imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual Monostable Multivibrator

The MC14528B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an output pulse over a wide range of widths, the duration of which is determined by the external timing components, C_X and R_X .

- Separate Reset Available
- Diode Protection on All Inputs
- Triggerable from Leading or Trailing Edge Pulse
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- This part should only be used in new designs where the pulse width is $< 10 \,\mu s$.

Note: For designs requiring a pulse width > 10 μ s, please see the MC14538, which is pin-for-pin compatible.

Symbol	Parameter	Value	Unit			
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V			
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V			
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA			
PD	Power Dissipation, per Package (Note 3.)	500	mW			
T _A	Ambient Temperature Range	-55 to +125	°C			
T _{stg}	Storage Temperature Range	-65 to +150	°C			
ΤL	Lead Temperature (8-Second Soldering)	260	°C			

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 2.)

2. Maximum Ratings are those values beyond which damage to the device may occur.

3. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

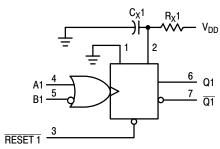
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

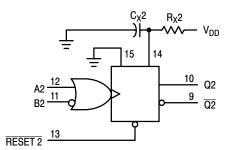
ON Semiconductor®

http://onsemi.com

			DIAGRAMS
		PDIP–16 P SUFFIX CASE 648	16 MC14528BCP O AWLYYWW
6.50	and the second s	SOIC–16 D SUFFIX CASE 751B	16 ПППППППППП 14528B ○ AWLYWW ППППППППП 1
EN LU		SOEIAJ–16 F SUFFIX CASE 966	16 MC14528B △ LYW 1
	A WL, L YY, Y WW, W	= Assembly = Wafer Lot = Year = Work Wee	

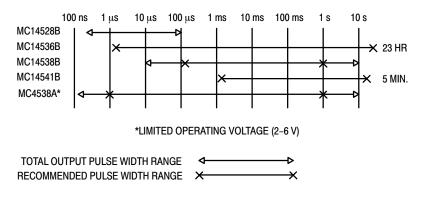
ORDERING INFORMATION


Device	Package	Shipping
MC14528BCP	PDIP-16	2000/Box
MC14528BD	SOIC-16	48/Rail
MC14528BDR2	SOIC-16	2500/Tape & Reel
MC14528BF	SOEIAJ-16	See Note 1.
MC14528BFEL	SOEIAJ-16	See Note 1.


 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

PIN ASSIGNMENT

			-
V _{SS} [1●	16] V _{DD}
C _X 1/R _X 1	2	15] v _{ss}
RESET 1	3	14] C _X 2/R _X 2
A1 [4	13	RESET 2
B1 [5	12] A2
Q1 [6	11] B2
	7	10] Q2
V _{SS} [8	9] 02



 $\begin{array}{l} V_{DD} = PIN \; 16 \\ V_{SS} = PIN \; 1, \; PIN \; 8, \; PIN \; 15 \\ R_X \; AND \; C_X \; ARE \; EXTERNAL \; COMPONENTS \end{array}$

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 5	5°C		25°C		125	5°C	
Characteristic		Symbol	Vdc	Min	Мах	Min	Тур ^(4.)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05	 	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95		Vdc
$\label{eq:VO} \begin{array}{l} \mbox{Input Voltage} \\ (V_O = 4.5 \mbox{ or } 0.5 \mbox{ Vdc}) \\ (V_O = 9.0 \mbox{ or } 1.0 \mbox{ Vdc}) \\ (V_O = 13.5 \mbox{ or } 1.5 \mbox{ Vdc}) \end{array}$	"0" Level	V _{IL}	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (V_{OH} = 2.5 \ \text{Vdc}) \\ (V_{OH} = 4.6 \ \text{Vdc}) \\ (V_{OH} = 9.5 \ \text{Vdc}) \\ (V_{OH} = 13.5 \ \text{Vdc}) \end{array}$	Source	I _{OH}	5.0 5.0 10 15	- 1.2 - 0.64 - 1.6 - 4.2	 	- 1.0 - 0.51 - 1.3 - 3.4	- 1.7 - 0.88 - 2.25 - 8.8	 	- 0.7 - 0.36 - 0.9 - 2.4	 	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mAdc
Input Current		l _{in}	15	—	± 0.1	—	±0.00001	± 0.1	—	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	-	_	_	5.0	7.5	_	—	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μAdc
Total Supply Current at an external load Capacitan and at external timing capacitance (C_X), use th formula — ^(5.)	ice (C _L)	Ι _Τ		wher	e: I _T in μA	R _X C ₃ (per circu	$C_L + 0.36C_X)$ $_{\chi}(V_{DD}^{-2})^2 f] x$ $_{\chi}(it), C_L and C$ $_{\chi}(it) kHz is inp$:10 ^{–3} C _X in pF, R	X in mego	hms,	μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS (8.) (CL = 50 pF, TA = 25° C)

