: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Contents:

1 Introduction 1
2 Specifications
3 Pin Connections .3

Considerations 18
5 Packaging. 30

1 Introduction

The new MC145170-2 is pin-for-pin compatible with the MC145170-1. A comparison of the two parts is shown in the table below. The MC145170-2 is recommended for new designs and has a more robust power-on reset (POR) circuit that is more responsive to momentary power supply interruptions. The two devices are actually the same chip with mask options for the POR circuit. The more robust POR circuit draws approximately $20 \mu \mathrm{~A}$ additional supply current. Note that the maximum specification of $100 \mu \mathrm{~A}$ quiescent supply current has not changed.

The MC145170-2 is a single-chip synthesizer capable of direct usage in the MF, HF, and VHF bands. A special architecture makes this PLL easy to program. Either a bit- or byteoriented format may be used. Due to the patented BitGrabber ${ }^{T M}$ registers, no address/steering bits are required for random access of the three registers. Thus, tuning can be accomplished via a 2 -byte serial transfer to the 16 -bit N register.

The device features fully programmable R and N counters, an amplifier at the $f_{\text {in }}$ pin, on-chip support of an external crystal, a programmable reference output, and both single- and doubleended phase detectors with linear transfer functions (no dead zones). A configuration (C) register allows the part to be configured to meet various applications. A patented feature allows the C register to shut off unused outputs, thereby minimizing noise and interference.

In order to reduce lock times and prevent erroneous data from being loaded into the counters, a patented jam-load feature is included. Whenever a new divide ratio is loaded into the N register, both the N and R counters are jam-loaded with their respective values and begin counting down together. The phase detectors are also initialized during the jam load.

- Operating Voltage Range: 2.7 to 5.5 V
- Maximum Operating Frequency:
$185 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{in}}=500 \mathrm{mVpp}, 4.5 \mathrm{~V}$ Minimum Supply
$100 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{in}}=500 \mathrm{mVpp}, 3.0 \mathrm{~V}$ Minimum Supply
- Operating Supply Current:
0.6 mA @ $3.0 \mathrm{~V}, 30 \mathrm{MHz}$
$1.5 \mathrm{~mA} @ 3.0 \mathrm{~V}, 100 \mathrm{MHz}$
$3.0 \mathrm{~mA} @ 5.0 \mathrm{~V}, 50 \mathrm{MHz}$
$5.8 \mathrm{~mA} @ 5.0 \mathrm{~V}, 185 \mathrm{MHz}$
- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- R Counter Division Range: 1 and 5 to 32,767
- N Counter Division Range: 40 to 65,535
- Direct Interface to Motorola SPI Serial Data Port
- See Application Notes AN1207/D and AN1671/D
- Contact Motorola for MC145170 control software.

Table 1. Comparision of the PLL Frequency Synthesizers

Parameter	MC145170-2	MC145170-1
Minimum Supply Voltage	2.7 V	2.5 V
Maximum Input Current, $\mathrm{f}_{\text {in }}$	$150 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$
Dynamic Characteristics, $\mathrm{f}_{\text {in }}$ (Figure 26)	Unchanged	-
Power-On Reset Circuit	Improved	-

Freescale Semiconductor, Inc $_{\text {Electrical Characteristics }}$

Figure 1. Block Diagram

2 Electrical Characteristics

Table 2. Maximum Ratings (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to 5.5	V
DC Input Voltage	$\mathrm{V}_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
DC Output Voltage	$\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
DC Input Current, per Pin	$\mathrm{I}_{\text {in }}$	± 10	mA
DC Output Current, per Pin	$\mathrm{I}_{\text {out }}$	± 20	mA
DC Supply Current, V_{DD} and $\mathrm{V}_{\text {SS }}$ Pins	I_{DD}	± 30	mA
Power Dissipation, per Package	P_{D}	300	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the limits in the Electrical Characteristics
tables or Pin Descriptions section.
2. ESD data available upon request.

