: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC14543B

BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals

The MC14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range $=3.0 \mathrm{~V}$ to 18 V
- Capable of Driving 2 Low-power TTL Loads, 1 Low-power Schottky

TTL Load or 2 HTL Loads Over the Rated Temperature Range

- Pin-for-Pin Replacement for CD4056A (with Pin 7 Tied to V_{SS}).
- Chip Complexity: 207 FETs or 52 Equivalent Gates
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input Voltage Range, All Inputs	$\mathrm{V}_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
DC Input Current per Pin	$\mathrm{I}_{\text {in }}$	± 10	mA
Power Dissipation per Package (Note 1)	P_{D}	500	mW
Operating Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Continuous Output Drive Current (Source or Sink)	$\mathrm{I}_{\text {OHmax }}$ $\mathrm{I}_{\text {OLmax }}$	10 (per Output)	mA
Maximum Continuous Output Power (Source or Sink) (Note 2)	$\mathrm{P}_{\mathrm{OHmax}}$ $\mathrm{P}_{\text {OLmax }}$	70 (per Output)	mW

[^0]

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14543B

TRUTH TABLE

PIN ASSIGNMENT

Inputs							Outputs							
LD	BI	Ph*	D	C	B	A	a	b	c	d	e	f	g	Display
X	1	0	X	X	X	X	0	0	0	0	0	0	0	Blank
1	0	0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	1	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1		0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	X	X	X	X				**				**
\dagger	\dagger	\dagger		\dagger						f O tion	utp s			Display as above

X = Don't care
$\dagger=$ Above Combinations

* = For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select $\mathrm{Ph}=0$ For common anode LED readouts, select $\mathrm{Ph}=1$
** $=$ Depends upon the BCD code previously applied when LD $=1$

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14543BCPG	PDIP-16 (Pb-Free)	500 Units / Rail
MC14543BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14543BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC14543BFG	SOEIAJ-16 (Pb-Free)	50 Units / Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 3) } \end{aligned}$	Max	Min	Max	
Output Voltage " 0 " Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\mathrm{in}}=0 \text { or } \mathrm{V}_{\mathrm{DD}}$	V OL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	5.0 10 15	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \hline \text { Input Voltage } \quad \text { " } 0 \text { " Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right. \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \\ & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	1.5 3.0 4.0	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=0.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{\text {IOH }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ - \\ -1.6 \\ -4.2 \end{gathered}$	- - - -	$\begin{gathered} -2.4 \\ -0.51 \\ - \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -10.1 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ - \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink $(\mathrm{VOL}=0.5 \mathrm{Vdc})$ $(\mathrm{VOL}=9.5 \mathrm{Vdc})$ $\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$	$\mathrm{l}_{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ - \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ - \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 10.1 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ - \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package) $\begin{aligned} & V_{\text {in }}=0 \text { or } V_{D D}, \\ & I_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Note 4, 5) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }_{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.1 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(4.7 \mu \mathrm{AHzz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$					$\mu \mathrm{Adc}$

3. Noise immunity specified for worst-case input combination.

$$
\begin{aligned}
\text { Noise Margin for both " } 1 \text { " and " } 0 \text { " level }= & 1.0 \mathrm{~V} \min @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\
& 2.0 \mathrm{~V} \min @ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\
& 2.5 \mathrm{~V} \min @ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}
\end{aligned}
$$

4. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{T}(50 \mathrm{pF})+3.5 \times 10^{-3}\left(C_{L}-50\right) \mathrm{V}_{D D} f$ where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{PF}, \mathrm{V}_{\mathrm{DD}}$ in V , and f in kHz is input frequency.
5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS (Note 6) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	V_{DD}	Min	Typ	Max	Unit
Output Rise Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {tib }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
$\begin{aligned} & \text { Turn-Off Delay Time } \\ & t_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+520 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+217 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+160 \mathrm{~ns} \end{aligned}$	$t_{\text {PLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 605 \\ & 250 \\ & 185 \end{aligned}$	$\begin{gathered} 1210 \\ 500 \\ 370 \end{gathered}$	ns
$\begin{aligned} & \text { Turn-On Delay Time } \\ & \text { t PHL }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+420 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+172 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+130 \mathrm{~ns} \end{aligned}$	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 505 \\ & 205 \\ & 155 \end{aligned}$	$\begin{aligned} & 1650 \\ & 660 \\ & 495 \end{aligned}$	ns
Setup Time	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 450 \\ & 550 \end{aligned}$		-	ns
Hold Time	$t_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	40 30 20		-	ns
Latch Disable Pulse Width (Strobing Data)	${ }^{\text {tw }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 80 \end{aligned}$	$\begin{gathered} 125 \\ 50 \\ 40 \end{gathered}$	-	ns

6. The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

Figure 1. Typical Output Source Characteristics

Inputs Bl and Ph low, and Inputs D and LD high. f in respect to a system clock.
All outputs connected to respective C_{L} loads.

Figure 3. Dynamic Power Dissipation Signal Waveforms

Figure 2. Typical Output Sink Characteristics
(a) Inputs D, Ph, and Bl low, and Inputs A, B, and LD high.

(b) Inputs D, Ph, and BI low, and Inputs A and B high.

LD

C
g

(c) Data DCBA strobed into latches

LD

Figure 4. Dynamic Signal Waveforms

CONNECTIONS TO VARIOUS DISPLAY READOUTS

LIQUID CRYSTAL (LC) READOUT

LIGHT EMITTING DIODE (LED) READOUT

NOTE: Bipolar transistors may be added for gain (for $\mathrm{V}_{\mathrm{DD}} \leq 10 \mathrm{~V}$ or $\mathrm{I}_{\text {out }} \geq 10 \mathrm{~mA}$).

INCANDESCENT READOUT

GAS DISCHARGE READOUT

CONNECTIONS TO SEGMENTS

$$
{ }_{c}^{\mathrm{c} / \mathrm{a} / \mathrm{g} / \mathrm{b}}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=\mathrm{PIN} 16 \\
& \mathrm{~V}_{\mathrm{SS}}=\mathrm{PIN} 8
\end{aligned}
$$

PACKAGE DIMENSIONS

PDIP-16
CASE 648-08
ISSUE T

SOEIAJ-16
CASE 966-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
2. DIMENSION L TO CENTER OF LEADS

DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.740	0.770	18.80	19.55		
B	0.250	0.270	6.35	6.85		
C	0.145	0.175	3.69	4.44		
D	0.015	0.021	0.39	0.53		
F	0.040	0.70	1.02	1.77		
G	0.100 BSC		2.54 BSC			
H	0.050		BSC	1.27		BSC
J	0.008	0.015	0.21			
K	0.110	0.130	2.80	3.30		
L	0.295	0.305	7.50	7.74		
M	0°	10°	0°	10°		
S	0.020	0.040	0.51	1.01		

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) DAMBAR PROTRUSION SHALL BE 0.08 (0.
TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PIMETRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

ON Semiconductor and (ill are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Al operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 1. Temperature Derating: Plastic " P and D / DW "

 Packages: - $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
 2. $\mathrm{P}_{\mathrm{OH} \text { max }}=\mathrm{I}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{DD}}\right)$ and $\mathrm{P}_{\mathrm{OLmax}}=\mathrm{I}_{\mathrm{OL}}\left(\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{SS}}\right)$

