imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PF1510

Power management integrated circuit (PMIC) for low power application processors

Rev. 1.0 — 23 May 2018

Data sheet: advance information

1 General description

The PF1510 is a power management integrated circuit (PMIC) designed specifically for use with i.MX processors on low-power portable, smart wearable and Internet-of-Things (IoT) applications. It is also capable of providing full power solution to i.MX 7ULP, i.MX 6SL, 6UL, 6ULL and 6SX processors.

With three high efficiency buck converters, three linear regulators, DDR reference and RTC supply, the PF1510 can provide power for a complete system, including application processors, memory, and system peripherals.

1.1 Features and benefits

This section summarizes the PF1510 features:

- Input voltage VIN from 5V bus, USB, or AC adapter (4.1 V to 6.0 V)
 - Linear front-end input LDO (1500 mA input limit)
 - Up to 6.5 V input operating range
 - VIN can withstand transient and DC inputs from 0 V up to +22 V
- Buck converters:
 - SW1, 1.0 A; 0.6 V to 1.3875 V in 12.5 mV steps, or 1.1 V to 3.3 V in variable steps
 - SW2, 1.0 A; 0.6 V to 1.3875 V in 12.5 mV steps, or 1.1 V to 3.3 V in variable steps
 - SW3, 1.0 A; 1.8 V to 3.3 V in 100 mV steps
 - Internal digital soft start
 - Quiescent current 1.0 µA in ULP mode with light load
 - Peak efficiency > 90 %
 - Dynamic voltage scaling on SW1 and SW2
 - Modes: forced PWM quasi-fixed frequency mode, adaptive variable-frequency mode
 - Programmable output voltage, current limit and soft start
- LDO regulators
 - LDO1, 0.75 to 1.5 V/1.8 to 3.3 V, 300 mA with load switch mode
 - LDO2, 1.8 to 3.3 V, 400 mA
 - LDO3, 0.75 to 1.5 V/1.8 to 3.3 V, 300 mA with load switch mode
 - Quiescent current < 1.5 μA in Low-power mode
 - Programmable output voltage
 - Soft start and ramp
 - Current limit protection
 - USB_PHY low dropout linear regulator
 - LDO2P7 always on regulator output
- LDO/switch supply
 - RTC supply VSNVS 3.0 V, 2.0 mA
 - Coin cell charger

- DDR memory reference voltage, VREFDDR, 0.5 to 0.9 V, 10 mA
- OTP (One time programmable) memory for device configuration
 - User programmable start-up sequence, timing, soft-start and power-down sequence
 - Programmable regulator output voltages
- I²C interface
- User programmable Standby, Sleep/Low-power, and Off (REGS_DISABLE) modes
- Ambient temperature range -40 °C to 105 °C

1.2 Applications

- Low-power IoT applications
- Wireless game controllers
- Embedded monitoring systems
- Home automation
- POS
- E-Reader
- Smart mobile/wearable devices

2 Application diagram

2.1 Functional block diagram

PF1510 Data sheet: advance information

2.2 Internal block diagram

3 Orderable parts

The PF1510 is available only with preprogrammed configurations. These preprogrammed devices are identified using the program codes from <u>Table 1</u>, which also list the associated NXP reference designs where applicable. Details of the OTP programming for each device can be found in <u>Table 51</u>.