Table 3. Electrical Characteristics (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Test Condition	Symbol	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	Guaranteed Limit	Unit
Power Supply Voltage Range		V_{DD}	-	2.7 to 5.5	V
Maximum Low-Level Input Voltage [Note 1] ($\mathrm{D}_{\text {in }}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{f}_{\text {in }}$)	dc Coupling to f_{in}	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 1.35 \\ & 1.65 \end{aligned}$	V
Minimum High-Level Input Voltage [Note 1] ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{f}_{\mathrm{in}}$)	dc Coupling to f_{in}	V_{IH}	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 3.15 \\ & 3.85 \end{aligned}$	V
Minimum Hysteresis Voltage (CLK, $\overline{\mathrm{ENB}}$)		$\mathrm{V}_{\mathrm{Hys}}$	$\begin{aligned} & 2.7 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	V
Maximum Low-Level Output Voltage (Any Output)	$\mathrm{I}_{\text {out }}=20 \mu \mathrm{~A}$	V_{OL}	$\begin{aligned} & 2.7 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V
Minimum High-Level Output Voltage (Any Output)	$\mathrm{I}_{\text {out }}=-20 \mu \mathrm{~A}$	V_{OH}	$\begin{aligned} & 2.7 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 5.4 \end{aligned}$	V
Minimum Low-Level Output Current ($\mathrm{PD}_{\text {out }}, \mathrm{REF}_{\text {out }}, \mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{V}}$, $\left.L D, \phi_{R}, \phi_{V}\right)$	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \end{aligned}$	I_{OL}	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.36 \\ & 0.36 \end{aligned}$	mA
Minimum High-Level Output Current ($\mathrm{PD}_{\text {out }}, \mathrm{REF}_{\text {out }}, \mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{V}}$, LD, $\phi_{\mathrm{R}}, \phi_{\mathrm{V}}$)	$\begin{aligned} & \mathrm{V}_{\text {out }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=4.1 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=5.0 \mathrm{~V} \end{aligned}$	IOH	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -0.12 \\ & -0.36 \\ & -0.36 \end{aligned}$	mA
Minimum Low-Level Output Current ($\mathrm{D}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	I_{OL}	4.5	1.6	mA
Minimum High-Level Output Current ($\mathrm{D}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=4.1 \mathrm{~V}$	$\mathrm{IOH}^{\text {a }}$	4.5	-1.6	mA
Maximum Input Leakage Current ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \overline{\mathrm{ENB}}, \mathrm{OSC}_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	$\mathrm{I}_{\text {in }}$	5.5	± 1.0	$\mu \mathrm{A}$
Maximum Input Current $\left(f_{i n}\right)$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	$\mathrm{l}_{\text {in }}$	5.5	± 150	$\mu \mathrm{A}$
Maximum Output Leakage Current $\begin{aligned} & \left(\mathrm{PD}_{\text {out }}\right) \\ & \left(\mathrm{D}_{\text {out }}\right) \end{aligned}$	$V_{\text {in }}=V_{D D} \text { or } V_{S S},$ Output in High-Impedance State	l Oz	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}; Outputs Open; Excluding fin Amp Input Current Component	I_{DD}	5.5	100	$\mu \mathrm{A}$

NOTES: 1 . When dc coupling to the OSC $_{\text {in }}$ pin is used, the pin must be driven rail-to-rail. In this case, OSC ${ }_{\text {out }}$ should be floated.
2. The nominal values at 3.0 V are $0.6 \mathrm{~mA} @ 30 \mathrm{MHz}$, and $1.5 \mathrm{~mA} @ 100 \mathrm{MHz}$. The nominal values at 5.0 V are $3.0 \mathrm{~mA} @ 50 \mathrm{MHz}$, and 5.8 mA @ 185 MHz . These are not guaranteed limits.

Freescale Semiconductor, Incelectrical Characteristics

Table 3. Electrical Characteristics (Continued) (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Test Condition	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	Guaranteed Limit	Unit
Maximum Operating Supply Current	$\begin{aligned} & \mathrm{f}_{\text {in }}=500 \mathrm{mVpp} ; \\ & \mathrm{OSC}_{\text {in }}=1.0 \mathrm{MHz} @ 1.0 \end{aligned}$ Vpp; LD, $\mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{V}}, \mathrm{REF}_{\text {out }}=$ Inactive and No Connect; OSC ${ }_{\text {out }}$, $\phi_{\mathrm{V}}, \phi_{\mathrm{R}}, \mathrm{PD}_{\text {out }}=$ No Connect; $\mathrm{D}_{\mathrm{in}}, \mathrm{ENB}, \mathrm{CLK}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	I_{dd}	-	[Note 2]	mA

NOTES: 1. When dc coupling to the $\mathrm{OSC}_{\text {in }}$ pin is used, the pin must be driven rail-to-rail. In this case, OSC ${ }_{\text {out }}$ should be floated. 2. The nominal values at 3.0 V are $0.6 \mathrm{~mA} @ 30 \mathrm{MHz}$, and $1.5 \mathrm{~mA} @ 100 \mathrm{MHz}$. The nominal values at 5.0 V are $3.0 \mathrm{~mA} @ 50 \mathrm{MHz}$, and $5.8 \mathrm{~mA} @ 185 \mathrm{MHz}$. These are not guaranteed limits.

Table 4. AC Interface Characteristics
($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{tr}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$, unless otherwise noted.)