Characteristic	Symbol	C _X pF	Rχ k Ω	V _{DD} Vdc	Min	Тур ^(9.)	Max	Unit
Output Rise and Fall Time t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	_		5.0 10 15		100 50 40	200 100 80	ns
$\begin{array}{l} \text{Turn-Off, Turn-On Delay Time A or B to Q or \overline{Q} \\ t_{\text{PLH}}, t_{\text{PHL}} = (1.7 \text{ ns/pF}) \text{ C}_{\text{L}} + 240 \text{ ns} \\ t_{\text{PLH}}, t_{\text{PHL}} = (0.66 \text{ ns/pF}) \text{ C}_{\text{L}} + 87 \text{ ns} \\ t_{\text{PLH}}, t_{\text{PHL}} = (0.5 \text{ ns/pF}) \text{ C}_{\text{L}} + 65 \text{ ns} \end{array}$	t _{PLH} , t _{PHL}	15	5.0	5.0 10 15		325 120 90	650 240 180	ns
Turn–Off, Turn–On Delay Time — A or B to Q or \overline{Q} t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 620 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 257 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 185 \text{ ns}$	t _{PLH} , t _{PHL}	1000	10	5.0 10 15		705 290 210		ns
Input Pulse Width — A or B	^t wн	15	5.0	5.0 10 15	150 75 55	70 30 30		ns
	t _{WL}	1000	10	5.0 10 15		70 30 30		ns
Output Pulse Width — Q or \overline{Q} (For C _X < 0.01 μ F use graph for appropriate V _{DD} level.)	tw	15	5.0	5.0 10 15		550 350 300		ns
Output Pulse Width — Q or \overline{Q} (For C _X > 0.01 µF use formula: t _W = 0.2 R _X C _X Ln [V _{DD} - V _{SS}]) ^(6.)	t _W	10,000	10	5.0 10 15	15 10 15	30 50 55	45 90 95	μs
Pulse Width Match between Circuits in the same package	t1 – t2	10,000	10	5.0 10 15		6.0 8.0 8.0	25 35 35	%
Reset Propagation Delay — $\overline{\text{Reset}}$ to Q or $\overline{\text{Q}}$	t _{PLH} , t _{PHL}	15	5.0	5.0 10 15		325 90 60	600 225 170	ns
		1000	10	5.0 10 15		1000 300 250		ns
Retrigger Time	t _{rr}	15	5.0	5.0 10 15	0 0 0			ns
		1000	10	5.0 10 15	0 0 0			ns
External Timing Resistance	R _X		—		5.0	—	1000	kΩ
External Timing Capacitance	C _X	_	_		N	No Limits ⁽⁷	.)	μF

R_X is in Ohms, C_X is in farads, V_{DD} and V_{SS} in volts, PW_{out} in seconds.
If C_X > 15 μF, Use Discharge Protection Diode D_X, per Fig. 9.
The formulas given are for the typical characteristics only at 25°C.
Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

	Inputs	Outputs			
Reset	Α	В	Q	Q	
H		H	л	л	
H	L	∼	Л	Л	
H	ノ へ	L	Not Triggered		
H	H	~ ~	Not Triggered		
H	L, H, へ	H	Not Triggered		
H	L	L, H, <i>-/</i>	Not Triggered		
	X	X	L	H	
	X	X	Not Tr	iggered	

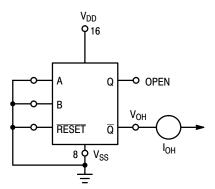
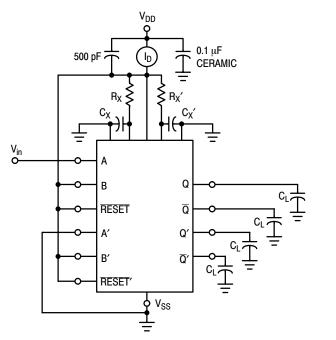



Figure 1. Output Source Current Test Circuit

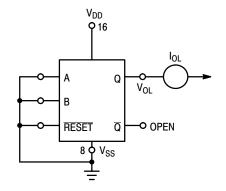
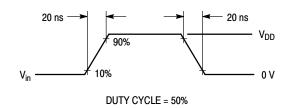
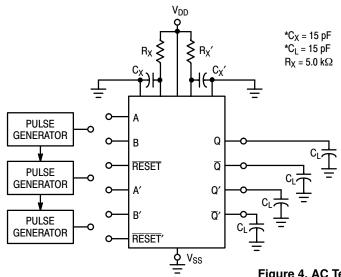




Figure 2. Output Sink Current Test Circuit

INPUT CONNECTIONS

Characteristics	Reset	Α	В
t _{PLH} , t _{PHL} , t _{TLH} , t _{THL} t _W	V _{DD}	PG1	V _{DD}
t _{PLH} , t _{PHL} , t _{TLH} , t _{THL} t _W	V _{DD}	V_{SS}	PG2
t _{PLH(R)} , t _{PHL(R)} , t _W	PG3	PG1	PG2

*Includes capacitance of probes, wiring, and fixture parasitic.