Table 1. Orderable part variations

Part number ^[1]	Temperature (T _A)	Package	Programming options
MC32PF1510A1EP			1 (Default)
MC32PF1510A2EP			2 (i.MX 7ULP with LPDDR3) ^[2]
MC32PF1510A3EP	−40 °C to 85 °C (for use in consumer applications)		3 (i.MX 6UL with DDR3L)
MC32PF1510A4EP			4 (i.MX 7ULP with LPDDR3)
MC32PF1510A5EP			5 (i.MX 6UL with DDR3)
MC32PF1510A6EP		98ASA00913D, 40-pin QFN 5.0 mm x 5.0 mm with exposed pad	6 (i.MX 6ULL with DDR3L)
MC32PF1510A7EP			7 (i.MX 6UL with LPDDR2)
MC34PF1510A1EP			1 (Default)
MC34PF1510A2EP			2 (i.MX 7ULP with LPDDR3) ^[2]
MC34PF1510A3EP			3 (i.MX 6UL with DDR3L)
MC34PF1510A4EP	-40 °C to 105 °C (for use in industrial applications)		4 (i.MX 7ULP with LPDDR3)
MC34PF1510A5EP			5 (i.MX 6UL with DDR3)
MC34PF1510A6EP			6 (i.MX 6ULL with DDR3L)
MC34PF1510A7EP			7 (i.MX 6UL with LPDDR2)

[1] [2] For tape and reel, add an R2 suffix to the part number.

For internal validation only

Pinning information 4

4.1 Pinning

4.2 Pin definitions

Table 2.	Pin description	I		
Pin number	Block	Pin name	Recommended connection	Recommended connection when not used
1	WDI	Watchdog input from processor	Connect to WDI signal from processor. Pull up via 8 k Ω - 100 k Ω to VDDIO	Connect via 100 k Ω to regulator with output voltage < 3.6 V
2	SDA	I ² C data line	Pull-up to VDDIO	Leave floating
3	SCL	I ² C clock line	Pull-up to VDDIO	Leave floating
4	VDDIO	Supply for I ² C bus	Connect to 1.7 to 3.6 V supply. Bypass with 0.1 μF capacitor to ground	Leave floating
5	VDDOTP	Supply to program OTP fuses	Connect to ground for the fuse loading	N/A
6	PWRON	Power On/Off from processor	Connect to PMIC_ON_REQ from processor. Pull up via 8 k Ω - 100 k Ω to VSNVS if required	N/A
7	STANDBY	Standby input signal from processor	Connect to PMIC_STBY_REQ signal from processor	Connect to ground
8	ONKEY	ONKEY push button input	Connect to push button and pull up via $8k\Omega$ - 100 $k\Omega$ to VIN	Connect via 100 k Ω to VSYS
9	INTB	Open drain interrupt signal to processor	Pull-up via 68 k Ω - 100 k Ω to VSNVS or other rail at voltage less than or equal to VDDIO	Leave floating
10	RESETBMCU	Open drain reset output to processor	Pull-up via 68 k Ω - 100 k Ω to VSNVS or other rail at voltage less than or equal to VDDIO	Leave floating
11	VLDO3IN	LDO3 regulator input	Connect to VSYS and bypass with 1.0 mF capacitor to ground	Connect to regulator with output voltage < 4.5 V
12	VLDO3	LDO3 regulator output	Bypass with 4.7 µF capacitor to ground	Leave floating
13	SW3LX	SW3 switching node	Connect to SW3 inductor	Leave floating
14	SW3IN	Input to SW3 regulator	Connect to VSYS and bypass with 0.1 μ F + 4.7 μ F capacitors to ground	Connect to VSYS
15	SW3FB	Output voltage feedback for SW3	Connect to SW3 output voltage rail near load	Leave floating
16	SW2FB	Output voltage feedback for SW2	Connect to SW2 output voltage rail near load	Leave floating
17	SW2IN	Input to SW2 regulator	Connect to VSYS and bypass with 0.1 μ F + 4.7 μ F capacitors to ground	Connect to VSYS
18	SW2LX	SW2 switching node	Connect to SW2 inductor	Leave floating
19	VLDO2	LDO2 regulator output	Bypass with 10 µF capacitor to ground	Leave floating
20	VLDO2IN	LDO2 regulator input	Connect to VSYS and bypass with 1.0 mF capacitor to ground	Connect to regulator with output voltage < 4.5 V
21	VREFDDR	VREFDDR regulator output	Bypass with 1.0 μ F capacitor to ground	Leave floating
22	VINREFDDR	VREFDDR regulator input	Ensure there is at least 1.0 µF net capacitance from VINREFDDR to ground	Leave floating
23	VDIG	Digital core supply	Bypass with 1.0 µF capacitor to ground	N/A
24	VCORE	Analog core supply	Bypass with 1.0 µF capacitor to ground	N/A
25	SW1LX	SW1 switching node	Connect to SW1 inductor	Leave floating
26	SW1IN	Input to SW1 regulator	Connect to VSYS and bypass with 0.1 μF + 4.7 μF capacitors to ground	Connect to VSYS
27	SW1FB	Output voltage feedback for SW1	Connect to SW1 output voltage rail near load	Leave floating
28	VLDO1IN	LDO1 regulators input	Connect to VSYS and bypass with 1.0 μF capacitor to ground	Connect to regulator with output voltage < 4.5 V
29	VLDO1	LDO1 regulator output	Bypass with 4.7 μ F capacitor to ground	Leave floating

