: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC14551B

Quad 2-Channel Analog Multiplexer/Demultiplexer

The MC14551B is a digitally-controlled analog switch. This device implements a 4PDT solid state switch with low ON impedance and very low OFF Leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

- Triple Diode Protection on All Control Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Analog Voltage Range $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)=3.0$ to 18 V

Note: V_{EE} must be $\leq \mathrm{V}_{\mathrm{SS}}$

- Linearized Transfer Characteristics
- Low Noise - $12 \mathrm{nV} \sqrt{\text { Cycle }}, \mathrm{f} \geq 1.0 \mathrm{kHz}$ typical
- For Low R ${ }_{\text {ON }}$, Use The HC4051, HC4052, or HC4053 High-Speed CMOS Devices
- Switch Function is Break Before Make

MAXIMUM RATINGS (2.)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range (Referenced to $\left.\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{SS}} \geq \mathrm{V}_{\mathrm{EE}}\right)$	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient) (Referenced to $\mathrm{V}_{\text {SS }}$ for Control Input \& V_{EE} for Switch I/O)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	Input Current (DC or Transient), per Control Pin	± 10	mA
I_{Sw}	Switch Through Current	± 25	mA
P_{D}	Power Dissipation, per Package (3.)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

2. Maximum Ratings are those values beyond which damage to the device may occur.
3. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\text {SS }} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$ for control inputs and $\mathrm{V}_{\text {EE }} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq$ $V_{D D}$ for Switch I/O.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{EE}}$ or V_{DD}). Unused outputs must be left open.

ON Semiconductor

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC14551BCP	PDIP-16	2000/Box
MC14551BD	SOIC-16	48/Rail
MC14551BDR2	SOIC-16	2500/Tape \& Reel
MC14551BF	SOEIAJ-16	See Note 1.

1. For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

MC14551B

PIN ASSIGNMENT		
$W 1[\square$	16	V_{DD}
X0 [2	15	Wo
X1-3	14	W
X [4	13	Z
Y [5	12	Z1
Y0 [6	11	Zo
$\mathrm{V}_{\text {EE }}[7$	10	Y1
$\mathrm{V}_{\text {SS }}[8$	9	CONTROL

$V_{\text {DD }}=$ Pin 16	Control	ON
$V_{\text {SS }}=\operatorname{Pin} 8$	0	W0 X0 Y0 Z0
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 7$	1	W1 X1 Y1 Z1

NOTE: Control Input referenced to V_{SS}, Analog Inputs and Outputs reference to V_{EE}. V_{EE} must be $\leq \mathrm{V}_{\mathrm{SS}}$.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	V_{DD}	Test Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Typ (4.)	Max	Min	Max	

SUPPLY REQUIREMENTS (Voltages Referenced to V_{EE})

CONTROL INPUT (Voltages Referenced to V_{SS})

Low-Level Input Voltage	V_{IL}	5.0	$\mathrm{R}_{\text {on }}=$ per spec,	-	1.5	-	2.25	1.5	-	1.5	V
		10	$\mathrm{l}_{\text {off }}=$ per spec	-	3.0	-	4.50	3.0	-	3.0	
		15		-	4.0	-	6.75	4.0	-	4.0	
High-Level Input Voltage	V_{IH}	5.0	$\mathrm{R}_{\text {on }}=$ per spec,	3.5	-	3.5	2.75	-	3.5	-	V
		10	$\mathrm{l}_{\text {off }}=$ per spec	7.0	-	7.0	5.50	-	7.0	-	
		15		11	-	11	8.25	-	11	-	
Input Leakage Current	$\mathrm{I}_{\text {in }}$	15	$\mathrm{~V}_{\text {in }}=0$ or V_{DD}	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{~A}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-		-	-	-	5.0	7.5	-	-	pF

SWITCHES IN/OUT AND COMMONS OUT/IN — W, X, Y, \mathbf{Z} (Voltages Referenced to V_{EE})

