: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC14516B

Binary Up/Down Counter

The MC14516B synchronous up/down binary counter is constructed with MOS P-channel and N -channel enhancement mode devices in a monolithic structure.

This counter can be preset by applying the desired value, in binary, to the Preset inputs (P0, P1, P2, P3) and then bringing the Preset Enable (PE) high. The direction of counting is controlled by applying a high (for up counting) or a low (for down counting) to the UP/DOWN input. The state of the counter changes on the positive transition of the clock input.

Cascading can be accomplished by connecting the Carry Out to the Carry In of the next stage while clocking each counter in parallel. The outputs (Q0, Q1, Q2, Q3) can be reset to a low state by applying a high to the reset (R) pin.

This CMOS counter finds primary use in up/down and difference counting. Other applications include: (1) Frequency synthesizer applications where low power dissipation and/or high noise immunity is desired, (2) Analog-to-Digital and Digital-to-Analog conversions, and (3) Magnitude and sign generation.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge-Clocked Design - Count Occurs on Positive Going Edge of Clock
- Single Pin Reset
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky Load Over the Rated Temperature Range
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to V_{DD} +0.5	V
Input or Output Current (DC or Transient) per Pin	$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	± 10	mA
Power Dissipation, per Package (Note 1)	P_{D}	500	mW
Ambient Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating: Plastic " P and $D / D W$ "

Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

ON Semiconductor ${ }^{\text {® }}$

http://onsemi.com
MARKING DIAGRAMS

PDIP-16
P SUFFIX CASE 648
MC14516BCP AWLYYWWG
1 एゆाゆाए

A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
YY, Y	$=$ Year
WW, W	$=$ Work Week
G	$=$ Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\text {SS }} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

BLOCK DIAGRAM

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Reset	Clock	Action
1	X	0	0	X	No Count
0	1	0	0	Ω	Count Up
0	0	0	0	Ω	Count Down
X	X	1	0	X	Preset
X	X	X	1	X	Reset

X = Don't Care
NOTE: When counting up, the Carry Out signal is normally high and is low only when Q0 through Q3 are high and Carry In is low. When counting down, Carry Out is low only when Q0 through Q3 and Carry In are low.

ORDERING INFORMATION

Device	Package	Shipping †
MC14516BCPG	PDIP-16 (Pb-Free)	25 Units / Rail
MC14516BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14516BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC14516BFG	SOEIAJ-16 (Pb-Free)	50 Units / Rail
MC14516BFELG	SOEIAJ-16 (Pb-Free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125{ }^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ $V_{\text {in }}=0 \text { or } V_{D D}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \text { Input Voltage " }{ }^{\text {In }} \text { " Level } \\ & \left(V_{O}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	1.5 3.0 4.0	-	1.5 3.0 4.0	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	3.5 7.0 11	-	3.5 7.0 11	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	3.5 7.0 11	-	Vdc
$\begin{array}{cr} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	- - -	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
	loL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	0.88 2.25 8.8	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	5.0 10 20	-	150 300 600	$\mu \mathrm{Adc}$
Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{\text {T }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.58 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.20 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.70 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF : $I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right)$ Vfk where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in pF , $V=\left(V_{D D}-V_{S S}\right)$ in volts, f in $k H z$ is input frequency, and $k=0.001$.

SWITCHING CHARACTERISTICS (Note 5) ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$V_{\text {DD }}$	All Types			Unit
			Min	Typ (Note 6)	Max	
Output Rise and Fall Time $\mathrm{t}_{T L H}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{TL}}+\mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns}$	$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{LH}}, \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time Clock to Q $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+230 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$ $t_{\text {PLH }}, t_{P H L}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns}$	$\begin{aligned} & \hline t_{\text {PLLH }}, \\ & t_{\text {PHLL }} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 260 \\ & 200 \end{aligned}$	ns
Clock to Carry Out $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+230 \mathrm{~ns}$ $t_{P L H}, t_{P H L}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns}$	$\begin{aligned} & \overline{t_{\text {PLH }}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 260 \\ & 200 \end{aligned}$	ns
$\begin{aligned} & \text { Carry In to Carry Out } \\ & \text { tpLr }^{\text {tpHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+230 \mathrm{~ns} \\ & t_{\mathrm{PLL}}, \mathrm{tPHL}^{2}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns} \\ & t_{\mathrm{PLH}} \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 180 \\ 80 \\ 60 \end{gathered}$	$\begin{aligned} & 360 \\ & 160 \\ & 120 \end{aligned}$	ns
Preset or Reset to Q	$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 360 \\ & 200 \end{aligned}$	ns
	$\begin{aligned} & \mathrm{t}_{\mathrm{t} \text { LLH }}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 550 \\ & 225 \\ & 150 \end{aligned}$	$\begin{aligned} & 1100 \\ & 450 \\ & 300 \end{aligned}$	ns
Reset Pulse Width	t_{w}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 380 \\ & 200 \\ & 160 \end{aligned}$	$\begin{aligned} & 190 \\ & 100 \\ & 80 \end{aligned}$	-	ns
Clock Pulse Width	${ }^{\text {twh }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 75 \end{aligned}$	-	ns
Clock Pulse Frequency	f_{cl}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	MHz
Preset or Reset Removal Time The Preset or Reset signal must be low prior to a positive-going transition of the clock.	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 650 \\ & 230 \\ & 180 \end{aligned}$	$\begin{aligned} & 325 \\ & 115 \\ & 90 \end{aligned}$	$-$	ns
Clock Rise and Fall Time	$\underset{\mathrm{t}_{\mathrm{THL}}}{\mathrm{t}_{\text {THL }},}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{gathered} \hline 15 \\ 5 \\ 4 \end{gathered}$	us
Setup Time Carry In to Clock	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 260 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 130 \\ & 60 \\ & 50 \end{aligned}$	-	ns
Hold Time Clock to Carry In	$\mathrm{th}_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} -60 \\ -20 \\ 0 \end{gathered}$	-	ns
Setup Time Up/Down to Clock	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 75 \end{aligned}$	-	ns
Hold Time Clock to Up/Down	$t_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -70 \\ -10 \\ 0 \end{gathered}$	$\begin{aligned} & -160 \\ & -60 \\ & -40 \end{aligned}$	-	ns
Setup Time Pn to PE	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -40 \\ & -30 \\ & -25 \end{aligned}$	$\begin{aligned} & -120 \\ & -70 \\ & -50 \end{aligned}$	-	ns
Hold Time PE to Pn	$t_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 480 \\ & 420 \\ & 420 \end{aligned}$	$\begin{aligned} & 240 \\ & 210 \\ & 210 \end{aligned}$	-	ns
Preset Enable Pulse Width	t_{WH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \end{gathered}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

