: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC14541B

Programmable Timer

The MC14541B programmable timer consists of a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors, an automatic power-on reset circuit, and output control logic.

Timing is initialized by turning on power, whereupon the power-on reset is enabled and initializes the counter, within the specified $V_{D D}$ range. With the power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16 -stage counter divides the oscillator frequency ($\mathrm{f}_{\text {osc }}$) with the $\mathrm{n}^{\text {th }}$ stage frequency being $\mathrm{f}_{\text {osc }} / 2^{\mathrm{n}}$.

Features

- Available Outputs $2^{8}, 2^{10}, 2^{13}$ or 2^{16}
- Increments on Positive Edge Clock Transitions
- Built-in Low Power RC Oscillator ($\pm 2 \%$ accuracy over temperature range and $\pm 20 \%$ supply and $\pm 3 \%$ over processing at $<10 \mathrm{kHz}$)
- Oscillator May Be Bypassed if External Clock Is Available (Apply external clock to Pin 3)
- External Master Reset Totally Independent of Automatic Reset Operation
- Operates as 2^{n} Frequency Divider or Single Transition Timer
- Q/Q Select Provides Output Logic Level Flexibility
- Reset (auto or master) Disables Oscillator During Resetting to Provide No Active Power Dissipation
- Clock Conditioning Circuit Permits Operation with Very Slow Clock Rise and Fall Times
- Automatic Reset Initializes All Counters On Power Up
- Supply Voltage Range = 3.0 Vdc to 18 Vdc with Auto Reset

$$
\text { Disabled }\left(\operatorname{Pin} 5=\mathrm{V}_{\mathrm{DD}}\right)
$$

$=8.5 \mathrm{Vdc}$ to 18 Vdc with Auto Reset Enabled (Pin $5=\mathrm{V}_{\mathrm{SS}}$)

- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SOIC-14	SOEIAJ-14	TSSOP-14
D SUFFIX	F SUFFIX	DT SUFFIX
CASE 751A	CASE 965	CASE 948G

PIN ASSIGNMENT

MARKING DIAGRAMS

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year WW, W = Work Week G or • = Pb-Free Package
(Note: Microdot may be in either location)

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range, (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	Input Current (DC or Transient)	± 10 (per Pin)	mA
$\mathrm{I}_{\text {out }}$	Output Current (DC or Transient)	± 45 (per Pin)	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

ORDERING INFORMATION

Device	Package	Shipping †
MC14541BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14541BDG*	SOIC-14 (Pb-Free)	55 Units / Rail
MC14541BDR2G	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14541BDR2G*	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
MC14541BDTR2G	TSSOP-14 (Pb-Free)	2500 / Tape \& Reel
NLV14541BDTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape \& Reel
MC14541BFELG	SOEIAJ-14 (Pb-Free)	2000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{gathered} \hline \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\mathrm{in}}=0 \text { or } \mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{aligned}$ "1" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -4.19 \\ & -7.96 \\ & -16.3 \end{aligned}$	-	$\begin{aligned} & -3.38 \\ & -6.42 \\ & -13.2 \end{aligned}$	$\begin{gathered} -6.75 \\ -12.83 \\ -26.33 \end{gathered}$	-	$\begin{aligned} & -2.37 \\ & -4.49 \\ & -9.24 \end{aligned}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ (\mathrm{V} \mathrm{OL}=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	lOL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.93 \\ & 4.96 \\ & 19.3 \end{aligned}$	-	$\begin{gathered} \hline 1.56 \\ 4.0 \\ 15.6 \end{gathered}$	$\begin{gathered} \hline 3.12 \\ 8.0 \\ 31.2 \end{gathered}$	-	$\begin{gathered} \hline 1.09 \\ 2.8 \\ 10.9 \end{gathered}$	-	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Pin 5 is High) Auto Reset Disabled	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Auto Reset Quiescent Current (Pin 5 is low)	IDDR	$\begin{aligned} & \hline 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 250 \\ & 500 \end{aligned}$	-	$\begin{aligned} & \hline 30 \\ & 82 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\mu \mathrm{Adc}$
Supply Current (Notes 3 \& 4) (Dynamic plus Quiescent)	I_{D}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$				$\begin{aligned} & .4 \mu \mathrm{~A} / \mathrm{kHz}) \\ & .8 \mu \mathrm{~A} / \mathrm{kHz}) \\ & .2 \mu \mathrm{~A} / \mathrm{kHz}) \end{aligned}$	$\begin{aligned} & I_{\mathrm{DD}} \\ & I_{\mathrm{DD}} \\ & I_{\mathrm{DD}} \end{aligned}$			$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. When using the on chip oscillator the total supply current (in $\mu \mathrm{Adc}$) becomes: $I_{T}=I_{D}+2 C_{t c} V_{D D} f \times 10^{-3}$ where I_{D} is in $\mu A, C_{t c}$ is in $p F$, $V_{D D}$ in Volts $D C$, and f in kHz . (see Fig. 3) Dissipation during power-on with automatic reset enabled is typically $50 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{Vdc}$.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$V_{\text {DD }}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TL}, \mathrm{H},} \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay, Clock to Q (2^{8} Output) $\mathrm{t}_{\text {PLH }}$, $\mathrm{tPHL}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3415 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1217 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PL}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+875 \mathrm{~ns}$	$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 1.25 \\ 0.9 \end{gathered}$	$\begin{gathered} 10.5 \\ 3.8 \\ 2.9 \end{gathered}$	$\mu \mathrm{S}$
Propagation Delay, Clock to Q (2^{16} Output) $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+5915 \mathrm{~ns}$ $t_{\text {PHL }}, t_{\text {PLH }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3467 \mathrm{~ns}$ $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2475 \mathrm{~ns}$	$\begin{aligned} & \mathrm{t} \mathrm{t} H \mathrm{LL} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 18 \\ 10 \\ 7.5 \end{gathered}$	us
Clock Pulse Width	${ }^{\text {twh(cl) }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 900 \\ & 300 \\ & 225 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 85 \end{gathered}$	-	ns
Clock Pulse Frequency (50\% Duty Cycle)	f_{cl}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.75 \\ 2.0 \\ 3.0 \end{gathered}$	MHz
MR Pulse Width	${ }^{\text {twh }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \end{aligned}$	$\begin{aligned} & 300 \\ & 100 \\ & 85 \end{aligned}$	-	ns
Master Reset Removal Time	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 420 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 210 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

