: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC14538B

Dual Precision Retriggerable/Resettable Monostable Multivibrator

The MC14538B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an accurate output pulse over a wide range of widths, the duration and accuracy of which are determined by the external timing components, C_{X} and R_{X}.

Output Pulse Width $\mathrm{T}=\mathrm{R}_{\mathrm{X}} \cdot \mathrm{C}_{\mathrm{X}}$ (secs)
$\mathrm{R}_{\mathrm{X}}=\Omega$
$C_{X}=$ Farads
\geq - Unlimited Rise and Fall Time Allowed on the A Trigger Input
\geq - Pulse Width Range $=10 \mu$ s to 10 s
\geq - Latched Trigger Inputs
\geq - Separate Latched Reset Inputs
\geq - 3.0 Vdc to 18 Vdc Operational Limits
\geq - Triggerable from Positive (A Input) or Negative-Going Edge (B-Input)
\geq - Capable of Driving Two Low-power TTL Loads or One
Low-power Schottky TTL Load Over the Rated Temperature Range
\geq • Pin-for-pin Compatible with MC14528B and CD4528B (CD4098)
\geq - Use the MC54/74HC4538A for Pulse Widths Less Than 10μ s with
Supplies Up to 6 V.

MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$) (Note 2.)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 3.)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

2. Maximum Ratings are those values beyond which damage to the device may occur.
3. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC14538BCP	PDIP-16	2000/Box
MC14538BD	SOIC-16	48/Rail
MC14538BDR2	SOIC-16	2500/Tape \& Reel
MC14538BDT	TSSOP-16	96/Rail
MC14538BDTR2	TSSOP-16	2500/Tape \& Reel
MC14538BDW	SOIC-16	47/Rail
MC14538BDWR2	SOIC-16	1000/Tape \& Reel
MC14538BF	SOEIAJ-16	See Note 1.
MC14538BFEL	SOEIAJ-16	See Note 1.

1. For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

MC14538B

PIN ASSIGNMENT			
$\mathrm{V}_{\text {SS }}$	$1 \bullet$	16	V_{DD}
$\mathrm{C}_{\mathrm{X}} /$ /Rx A	2	15	$\mathrm{V}_{\text {SS }}$
RESET A [3	14	$]^{C} / R_{X} B$
A_{A}	4	13	RESET B
\bar{B}_{A}	5	12	A_{B}
Q_{A}	6	11	$\overline{\mathrm{B}}_{\mathrm{B}}$
\bar{Q}_{A} L	7	10	Q_{B}
$\mathrm{v}_{\text {SS }}$	8	9	\bar{Q}_{B}