TOGGLE FLIP-FLOP
PARALLELIN

FLIP-FLOP FUNCTIONAL TRUTH TABLE

Preset Enable	Clock	\mathbf{T}	$\mathbf{Q}_{\mathbf{n + 1}}$
1	X	X	Parallel In
0	\digamma	0	Q_{n}
0	Γ	1	$\overline{\mathrm{Q}}_{\mathrm{n}}$
0	$乙$	X	Q_{n}

X = Don't Care

Figure 2. Switching Time Waveforms

PIN DESCRIPTIONS

INPUTS

P0, P1, P2, P3, Preset Inputs (Pins 4, 12, 13, 3) - Data on these inputs is loaded into the counter when PE is taken high.
$\overline{\text { Carry In }}$, (Pin 5) - This active-low input is used when Cascading stages. $\overline{\text { Carry In }}$ is usually connected to $\overline{\text { Carry Out }}$ of the previous stage. While high, Clock is inhibited.

Clock, (Pin 15) - Binary data is incremented or decremented, depending on the direction of count, on the positive transition of this input.

OUTPUTS

Q0, Q1, Q2, Q3, Binary outputs (Pins 6, 11, 14, 2) Binary data is present on these outputs with Q0 corresponding to the least significant bit.
 $\overline{\text { Out }}$ is usually connected to Carry In of the next stage. This synchronous output is active low and may also be used to indicate terminal count.

CONTROLS

PE, Preset Enable, (Pin 1) - Asynchronously loads data on the Preset Inputs. This pin is active high and inhibits the clock when high.

R, Reset, (Pin 9) - Asynchronously resets the Q outputs to a low state. This pin is active high and inhibits the clock when high.

Up/Down, (Pin 10) - Controls the direction of count, high for up count, low for down count.

SUPPLY PINS

$\mathbf{V}_{\text {SS }}$, Negative Supply Voltage, (Pin 8) — This pin is usually connected to ground.
V $_{\text {DD }}$, Positive Supply Voltage, (Pin 16) - This pin is connected to a positive supply voltage ranging from 3.0 V to 18 V .

NOTE: The Least Significant Digit (L.S.D.) counts from a preset value once Preset Enable (PE) goes low. The Most Significant Digit (M.S.D.) is disabled while $\bar{C}_{\text {in }}$ is high. When the count of the L.S.D. reaches 0 (count down mode) or reaches 15 (count up mode), $\overline{\mathrm{C}_{\text {out }}}$ goes low for one complete clock cycle, thus allowing the next counter to decrement/increment one count. (See Timing Diagram) The L.S.D. now counts through another cycle (15 clock pulses) and the above cycle is repeated.

Figure 3. Presettable Cascaded 8-Bit Up/Down Counter

NOTE: The programmable frequency divider can be set by applying the desired divide ratio, in binary, to the preset inputs. For example, the maximum divide ratio of 255 may be obtained by applying a 11111111 to the preset inputs P0 to P7. For this divide operation, both counters should be configured in the count down mode. The divide ratio of zero is an undefined state and should be avoided.

Figure 4. Programmable Cascaded Frequency Divider

PACKAGE DIMENSIONS

PDIP-16
CASE 648-08
ISSUE T

SOEIAJ-16
CASE 966-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: INCH
2. DIMENSION L TO CENTER OF LEADS

DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54 BSC	
H	0.050 BSC		1.27	
BSC				
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0	0°
S	0.020	0.040	0.51	1.01

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) DAMBAR PROTRUSION SHALL BE 0.08 (0.
TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD DIMENSIONS A
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

ON Semiconductor and (ill are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