Recommended Peak-toPeak Voltage Into or Out of the Switch	$\mathrm{V}_{1 / \mathrm{O}}$	-	Channel On or Off	0	$V_{\text {DD }}$	0	-	$V_{\text {DD }}$	0	V_{DD}	V_{p-p}
Recommended Static or Dynamic Voltage Across the Switch ${ }^{(5 .)}$ (Figure 3)	$\Delta \mathrm{V}_{\text {switch }}$	-	Channel On	0	600	0	-	600	0	300	mV
Output Offset Voltage	V_{OO}	-	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$, No Load	-	-	-	10	-	-	-	$\mu \mathrm{V}$
ON Resistance	$\mathrm{R}_{\text {on }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \Delta \mathrm{V}_{\text {switch }} \leq 500 \mathrm{mV} \text { (5.), } \\ & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\text {IH }} \\ & \left(\text { Control), and } \mathrm{V}_{\text {in }}=\right. \\ & 0 \text { to } \mathrm{V}_{\mathrm{DD}}(\mathrm{Switch}) \end{aligned}$	-	$\begin{array}{\|l\|} \hline 800 \\ 400 \\ 220 \end{array}$	-	$\begin{gathered} 250 \\ 120 \\ 80 \end{gathered}$	$\begin{gathered} 1050 \\ 500 \\ 280 \end{gathered}$	-	$\begin{gathered} \hline 1200 \\ 520 \\ 300 \end{gathered}$	Ω
Δ ON Resistance Between Any Two Channels in the Same Package	$\Delta \mathrm{R}_{\text {on }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		-	$\begin{aligned} & 70 \\ & 50 \\ & 45 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \\ & 45 \end{aligned}$	-	$\begin{gathered} 135 \\ 95 \\ 65 \end{gathered}$	Ω
Off-Channel Leakage Current (Figure 8)	$\mathrm{l}_{\text {off }}$	15	$V_{\text {in }}=V_{I L} \text { or } V_{I H}$ (Control) Channel to Channel or Any One Channel	-	± 100	-	± 0.05	± 100	-	± 1000	nA
Capacitance, Switch I/O	$\mathrm{C}_{1 / \mathrm{O}}$	-	Switch Off	-	-	-	10	-	-	-	pF
Capacitance, Common O/I	$\mathrm{C}_{\mathrm{O} / 1}$	-		-	-	-	17	-	-	-	pF
Capacitance, Feedthrough (Channel Off)	$\mathrm{C}_{1 / 0}$	-	Pins Not Adjacent Pins Adjacent	-	-	-	$\begin{aligned} & \hline 0.15 \\ & 0.47 \end{aligned}$	-	-	-	pF

4. Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
5. For voltage drops across the switch $\left(\Delta V_{\text {switch }}\right)>600 \mathrm{mV}$ ($>300 \mathrm{mV}$ at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both $V_{D D}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

MC14551B

ELECTRICAL CHARACTERISTICS ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{SS}}\right)$

Characteristic	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \\ \mathrm{Vdc} \end{gathered}$	Min	Typ ${ }^{(6 .)}$	Max	Unit
Propagation Delay Times Switch Input to Switch Output ($R_{L}=10 \mathrm{k} \Omega$) $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.17 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+26.5 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.08 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+11 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.06 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.0 \mathrm{~ns}$	$\mathrm{t}_{\text {PLH }}$, tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	ns
Control Input to Output ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$) $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}$ (Figure 4)	$\mathrm{t}_{\text {PLH }}$, tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 350 \\ & 140 \\ & 100 \end{aligned}$	$\begin{aligned} & 875 \\ & 350 \\ & 250 \end{aligned}$	ns
Second Harmonic Distortion $R_{L}=10 \mathrm{k} \Omega, f=1 \mathrm{kHz}, \mathrm{~V}_{\text {in }}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-	10	-	0.07	-	\%
Bandwidth (Figure 5) $\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right)_{p-p}, \\ & 20 \log \left(V_{\text {out }} / V_{\text {in }}\right)=-3 d B, C_{L}=50 p F \end{aligned}$	BW	10	-	17	-	MHz
Off Channel Feedthrough Attenuation, Figure 5 $\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right)_{p-p}, \\ & f_{\text {in }}=55 \mathrm{MHz} \end{aligned}$	-	10	-	-50	-	dB
Channel Separation (Figure 6) $\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right)_{p-p}, \\ & f_{\text {in }}=3 \mathrm{MHz} \end{aligned}$	-	10	-	-50	-	dB
Crosstalk, Control Input to Common O/I, Figure 7 $\begin{aligned} & \mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \text { Control } \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{aligned}$	-	10	-	75	-	mV