Parameter	Symbol	Figure No.	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	Guaranteed Limit	Unit
Serial Data Clock Frequency (Note: Refer to Clock t_{w} Below)	$\mathrm{f}_{\text {clk }}$	2	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	dc to 3.0 dc to 4.0 dc to 4.0	MHz
Maximum Propagation Delay, CLK to $\mathrm{D}_{\text {out }}$	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	2, 6	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 85 \\ & 85 \end{aligned}$	ns
Maximum Disable Time, $\mathrm{D}_{\text {out }}$ Active to High Impedance	$\mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PHZ}}$	3, 7	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & 200 \end{aligned}$	ns
Access Time, $\mathrm{D}_{\text {out }}$ High Impedance to Active	$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	3, 7	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	0 to 200 0 to 100 0 to 100	ns
Maximum Output Transition Time, $\mathrm{D}_{\text {out }}$ $C L=50 \mathrm{pF}$	$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	2, 6	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 150 \\ 50 \\ 50 \end{gathered}$	ns
		2, 6	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 900 \\ & 150 \\ & 150 \end{aligned}$	ns
Maximum Input Capacitance - $\mathrm{D}_{\text {in }}$, $\overline{\text { ENB }}$, CLK	$\mathrm{C}_{\text {in }}$		-	10	pF
Maximum Output Capacitance - $\mathrm{D}_{\text {out }}$	$\mathrm{C}_{\text {out }}$		-	10	pF

Table 5. Timing Requirements $\left(T_{A}=-40\right.$ to $85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$, unless otherwise noted.)

Parameter	Symbol	$\begin{array}{c}\text { Figure } \\ \text { No. }\end{array}$	$\begin{array}{c}\mathbf{V}_{\text {DD }} \\ \mathbf{V}\end{array}$	$\begin{array}{c}\text { Guaranteed } \\ \text { Limit }\end{array}$	Unit
Minimum Setup and Hold Times, $\mathrm{D}_{\text {in }}$ vs CLK	$\mathrm{t}_{\text {su }}, \mathrm{t}_{\mathrm{h}}$	4	2.7	55	ns
			4.5	40	
40					

2.1 Switching Waveforms

Figure 2.

Figure 4.

Figure 6. Test Circuit

Figure 3.

Figure 5.

Figure 7. Test Circuit

Table 6. Loop Specifications $\left(T_{A}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Test Condition	Symbol	Figure No.	$\begin{gathered} \mathbf{v}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	Guaranteed Range		Unit
					Min	Max	
Input Frequency, $\mathrm{f}_{\text {in }}$ [Note\}	$\mathrm{V}_{\text {in }} \geq 500 \mathrm{mVpp}$ Sine Wave, N Counter Set to Divide Ratio Such that $\mathrm{f}_{\mathrm{V}} \leq 2.0 \mathrm{MHz}$	\dagger	8	$\begin{aligned} & 2.7 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 25 \\ & 45 \end{aligned}$	$\begin{gathered} \hline 80 \\ 100 \\ 185 \\ 185 \end{gathered}$	MHz
Input Frequency, OSC $_{\text {in }}$ Externally Driven with ac-coupled Signal	$\mathrm{V}_{\text {in }} \geq 1.0 \mathrm{~V}_{\mathrm{pp}}$ Sine Wave, OSC $_{\text {out }}=$ No Connect, R Counter Set to Divide Ratio Such that $\mathrm{f}_{\mathrm{R}} \leq 2 \mathrm{MHz}$	\dagger	9	$\begin{aligned} & 2.7 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0^{\star} \\ & 1.0^{\star} \\ & 1.0^{\star} \\ & 1.0^{\star} \end{aligned}$	$\begin{aligned} & 22 \\ & 25 \\ & 30 \\ & 35 \end{aligned}$	MHz
Crystal Frequency, $\mathrm{OSC}_{\text {in }}$ and $\mathrm{OSC}_{\text {out }}$	$\begin{aligned} & \mathrm{C} 1 \leq 30 \mathrm{pF} \\ & \mathrm{C} 2 \leq 30 \mathrm{pF} \\ & \text { Includes Stray } \\ & \text { Capacitance } \end{aligned}$	$\mathrm{f}_{\text {XTAL }}$	11	$\begin{aligned} & 2.7 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 15 \\ & 15 \end{aligned}$	MHz
Output Frequency, REF $_{\text {out }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	$\mathrm{f}_{\text {out }}$	12, 14	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	dc dc dc	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	MHz
Operating Frequency of the Phase Detectors		f		$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	dc dc dc	$\begin{aligned} & - \\ & 2.0 \\ & 2.0 \end{aligned}$	MHz
Output Pulse Width, ϕ_{R}, ϕ_{V}, and LD	f_{R} in Phase with f_{V} $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$t_{\text {w }}$	13, 14	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{gathered} - \\ 100 \\ 90 \end{gathered}$	ns
Output Transition Times, $\phi_{\mathrm{R}}, \phi_{\mathrm{V}}, \mathrm{LD}, \mathrm{f}_{\mathrm{R}}$, and f_{V}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	13, 14	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	- - -	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	ns
Input Capacitance $f_{\text {in }}$ $\mathrm{OSC}_{\text {in }}$		$\mathrm{C}_{\text {in }}$	-	-	-	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	pF

* IF lower frequency is desired, use wave shaping or higher amplitude sinusoidal signal in ac-coupled case. Also, see Figure 25 for dc coupling.

