Resistor Network Outputs

These are the R-2R resistor network outputs. These outputs may be fed to high-impedance input FET op amps to bypass the on-chip bipolar transistors. The R value of the resistor network ranges from 7 to $15 \mathrm{k} \Omega$.

Q1 Out through Qn Out NPN Transistor Outputs

Buffered DAC outputs utilize an emitter-follower configuration for current-gain, thereby allowing interface to low-impedance circuits.

4.3 SUPPLY PINS

$v_{s s}$
Negative Supply Voltage
This pin is usually ground.
$V_{D D}$

Positive Supply Voltage

The voltage applied to this pin is used to scale the analog output swing from 4.5 to 15 V p-p.

Packaging

5 Packaging

Figure 7. Outline Dimensions for P SUFFIX, PLASTIC DIP
(CASE 707-02, Issue C)

Figure 8. Outline Dimensions for DW SUFFIX, SOG (CASE 751D-06, Issue H)

NOTES:
Y14.5M, 1994.
FORMED PARALLEL
5. ROUNDED CORNERS OPTIONAL.

DIM	INCHES	
	MIN	MAX
A	0.715	0.770
B	0.240	0.260
C	0.145	0.185
D	0.015	0.021
F	0.040	0.070
G	0.100	BSC
H	0.052	0.095
J	0.008	0.015
K	0.115	0.135
L	0.290	0.310
M	--	10°
\mathbf{N}	0.015	0.040

1. DIMENSIONING AND TOLERANCING PER ANSI
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. 646-06 OBSOLETE, NEW STANDARD 646-07.

Figure 9. Outline Dimensions for P SUFFIX, PLASTIC DIP (CASE 646-07, Issue P)

Figure 10. Outline Dimensions for DW SUFFIX, SOG (CASE 751G-04, Issue D)

How to Reach Us:
Home Page:
www.freescale.com
E-mail:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296380456 (English)
+46 852200080 (English)
+49 8992103559 (German)
+33 169354848 (French)
support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064
Japan
0120191014 or +81 354379125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 26668080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

RoHS-compliant and/or Pb - free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non- Pb - free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ${ }^{T M}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2005. All rights reserved.