BLOCK DIAGRAM

ONE-SHOT SELECTION GUIDE

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (4.)	Max	Min	Max	
Output Voltage$V_{\text {in }}=V_{D D} \text { or } 0$	V_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|ll} \begin{array}{ll} \text { Input Voltage } & \text { "0" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \text { " } 1 " \text { " Level } \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array} \end{array}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
$\begin{array}{ll} \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{IOH}^{\text {l }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current, Pin 2 or 14	$\mathrm{l}_{\text {in }}$	15	-	± 0.05	-	± 0.00001	± 0.05	-	± 0.5	$\mu \mathrm{Adc}$
Input Current, Other Inputs	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance, Pin 2 or 14	$\mathrm{C}_{\text {in }}$	-	-	-	-	25	-	-	-	pF
Input Capacitance, Other Inputs $\left(\mathrm{V}_{\mathrm{in}}=0\right)$	$\mathrm{Cin}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package) $\mathrm{Q}=$ Low, $\overline{\mathrm{Q}}=$ High	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current, Active State (Both) (Per Package) $\mathrm{Q}=$ High, $\mathrm{Q}=$ Low	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	-	$\begin{aligned} & 0.04 \\ & 0.08 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.45 \\ & 0.70 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	mAdc
Total Supply Current at an external load capacitance (C_{L}) and at external timing network $\left(R_{X}, C_{X}\right){ }^{(5 .)}$	$\mathrm{I}^{\text {T }}$	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		$\begin{aligned} & I_{T}=(3.5 \\ & I_{T}=(8.0 \\ & I_{T}=(1.2 \\ & \text { where } \end{aligned}$	$\begin{aligned} & \left.10^{-2}\right) R \\ & \left.10^{-2}\right) \\ & \left.\times 10^{-1}\right) \\ & I_{T} \text { in } \mu \mathrm{A} \\ & C_{X} \text { in } \mu F, \\ & \mathrm{f} \text { in } \mathrm{Hz} \text { is } \end{aligned}$	$\begin{aligned} & C_{X f}^{f}+4 C_{x f}^{f} \\ & { }^{C} X_{x}+9 C_{X f}^{f} \\ & 3_{x} C_{x}^{f}+12 C \end{aligned}$ ne monosta C_{L} in $p F, R_{X}$ he input fre	$\begin{aligned} & 1 \times 10^{-} \\ & 2 \times 10^{-} \\ & \mathrm{f}+3 \mathrm{x} \\ & \text { le swito } \\ & \mathrm{nk} \text { ohm } \\ & \text { ency. } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}{ }^{f}$ $\mathrm{C}_{\mathrm{L}} \mathrm{f}$ ${ }^{-5} \mathrm{C}_{\mathrm{L}}{ }^{f}$ ing only) and		$\mu \mathrm{Adc}$

4. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS ${ }^{(6 .)}\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$V_{D D}$ Vdc	All Types			Unit
			Min	Typ ${ }^{(7 .)}$	Max	
Output Rise Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {the }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Output Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{THL}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {HL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time A or B to Q or \bar{Q} $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+255 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+132 \mathrm{~ns}$ $\mathrm{t}_{\text {PLH }}$, tPHL $=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+87 \mathrm{~ns}$	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 300 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 220 \end{aligned}$	ns
```Reset to Q or \overline{Q} tPLH,}\mp@subsup{t}{PHL}{}=(0.90\textrm{ns}/\textrm{pF})\mp@subsup{C}{L}{}+205\textrm{ns tPLH, tPHL = (0.36 ns/pF) C C + 107 ns tPLH,```		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 250 \\ 125 \\ 95 \end{gathered}$	$\begin{aligned} & 500 \\ & 250 \\ & 190 \end{aligned}$	ns
Input Rise and Fall Times Reset	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	-	-	$\begin{aligned} & \hline 15 \\ & 5 \\ & 4 \end{aligned}$	$\mu \mathrm{s}$
B Input		$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 300 \\ & 1.2 \\ & 0.4 \end{aligned}$	$\begin{gathered} 1.0 \\ 0.1 \\ 0.05 \end{gathered}$	ms
A Input		$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	No Limit			-
Input Pulse Width A, B, or Reset	$\mathrm{t}_{\mathrm{wH}},$ twL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 170 \\ 90 \\ 80 \end{gathered}$	$\begin{aligned} & 85 \\ & 45 \\ & 40 \end{aligned}$	-	ns
Retrigger Time	$\mathrm{t}_{\mathrm{rr}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	-	ns
Output Pulse Width — Q or $\bar{Q}$ Refer to Figures 8 and 9$\mathrm{C}_{\mathrm{X}}=0.002 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$$C_{X}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$$\mathrm{C}_{\mathrm{X}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$	T	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 198 \\ & 200 \\ & 202 \end{aligned}$	$\begin{aligned} & 210 \\ & 212 \\ & 214 \end{aligned}$	$\begin{aligned} & 230 \\ & 232 \\ & 234 \end{aligned}$	$\mu \mathrm{s}$
		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 9.4 \\ & 9.5 \end{aligned}$	$\begin{gathered} 9.86 \\ 10 \\ 10.14 \end{gathered}$	$\begin{aligned} & 10.5 \\ & 10.6 \\ & 10.7 \end{aligned}$	ms
		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.92 \\ & 0.93 \end{aligned}$	$\begin{gathered} \hline 0.965 \\ 0.98 \\ 0.99 \end{gathered}$	$\begin{aligned} & 1.03 \\ & 1.04 \\ & 1.06 \end{aligned}$	s
Pulse Width Match between circuits in the same package. $C_{X}=0.1 \mu F, R_{X}=100 \mathrm{k} \Omega$	$\begin{gathered} 100 \\ {\left[\left(T_{1}-T_{2}\right) / T_{1}\right]} \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 5.0 \\ & \pm 5.0 \\ & \pm 5.0 \end{aligned}$	\%

6. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

External Timing Resistance	$\mathrm{R}_{\mathrm{X}}$	-	5.0	-	$(8)$.	$\mathrm{k} \Omega$
External Timing Capacitance	$\mathrm{C}_{\mathrm{X}}$	-	0	-	No   $\operatorname{Limit}(9)$.	$\mu \mathrm{F}$

8. The maximum usable resistance $R_{X}$ is a function of the leakage of the capacitor $C_{X}$, leakage of the MC14538B, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for $R_{x}>1 \mathrm{M} \Omega$.
9. If $C_{X}>15 \mu \mathrm{~F}$, use discharge protection diode per Fig. 11.


Figure 1. Logic Diagram
(1/2 of Devlce Shown)


Figure 2. Power Dissipation Test Circuit and Waveforms


Figure 3. Switching Test Circuit


Figure 4. Switching Test Waveforms


Figure 5. Typical Normalized Distribution of Units for Output Pulse Width


Figure 6. Typical Pulse Width Variation as a Function of Supply Voltage VD


Figure 7. Typical Total Supply Current versus Output Duty Cycle


Figure 8. Typical Error of Pulse Width Equation versus Temperature


Figure 9. Typical Error of Pulse Width Equation versus Temperature

## THEORY OF OPERATION



Figure 10. Timing Operation

## TRIGGER OPERATION

The block diagram of the MC14538B is shown in Figure 1, with circuit operation following.

As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor $\mathrm{C}_{\mathrm{X}}$ completely charged to $\mathrm{V}_{\mathrm{DD}}$. When the trigger input A goes from $\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD}}$ (while inputs B and $\overline{\text { Reset }}$ are held to $\mathrm{V}_{\mathrm{DD}}$ ) a valid trigger is recognized, which turns on comparator C 1 and N -channel transistor N1 ${ }^{1}$. At the same time the output latch is set. With transistor N1 on, the capacitor $\mathrm{C}_{\mathrm{X}}$ rapidly discharges toward $\mathrm{V}_{\mathrm{SS}}$ until $\mathrm{V}_{\text {ref1 }}$ is reached. At this point the output of comparator C 1 changes state and transistor N1 turns off. Comparator C 1 then turns off while at the same time comparator C 2 turns on. With transistor N 1 off, the capacitor $\mathrm{C}_{\mathrm{X}}$ begins to charge through the timing resistor, $\mathrm{R}_{\mathrm{X}}$, toward $\mathrm{V}_{\mathrm{DD}}$. When the voltage across $\mathrm{C}_{\mathrm{X}}$ equals $\mathrm{V}_{\text {ref } 2}$, comparator C 2 changes state, causing the output latch to reset ( Q goes low) while at the same time disabling comparator C2 (2). This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