Figure 8. Test Circuit, $f_{\text {in }}$

Figure 9. Test Circuit, OSC Circuitry Externally Driven [Note]

Figure 10. Circuit to Eliminate Self-Oscillation, OSC Circuitry Externally Driven [Note]

NOTE: Use the circuit of Figure 10 to eliminate self-oscillation of the OSCin pin when the MC145170-2 has power applied with no external signal applied at Vin. (Self-oscillation is not harmful to the MC145170-2 and does not damage the IC.)

Figure 11. Test Circuit, OSC Circuit with Crystal

Figure 13. Switching Waveform

Figure 12. Test Circuit

Figure 14. Test Load Circuit

3 Pin Connections

3.1 Digital Interface Pins

$\mathrm{D}_{\text {in }}$
Serial Data Input (Pin 5)
The bit stream begins with the most significant bit (MSB) and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration register, 2 bytes (16 bits) to access the N register, or 3 bytes (24 bits) to access the R register. Additionally, the R register can be accessed with a 15 -bit transfer (see Table 7). An optional pattern which resets the device is shown in Figure 15. The values in the C, N, and R registers do not change during shifting because the transfer of data to the registers is controlled by ENB.
The bit stream needs neither address nor steering bits due to the innovative BitGrabber registers. Therefore, all bits in the stream are available to be data for the three registers. Random access of any register is provided (i.e., the registers may be accessed in any sequence). Data is retained in the registers over a supply range of 2.7 to 5.5 V . The formats are shown in Figures 15, 16, 17, and 18.
$\mathrm{D}_{\text {in }}$ typically switches near 50% of V_{DD} to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of 1 to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case I_{OL} of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 7. Register Access
(MSBs are shifted in first, CO, NO, and RO are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
9 to 13 8 16 15 or 24 Other Values ≤ 32 Values >32	See Figure 15 C Register N Register R Register None See Figures 27 to 34	$\begin{gathered} \text { (Reset) } \\ \text { C7, C6, C5, ... C0 } \\ \text { N15, N14, N13, ..., N0 } \\ \text { R14, R13, R12, .., R0 } \end{gathered}$

CLK
 Serial Data Clock Input (Pin 7)

Low-to-high transitions on Clock shift bits available at D_{in}, while high-to-low transitions shift bits from $\mathrm{D}_{\text {out }}$. The chip's $16-1 / 2$-stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.

Four to eight clock cycles followed by five clock cycles are needed to reset the device; this is optional. Eight clock cycles are required to access the C register. Sixteen clock cycles are needed for the N register. Either 15 or 24 cycles can be used to access the R register (see Table 7 and Figures 15, 16, 17, and 18). For cascaded devices, see Figures 27 to 34.

CLK typically switches near 50% of V_{DD} and has a Schmitt-triggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\mathbf{D}_{\text {in }}$ for more information.

NOTE: To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at the potential of either the V_{SS} or V_{DD} pin during power up. That is, the CLK input should not be floated or toggled while the $V_{\text {DD }}$ pin is ramping from 0 to at least 2.7 V . If control of the CLK pin is not practical during power up, the initialization sequence shown in Figure 15 must be used.

$\overline{\text { ENB }}$

Active-Low Enable Input (Pin 6)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When $\overline{\text { ENB }}$ is in an inactive high state, shifting is inhibited, $\mathrm{D}_{\text {out }}$ is forced to the high-impedance state, and the port is held in the initialized state. To transfer data to the device, $\overline{\mathrm{ENB}}$ (which must start inactive high) is taken low, a serial transfer is made via Din and CLK, and ENB is taken back high. The low-to-high transition on $\overline{\mathrm{ENB}}$ transfers data to the C, N, or R register depending on the data stream length per Table 7.
NOTE: Transitions on $\overline{\text { ENB }}$ must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs when $\overline{\text { ENB }}$ is high and CLK is low.

This input is also Schmitt-triggered and switches near 50% of V_{DD}, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $\mathrm{D}_{\text {in }}$ for more information.

$D_{\text {out }}$

Three-State Serial Data Output (Pin 8)
Data is transferred out of the $16-1 / 2$-stage shift register through Dout on the high-to-low transition of CLK. This output is a No Connect, unless used in one of the manners discussed below.

Dout could be fed back to an MCU/MPU to perform a wrap-around test of serial data. This could be part of a system check conducted at power up to test the integrity of the system's processor, PC board traces, solder joints, etc.

The pin could be monitored at an in-line QA test during board manufacturing.
Finally, $\mathrm{D}_{\text {out }}$ facilitates troubleshooting a system and permits cascading devices.