EXPANDED BLOCK DIAGRAM

FREQUENCY SELECTION TABLE

A	B	Number of Counter Stages \mathbf{n}	Count $\mathbf{2 n}^{\mathbf{n}}$
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

TRUTH TABLE

Pin	State	
	0	1
Auto Reset, 5	Auto Reset Operating	Auto Reset Disabled
Master Reset, 6	Timer Operational	Master Reset On
Q/ $\bar{Q}, \quad 9$	Output Initially Low After Reset	Output Initially High After Reset
Mode, 10	Single Cycle Mode	Recycle Mode

Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

Figure 4. RC Oscillator Stability

Figure 5. RC Oscillator Frequency as a Function of R_{tc} and C_{tc}

OPERATING CHARACTERISTICS

With Auto Reset pin set to a "0" the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master Reset pin is set to a " 1 ". Both types of reset will result in synchronously resetting all counter stages independent of counter state. Auto Reset pin when set to a " 1 " provides a low power operation.

The RC oscillator as shown in Figure 3 will oscillate with a frequency determined by the external RC network i.e.,

$$
\mathrm{f}=\frac{1}{2.3 \mathrm{R}_{\mathrm{tc}} \mathrm{C}_{\mathrm{tc}}} \quad \text { if }(1 \mathrm{kHz} \leq \mathrm{f} \leq 100 \mathrm{kHz})
$$

and $R_{S} \approx 2 R_{\text {tc }}$
where $\mathrm{R}_{\mathrm{S}} \geq 10 \mathrm{k} \Omega$
The time select inputs (A and B) provide a two-bit address to output any one of four counter stages $\left(2^{8}, 2^{10}, 2^{13}\right.$ and 2^{16}). The 2^{n} counts as shown in the Frequency Selection Table represents the Q output of the $\mathrm{N}^{\text {th }}$ stage of the counter. When A is " 1 ", 2 " 16 is selected for both states of B. However,
when B is " 0 ", normal counting is interrupted and the 9 th counter stage receives its clock directly from the oscillator (i.e., effectively outputting 2^{8}).

The $\mathrm{Q} / \overline{\mathrm{Q}}$ select output control pin provides for a choice of output level. When the counter is in a reset condition and $\mathrm{Q} / \overline{\mathrm{Q}}$ select pin is set to a " 0 " the Q output is a " 0 ", correspondingly when $\mathrm{Q} / \overline{\mathrm{Q}}$ select pin is set to a " 1 " the Q output is a " 1 ".
When the mode control pin is set to a " 1 ", the selected count is continually transmitted to the output. But, with mode pin " 0 " and after a reset condition the R_{S} flip-flop (see Expanded Block Diagram) resets, counting commences, and after $2^{\text {n-1 }}$ counts the R_{S} flip-flop sets which causes the output to change state. Hence, after another $2^{\mathrm{n}-1}$ counts the output will not change. Thus, a Master Reset pulse must be applied or a change in the mode pin level is required to reset the single cycle operation.

DIGITAL TIMER APPLICATION

When Master Reset (MR) receives a positive pulse, the internal counters and latch are reset. The Q output goes high and remains high until the selected (via A and B) number of clock pulses are counted, the Q output then goes low and remains low until another input pulse is received.

This "one shot" is fully retriggerable and as accurate as the input frequency. An external clock can be used (pin 3 is the clock input, pins 1 and 2 are outputs) if additional accuracy is needed.

Notice that a setup time equal to the desired pulse width output is required immediately following initial power up, during which time Q output will be high.

MC14541B

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

TSSOP-14
CASE 948G
ISSUE B

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-14
CASE 965
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
\mathbf{A}	---	2.05	---	0.081
$\mathbf{A}_{\mathbf{1}}$	0.05	0.20	0.002	0.008
\mathbf{b}	0.35	0.50	0.014	0.020
\mathbf{c}	0.10	0.20	0.004	0.008
\mathbf{D}	9.90	10.50	0.390	0.413
\mathbf{E}	5.10	5.45	0.201	0.215
\mathbf{e}	1.27	BSC	0.050 BSC	
$\mathbf{H}_{\mathbf{E}}$	7.40	8.20	0.291	0.323
\mathbf{L}	0.50	0.85	0.020	0.033
$\mathbf{L}_{\mathbf{E}}$	1.10	1.50	0.043	0.059
\mathbf{M}	0	\circ	10°	0
\mathbf{Q}_{1}	0.70	0.90	0.028	10°
\mathbf{Z}	---	1.42	---	0.035

> ON Semiconductor and the $0 N$ are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