6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Switch Circuit Schematic

Figure 2. MC14551B Functional Diagram

TEST CIRCUITS

Figure 3. $\Delta \mathrm{V}$ Across Switch

Control input used to turn ON or OFF the switch under test.

$$
\frac{V_{D D}-V_{E E}}{2} \rightarrow \sim
$$

Figure 5. Bandwidth and Off-Channel Feedthrough Attenuation

Figure 7. Crosstalk, Control Input to Common O/I

Figure 4. Propagation Delay Times, Control to Output

Figure 6. Channel Separation (Adjacent Channels Used for Setup)

Figure 8. Off Channel Leakage

Figure 9. Channel Resistance (R_{ON}) Test Circuit

MC14551B

TYPICAL RESISTANCE CHARACTERISTICS

Figure 10. $\mathrm{V}_{\mathrm{DD}} @ 7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}} @-7.5 \mathrm{~V}$

Figure 12. $\mathrm{V}_{\mathrm{DD}} @ 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}} @-2.5 \mathrm{~V}$

Figure 11. $\mathrm{V}_{\mathrm{DD}} @ 5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}} @-5.0 \mathrm{~V}$

Figure 13. Comparison at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} @-\mathrm{V}_{\mathrm{EE}}$

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figure 2. The 0-to-5 volt Digital Control signal is used to directly control a $9 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS}. The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}=$ logic high at the control inputs; $\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}=0 \mathrm{~V}=$ logic low.

The maximum analog signal level is determined by V_{DD} and V_{EE}. The V_{DD} voltage determines the maximum recommended peak above V_{SS}. The V_{EE} voltage determines the maximum swing below V_{SS}. For the example, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=5$ volt maximum swing above V_{SS}; $\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{EE}}=5$ volt maximum swing below V_{SS}. The example shows a ± 4.5 volt signal which allows a $1 / 2$ volt
margin at each peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes $\left(\mathrm{D}_{\mathrm{x}}\right)$ are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{EE} is 18.0 volts. Most parameters are specified up to 15 volts which is the recommended maximum difference between V_{DD} and V_{EE}.

Balanced supplies are not required. However, $\mathrm{V}_{\text {SS }}$ must be greater than or equal to V_{EE}. For example, $\mathrm{V}_{\mathrm{DD}}=$ +10 volts, $\mathrm{V}_{\mathrm{SS}}=+5$ volts, and $\mathrm{V}_{\mathrm{EE}}=-3$ volts is acceptable. See the table below.

Figure A. Application Example

Figure B. External Schottky or Germanium Clipping Diodes
POSSIBLE SUPPLY CONNECTIONS

V_{DD} In Volts	\mathbf{V}_{SS} In Volts	V_{EE} In Volts	Control Inputs Logic High/Logic Low In Volts	Maximum Analog Signal Range In Volts
+8	0	-8	$+8 / 0$	+8 to $-8=16 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	-12	$+5 / 0$	+5 to $-12=17 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	0	$+5 / 0$	+5 to $0=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	-5	$+5 / 0$	+5 to $-5=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+10		-5	$+10 /+5$	+10 to $-5=15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

PACKAGE DIMENSIONS

PDIP-16
P SUFFIX
CASE 648-08
ISSUE R

NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
3. CONTROLLING DIMENSION: INCH.

FORMED PARALLEL.
DIMENSION B DOES NOT INCLUDE MOLD FLASH
ROUNDED CORNERS OPTIONAL.

	INCHES			MILLIMETERS	
DIM	MII	MAX	MIN	MAX	
A	0.740	0.770	18.80	19.55	
B	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC	2.54 BSC			
H	0.050 BSC	1.27 BSC			
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10°	
S	0.020	0.040	0.51	1.01	

MC14551B

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) MAXIMUM
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN		MAX	MIN
MAX				
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050	
BSC				
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

SOEIAJ-16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966-01
ISSUE O

DETAIL P

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH MEASURED AT THE PARTING LINE. MOLD FLAS
OR PROTRUSIONS SHALL NOT EXCEED 0.15 OR PROTRUSIONS
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD BETWEEN PROTRUS
TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
Le	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

Abstract

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