3.2 Reference Pins

OSC $_{\text {in }} /$ OSC $_{\text {out }}$
Reference Oscillator Input/Output (Pins 1, 2)
These pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Frequency-setting capacitors of appropriate values as recommended by the crystal supplier are connected from each pin to ground (up to a maximum of 30 pF each, including stray capacitance). An external feedback resistor of 1.0 to $5.0 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The required connections for the components are shown in Figure 11.
$5 \mathrm{M} \Omega$ is required across the $\mathrm{OSC}_{\text {in }}$ and $\mathrm{OSC}_{\text {out }}$ pins in the ac-coupled case (see Figure 9 or alternate circuit Figure 10). $O S C_{\text {out }}$ is an internal node on the device and should not be used to drive any loads (i.e., $\mathrm{OSC}_{\text {out }}$ is unbuffered). However, the buffered $\mathrm{REF}_{\text {out }}$ is available to drive external loads.
The external signal level must be at least 1 Vpp ; the maximum frequencies are given in the Loop Specifications table. These maximum frequencies apply for R Counter divide ratios as indicated in the table. For very small ratios, the maximum frequency is limited to the divide ratio times 2 MHz . (Reason: the phase/frequency detectors are limited to a maximum input frequency of 2 MHz .)

If an external source is available which swings virtually rail-to-rail (V_{DD} to V_{SS}), then dc coupling can be used. In the dc-coupled case, no external feedback resistor is needed. OSC $_{\text {out }}$ must be a No Connect to avoid loading an internal node on the device, as noted above. For frequencies below 1 MHz , dc coupling must be used. The R counter is a static counter and may be operated down to dc. However, wave shaping by a CMOS buffer may be required to ensure fast rise and fall times into the $\mathrm{OSC}_{\text {in }}$ pin. See Figure 25.

Each rising edge on the $\mathrm{OSC}_{\text {in }}$ pin causes the R counter to decrement by one.

REF $_{\text {out }}$

Reference Frequency Output (Pin 3)
This output is the buffered output of the crystal-generated reference frequency or externally provided reference source. This output may be enabled, disabled, or scaled via bits in the C register (see Figure 16).
$\mathrm{REF}_{\text {out }}$ can be used to drive a microprocessor clock input, thereby saving a crystal. Upon power up, the onchip power-on-initialize circuit forces $\mathrm{REF}_{\text {out }}$ to the $\mathrm{OSC}_{\text {in }}$ divided-by- 8 mode.
$\mathrm{REF}_{\text {out }}$ is capable of operation to 10 MHz ; see the Loop Specifications table. Therefore, divide values for the reference divider are restricted to two or higher for OSC $_{\text {in }}$ frequencies above 10 MHz .

If unused, the pin should be floated and should be disabled via the C register to minimize dynamic power consumption and electromagnetic interference (EMI).

3.3 Counter Output Pins

f_{R}

R Counter Output (Pin 9)

This signal is the buffered output of the 15 -stage R counter. f_{R} can be enabled or disabled via the C register (patented). The output is disabled (static low logic level) upon power up. If unused, the output should be left disabled and unconnected to minimize interference with external circuitry.

The f_{R} signal can be used to verify the R counter's divide ratio. This ratio extends from 5 to 32,767 and is determined by the binary value loaded into the R register. Also, direct access to the phase detector via the $\mathrm{OSC}_{\text {in }}$ pin is allowed by choosing a divide value of 1 (see Figure 17). The maximum frequency which the phase detectors operate is 2 MHz . Therefore, the frequency of f_{R} must not exceed 2 MHz .

When activated, the f_{R} signal appears as normally low and pulses high. The pulse width is 4.5 cycles of the $\mathrm{OSC}_{\text {in }}$ pin signal, except when a divide ratio of 1 is selected. When 1 is selected, the $\mathrm{OSC}_{\mathrm{in}}$ signal is buffered and appears at the f_{R} pin.

$\mathbf{f}_{\mathbf{V}}$

N Counter Output (Pin 10)
This signal is the buffered output of the 16 -stage N counter. f_{V} can be enabled or disabled via the C register (patented). The output is disabled (static low logic level) upon power up. If unused, the output should be left disabled and unconnected to minimize interference with external circuitry.

The f_{V} signal can be used to verify the N counter's divide ratio. This ratio extends from 40 to 65,535 and is determined by the binary value loaded into the N register. The maximum frequency which the phase detectors operate is 2 MHz . Therefore, the frequency of f_{V} must not exceed 2 MHz .

When activated, the f_{V} signal appears as normally low and pulses high.

3.4 Loop Pins

$f_{i n}$
 Frequency Input (Pin 4)

This pin is a frequency input from the VCO. This pin feeds the on-chip amplifier which drives the N counter. This signal is normally sourced from an external voltage-controlled oscillator (VCO), and is accoupled into f_{in}. A 100 pF coupling capacitor is used for measurement purposes and is the minimum size recommended for applications (see Figure 25). The frequency capability of this input is dependent on the supply voltage as listed in Table 6, Loop Specifications. For small divide ratios, the maximum frequency is limited to the divide ratio times 2 MHz . (Reason: the phase/frequency detectors are limited to a maximum frequency of 2 MHz .)