In the quiescent state, $\mathrm{C}_{\mathrm{X}}$ is fully charged to $\mathrm{V}_{\mathrm{DD}}$ causing the current through resistor $\mathrm{R}_{\mathrm{X}}$ to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the MC14538B is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of $\mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$, or the duty cycle of the input waveform.

## RETRIGGER OPERATION

The MC14538B is retriggered if a valid trigger occurs (3) followed by another valid trigger (4) before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $\mathrm{V}_{\text {ref 1 }}$, but has not yet reached $\mathrm{V}_{\text {ref 2 }}$, will cause an increase in output pulse width T . When a valid retrigger is initiated (4), the voltage at $\mathrm{C}_{\mathrm{X}} / \mathrm{R}_{\mathrm{X}}$ will again drop to $\mathrm{V}_{\text {ref } 1}$ before progressing along the RC charging curve toward $\mathrm{V}_{\mathrm{DD}}$. The Q output will remain high until time T, after the last valid retrigger.

## RESET OPERATION

The MC14538B may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on Reset sets the reset latch and causes the capacitor to be fast charged to $\mathrm{V}_{\mathrm{DD}}$ by turning on transistor P1 (5). When the voltage on the capacitor reaches $\mathrm{V}_{\text {ref 2 }}$, the reset latch will clear, and will then be ready to accept another pulse. It the $\overline{\text { Reset }}$ input is held low, any trigger inputs that occur will be inhibited and the Q and $\overline{\mathrm{Q}}$ outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Reset input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

## POWER-DOWN CONSIDERATIONS

Large capacitance values can cause problems due to the large amount of energy stored. When a system containing
the MC14538B is powered down, the capacitor voltage may discharge from $\mathrm{V}_{\mathrm{DD}}$ through the standard protection diodes at pin 2 or 14. Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the $\mathrm{V}_{\mathrm{DD}}$ supply must not be faster than $\left(\mathrm{V}_{\mathrm{DD}}\right)$. $(\mathrm{C}) /(10 \mathrm{~mA})$. For example, if $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ and $\mathrm{C}_{\mathrm{X}}=10 \mu \mathrm{~F}$, the $\mathrm{V}_{\mathrm{DD}}$ supply should discharge no faster than $(10 \mathrm{~V}) \times(10 \mu \mathrm{~F}) /(10 \mathrm{~mA})=$ 10 ms . This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate.

When a more rapid decrease of $\mathrm{V}_{\mathrm{DD}}$ to zero volts occurs, the MC14538B can sustain damage. To avoid this possibility use an external clamping diode, $\mathrm{D}_{\mathrm{X}}$, connected as shown in Fig. 11.


Figure 11. Use of a Diode to Limit Power Down Current Surge

## TYPICAL APPLICATIONS



Figure 12. Retriggerable Monostables Circuitry


Figure 13. Non-Retriggerable Monostables Circuitry


Figure 14. Connection of Unused Sections

## MC14538B

## PACKAGE DIMENSIONS

PDIP-16<br>P SUFFIX<br>PLASTIC DIP PACKAGE<br>CASE 648-08<br>ISSUE R



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54 BSC	
H	0.050 BSC		1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	$0^{\circ}$	$10^{\circ}$	$0^{\circ}$	$10^{\circ}$
S	0.020	0.040	0.51	1.01

SOIC-16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B-05
ISSUE J


NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION


	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	$0^{\circ}$	$7^{\circ}$	$0^{\circ}$	$7^{\circ}$		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

## PACKAGE DIMENSIONS

SOIC-16
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751G-03
ISSUE B


TSSOP-16
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F-01
ISSUE O


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE $0.08(0.003)$ TOTAL IN PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM EXCESS OF THE K DIM
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC	0.252	BSC	
M	$0^{\circ}$	$8^{\circ}$	$0^{\circ}$	$8^{\circ}$

## PACKAGE DIMENSIONS

SOEIAJ-16 F SUFFIX<br>PLASTIC EIAJ SOIC PACKAGE<br>CASE 966-01<br>ISSUE O



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982 .
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD

FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD BETWEEN PROTRU
TO BE 0.46 ( 0.018 ).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
$\mathrm{A}_{1}$	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
$\mathrm{H}_{\mathrm{E}}$	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
$\mathrm{L}_{\mathrm{E}}$	1.10	1.50	0.043	0.059
M	$0^{\circ}$	$10^{\circ}$	$0^{\circ}$	$10^{\circ}$
$Q_{1}$	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

ECLinPS, ECLinPS Lite and ECLinPS Plus are trademarks of Semiconductor Components Industries, LLC.


#### Abstract

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.


## PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, England, Ireland

## CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