NOTE: AC test waveforms for PG1, PG2, and PG3 on next page.



Figure 4. AC Test Circuit

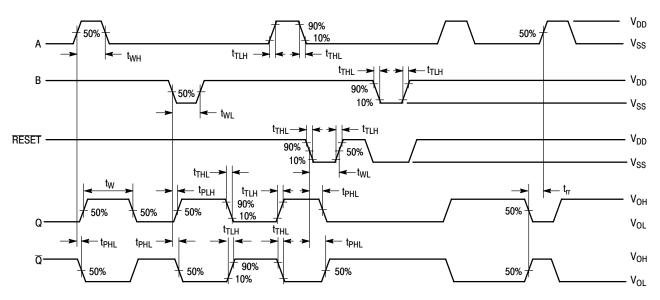


Figure 5. AC Test Waveforms

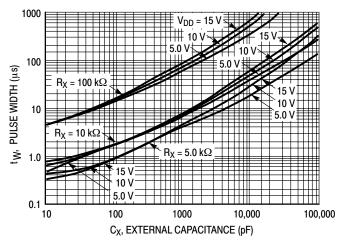
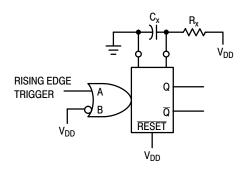
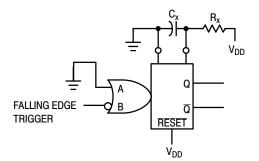
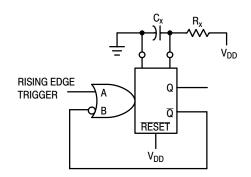
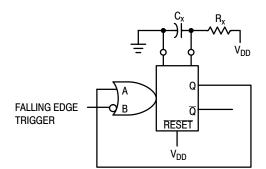



Figure 6. Pulse Width versus C_X

TYPICAL APPLICATIONS

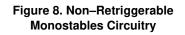

Figure 7. Retriggerable Monostables Circuitry

Figure 9. Use of a Diode to Limit Power Down Current Surge

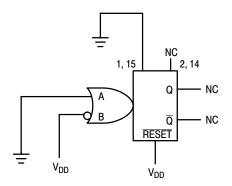
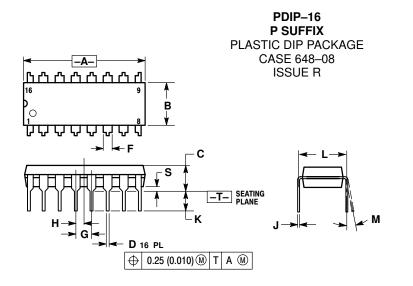
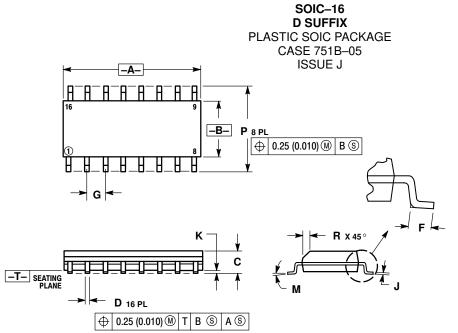
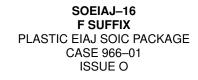



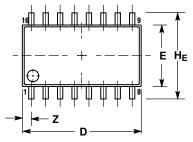
Figure 10. Connection of Unused Sections

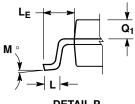

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0 °	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

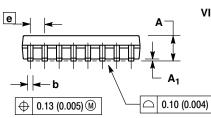

PACKAGE DIMENSIONS

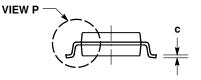



NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0 °	7°	0°	7°	
Ρ	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

PACKAGE DIMENSIONS





A

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI 1.

21. DIMENSIONING AND TOLEDANGING FEITAING Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (a dea) DED KINE

OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
p	0.35	0.50	0.014	0.020	
C	0.18	0.27	0.007	0.011	
D	9.90	10.50	0.390	0.413	
Е	5.10	5.45	0.201	0.215	
e	1.27	BSC	0.050 BSC		
HE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
Μ	0 °	10 °	0 °	10 °	
Q1	0.70	0.90	0.028	0.035	
Ζ		0.78		0.031	

<u>Notes</u>

ON Semiconductor and we registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and the softicers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.