For signals which swing from at least the V_{IL} to V_{IH} levels listed in the Electrical Characteristics table, dc coupling may be used. Also, for low frequency signals (less than the minimum frequencies shown in the Loop Specifications table), dc coupling is a requirement. The N counter is a static counter and may be operated down to dc. However, wave shaping by a CMOS buffer may be required to ensure fast rise and fall times into the $f_{\text {in }}$ pin. See Figure 25.
Each rising edge on the $\mathrm{f}_{\text {in }}$ pin causes the N counter to decrement by 1 .

$\mathbf{P D}_{\text {out }}$
 Single-Ended Phase/Frequency Detector Output (Pin 13)

This is a three-state output for use as a loop error signal when combined with an external low-pass filter. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/ frequency detector is described below and is shown in Figure 19.

POL bit (C7) in the C register $=$ low (see Figure 16)
Frequency of $f_{V}>f_{R}$ or Phase of f_{V} Leading f_{R} : negative pulses from high impedance
Frequency of $f_{V}<f_{R}$ or Phase of f_{V} Lagging f_{R} : positive pulses from high impedance
Frequency and Phase of $f_{V}=f_{R}$: essentially high-impedance state; voltage at pin determined by loop filter
POL bit (C7) = high
Frequency of $f_{V}>f_{R}$ or Phase of f_{V} Leading f_{R} : positive pulses from high impedance
Frequency of $f_{V}<f_{R}$ or Phase of f_{V} Lagging f_{R} : negative pulses from high impedance
Frequency and Phase of $f_{V}=f_{R}$: essentially high-impedance state; voltage at pin determined by loop filter
This output can be enabled, disabled, and inverted via the C register. If desired, $\mathrm{PD}_{\text {out }}$ can be forced to the high-impedance state by utilization of the disable feature in the C register (patented).
$\phi_{\mathbf{R}}$ and $\phi_{\mathbf{V}}$
Double-Ended Phase/Frequency Detector Outputs
(Pins 14, 15)
These outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 19.

POL bit (C7) in the C register $=$ low (see Figure 16)

Frequency of $f_{V}>f_{R}$ or Phase of f_{V} Leading $f_{R}: \phi_{V}=$ negative pulses, $\phi_{R}=$ essentially high
Frequency of $f_{V}<f_{R}$ or Phase of f_{V} Lagging $f_{R}: \phi_{V}=$ essentially high, $\phi_{R}=$ negative pulses
Frequency and Phase of $f_{V}=f_{R}: \phi_{V}$ and ϕ_{R} remain essentially high, except for a small minimum time period when both pulse low in phase
POL bit (C7) = high
Frequency of $f_{V}>f_{R}$ or Phase of f_{V} Leading $f_{R}: \phi_{R}=$ negative pulses, $\phi_{V}=$ essentially high
Frequency of $f_{V}<f_{R}$ or Phase of f_{V} Lagging $f_{R}: \phi_{R}=$ essentially high, $\phi_{V}=$ negative pulses
Frequency and Phase of $f_{V}=f_{R}: \phi_{V}$ and ϕ_{R} remain essentially high, except for a small minimum time period when both pulse low in phase

These outputs can be enabled, disabled, and interchanged via the C register (patented).

LD
 Lock Detector Output (Pin 11)

This output is essentially at a high level with narrow low-going pulses when the loop is locked (f_{R} and f_{V} of the same phase and frequency). The output pulses low when f_{V} and f_{R} are out of phase or different frequencies (see Figure 19).

This output can be enabled and disabled via the C register (patented). Upon power up, on-chip initialization circuitry disables LD to a static low logic level to prevent a false "lock" signal. If unused, LD should be disabled and left open.

3.5 Power Supply

$V_{\text {DD }}$
Most Positive Supply Potential (Pin 16)
This pin may range from 2.7 to 5.5 V with respect to V_{SS}.
For optimum performance, V_{DD} should be bypassed to V_{SS} using low-inductance capacitor(s) mounted very close to the device. Lead lengths on the capacitor(s) should be minimized. (The very fast switching speed of the device causes current spikes on the power leads.)
$\mathbf{V}_{\text {SS }}$
Most Negative Supply Potential (Pin 12)
This pin is usually ground. For measurement purposes, the V_{SS} pin is tied to a ground plane.

NOTE: This initialization sequence is usually not necessary because the on-chip power-on reset circuit performs the initialization function. However, this initialization sequence must be used immediately after power up if control of the CLK pin is not possible. That is, if CLK (Pin 7) toggles or floats upon power up, use the above sequence to reset the device. Also, use this sequence if power is momentarily interrupted such that the supply voltage to the device is reduced to below 2.7 V , but not down to at least 1 V (for example, the supply drops down to 2 V). This is necessary because the on-chip power-on reset is only activated when the supply ramps up from a voltage below approximately 1.0 V .

Figure 15. Reset Sequence

C7-POL:
Select the output polarity of the phase/frequency detectors. When set high, this bit inverts $\mathrm{PD}_{\text {out }}$ and interchanges the ϕ_{R} function with ϕ_{V} as depicted in Figure 19. Also see the phase detector output pin descriptions for more information. This bit is cleared low at power up.

C6-PDA/B: Selects which phase/frequency detector is to be used. When set high, enables the output of phase/frequency detector $\mathrm{A}\left(\mathrm{PD}_{\text {out }}\right)$ and disables phase/frequency detector B by forcing ϕ_{R} and ϕ_{V} to the static high state. When cleared low, phase/frequency detector B is enabled (ϕ_{R} and ϕ_{V}) and phase/frequency detector A is disabled with $\mathrm{PD}_{\text {out }}$ forced to the high-impedance state. This bit is cleared low at power up.

C5-LDE: Enables the lock detector output when set high. When the bit is cleared low, the LD output is forced to a static low level. This bit is cleared low at power up.

C4-C2, OSC2 - OSC0:
Reference output controls which determines the $\mathrm{REF}_{\text {out }}$ characteristics as shown below. Upon power up, the bits are initialized such that $\mathrm{OSC}_{\mathrm{in}} / 8$ is selected.

C4	C3	C2	REF ${ }_{\text {out }}$ Frequency
0	0	0	dc (Static Low)
0	0	1	$\mathrm{OSC}_{\text {in }}$
0	1	0	$\mathrm{OSC}_{\text {in }} / 2$
0	1	1	$\mathrm{OSC}_{\text {in }} / 4$
1	0	0	$\begin{aligned} & \mathrm{OSC}_{\text {in }} / 8 \text { (POR } \\ & \text { Default) } \end{aligned}$
1	0	1	$\mathrm{OSC}_{\text {in }} / 16$
1	1	0	$\mathrm{OSC}_{\text {in }} / 8$
1	1	1	$\mathrm{OSC}_{\text {in }} / 16$

$\mathrm{C} 1-\mathrm{f}_{\mathrm{V}} \mathrm{E}$: Enables the f_{V} output when set high. When cleared low, the f_{V} output is forced to a static low level. The bit is cleared low upon power up.
$C 0-f_{R} E$: Enables the f_{R} output when set high. When cleared low, the f_{R} output is forced to a static low level. The bit is cleared low upon power up.

Figure 16. \quad Register Access and Format (8 Clock Cycles are Used)

Figure 17. R Register Access and Formats (Either 24 or 15 Clock Cycles Can Be Used)

LK \qquad

*At this point, the two new bytes are transferred to the N register and stored. No other registers are affected. In addition, the N and R counters are jam-loaded and begin counting down together.

Figure 18. N Register Access and Format (16 Clock Cycles Are Used)

$\mathrm{V}_{\mathrm{H}}=$ High voltage level
$\mathrm{V}_{\mathrm{L}}=$ Low voltage level
*At this point, when both f_{R} and f_{V} are in phase, both the sinking and sourcing output FETs are turned on for a very short internal.
NOTE: The PD $_{\text {out }}$ generates error pulses during out-of-lock conditions. When locked in phase and frequency, the output is high impedance and the voltage at that pin is determined by the low-pass filter capacitor. PDout, ϕ_{R} and ϕ_{V} are shown with the polarity bit $(\mathrm{POL})=$ low; see Figure 16 for POL.

Figure 19. Phase/Frequency Detector and Lock Detector Output Waveforms

4 Design Considerations

4.1 Crystal Oscillator Considerations

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

4.1.1 Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to $\mathrm{OSC}_{\mathrm{in}}$. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to $\mathrm{OSC}_{\text {in }}$ may be used (see Figures 9 and 10).

For additional information about TCXOs, visit motorola.com on the world wide web.

4.1.2 Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 20.

The crystal should be specified for a loading capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ which does not exceed 20 pF when used at the highest operating frequencies listed in Table 6, Loop Specifications. Larger C_{L} values are possible for lower frequencies. Assuming R1 $=0 \Omega$, the shunt load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C_{1} \neq C_{2}}{C_{1}+C_{2}}
$$

where
$\mathrm{C}_{\mathrm{in}}=5.0 \mathrm{pF}$ (see Figure 21)
$\mathrm{C}_{\text {out }}=6.0 \mathrm{pF}$ (see Figure 21)
$\mathrm{C}_{\mathrm{a}}=1.0 \mathrm{pF}$ (see Figure 21)
C1 and C2 $=$ external capacitors (see Figure 21)
$\mathrm{C}_{\text {stray }}=$ the total equivalent external circuit stray
capacitance appearing across the crystal
terminals

The oscillator can be "trimmed" on-frequency by making a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the $\mathrm{OSC}_{\mathrm{in}}$ and $\mathrm{OSC}_{\text {out }}$ pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for C_{in} and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {stray }}$ becomes 0 in the above expression for C_{L}.
A good design practice is to pick a small value for C 1 , such as 5 to 10 pF . Next, C 2 is calculated. $\mathrm{C} 1<\mathrm{C} 2$ results in a more robust circuit for start-up and is more tolerant of crystal parameter variations.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 22. The maximum drive level specified by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 20. limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency at the $\mathrm{REF}_{\text {out }}$ pin ($\mathrm{OSC}_{\text {out }}$ is not used because loading impacts the oscillator). The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the oscillator start-up time is proportional to the value of R1.
Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful (see Table 8).

Figure 20. Pierce Crystal Oscillator Circuit

Figure 21. Parasitic Capacitances of the Amplifier and $\mathrm{C}_{\text {stray }}$

Figure 22. Equivalent Crystal Networks

Freescale Semiconductor, Inc.

Recommended Reading

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit-Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Contact Motorola for MC145170-2 control software.
Table 8. Partial List of Crystal Manufacturers

CTS Corp.
United States Crystal Corp.
Crystek Crystal
Statek Corp.
Fox Electronics

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.
(A)

$$
\begin{aligned}
& \omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NR} R_{1} \mathrm{C}}} \\
& \zeta=\frac{\mathrm{N} \omega_{\mathrm{n}}}{2 \mathrm{~K}_{\phi} \mathrm{K}_{\mathrm{VCO}}} \\
& \mathrm{~F}(\mathrm{~s})=\frac{1}{\mathrm{R}_{1} \mathrm{sC}+1}
\end{aligned}
$$

(B)

$\omega_{n}=\sqrt{\frac{K_{\phi} K_{V C O}}{N C\left(R_{1}+R_{2}\right)}}$
$\zeta=0.5 \omega_{n}\left(R_{2} \mathrm{C}+\frac{\mathrm{N}}{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}\right)$
$F(s)=\frac{R_{2} s C+1}{\left(R_{1}+R_{2}\right) s C+1}$
(C)

$$
\begin{aligned}
& \omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NCR}}{ }_{1}} \\
& \zeta=\frac{\omega_{n} R_{2} C}{2} \\
& F(s)=\frac{R_{2} s C+1}{R_{1} s C}
\end{aligned}
$$

Notes:

1. For (C), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2 . A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.
2. The ϕ_{R} and ϕ_{V} outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp.
3. For the latest information on MC33077 or equivalent, see the Motorola IC web site at http://www.motorola.com/semiconductors.

Denifitions:
$\mathrm{N}=$ Total Division Ratio in Feedback Loop
$K_{\phi}($ Phase Detector Gain) = VDD/4p volts per radian for PDout
K_{ϕ} (Phase Detector Gain) - VDD/2p volts per radian for fV and fR
$\mathrm{K}_{\mathrm{VCO}}(\mathrm{VCO}$ Gain $)=\frac{2 \pi \Delta \mathrm{f}_{\mathrm{VCO}}}{\Delta \mathrm{V}_{\mathrm{VCO}}}$
For a nominal design starting point, the user might consider a damping factor $\zeta=0.7$ and a natural loop frequency $\omega_{\mathrm{n}}=\left(2 \pi \mathrm{f}_{\mathrm{R}} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher f_{R}-related VCO standards.

Figure 23. Phase-Locked Loop - Low Pass Filter Design

NOTES:

1. The ϕ_{R} and ϕ_{V} outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The ϕ_{R} and ϕ_{V} outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used inthe combiner/loop filter.
2. For optimum performance, bypass the $\mathrm{V}_{D D}$ pin to $\mathrm{V}_{S S}(G N D)$ with one or more low-inductance capacitors.
3. The R counter is programmed for a divide value $=O S C_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N$, wher e N is the divide value of the N counter.
4. May be an R-C low-pass filter.
5. May be a bipolar transistor.

Figure 24. Example Application

NOTE:
The signals at Points A and B may be low-frequency sinusoidal or square waves with slow edge rates or noisy signal edges. At Points C and D, the signals are cleaned up, have sharp edge rates, and rail-to-rail signal swings. With signals as described at Points C and D, the MC145170-2 is guaranteed to operate down to a frequency as low as dc.
Refer to the MC74HC14A data sheet for input switching levels and hysteresis voltage range.

Figure 25. Low Frequency Operation Using DC Coupling

Marker	Frequency $(\mathbf{M H z})$	Resistance (Ω)	Reactance (Ω)	Capacitance $(\mathbf{p F})$
1	5	2390	-5900	5.39
2	100	39.2	-347	4.58
3	150	25.8	-237	4.48
4	185	42.6	-180	4.79

Figure 26. Input Impedance at $f_{i n}$ - Series Format ($\mathrm{R}+\mathrm{jX}$)
(5.0 MHz to 185 MHz)

Figure 27. Cascading Two MC145170-2 Devices

N

NOTE: At this point, the new data is transferred to the C registers of both devices and stored. No other registers are affected.

Figure 28. Accessing the C Registers of Two Cascaded MC145170-2 Devices

NOTE: At this point, the new data is transferred to the R registers of both devices and stored. No other registers are affected.

Figure 29. Accessing the R Registers of Two Cascaded MC145170-2 Devices