PF1510

Power management integrated circuit (PMIC) for low power application processors

Pin number	Block	Pin name	Recommended connection	Recommended connection when not used	
30	VSNVS	VSNVS regulator/switch output	Bypass with 0.47 µF capacitor to ground	Bypass with 0.47 µF capacitor to ground	
31	LICELL	Coin cell supply input/output	Bypass with 0.1 µF capacitor. Connect to optional coin cell.	Bypass with 0.1 μ F capacitor to ground	
32	GND	Ground	Connect to ground	Connect to ground	
33	NC	Netconnected	Not connected	Leove flecting	
34	NC	Not connected	Not connected		
35	VSYS	Main input voltage to PMIC	Bypass with 2x 22 µF/10 V capacitors	N/A	
36	VSYS		or a 47 µF/10 V capacitor to ground		
37	VIN	Main IC supply	Connect to a valid 5.0 V input, bypass with a 2.2 µF/25 V capacitor to ground	Leave floating	
38	LDO2P7	LDO2P7 regulator output	Bypass with 1.0 µF capacitor to ground	Leave floating	
39	USBPHY	USBPHY regulator output	Bypass with 1.0 µF capacitor to ground	Leave floating	
40	GND	Ground	Connect to ground	Connect to ground	
—	EP	Expose pad. Functions as ground return for buck and boost regulators	Ground. Connect this pad to the inner and external ground planes through multiple vias to allow effective thermal dissipation.	N/A	

5 General product characteristics

5.1 Thermal characteristics

Table 3. Thermal ratings

Symbol	Description (Rating)	Min.	Max.	Unit				
THERMAL F	THERMAL RATINGS							
T _A	Ambient operating temperature range (industrial)	-40	105	°C				
	Ambient operating temperature range (consumer)	-40	85					
TJ	Operating junction temperature range [1]	-40	125	°C				
T _{ST}	Storage temperature range	-65	150	°C				
T _{PPRT}	Peak package reflow temperature [2] [3]			°C				
QFN40 THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS								
R _{OJA}	Junction to ambient thermal resistance, natural convection [4] [5] [6]			°C/W				
	Four layer board (2s2p)		27					
	Six layer board (2s4p)		20.6					
	Eight layer board (2s6p)		17.8					
R _{OJMA}	Junction to ambient (@200ft/min) [4] [6]			°C/W				
	Four layer board (2s2p)		21.4					
R _{OJB}	Junction to board ^[7]	—	8.8	°C/W				
R _{ØJCBOTTOM}	Junction to case bottom [8]	_	1.4	°C/W				
Ψ_{JT}	Junction to package top – Natural convection ^[9]		0.6	°C/W				

[1] Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Thermal Protection Thresholds for thermal protection features.

[2] Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device.

PF1510

Power management integrated circuit (PMIC) for low power application processors

- [3] NXP's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and moisture sensitivity levels (MSL), go to <u>http://www.nxp.com</u>, search by part number [remove prefixes/suffixes and enter the core ID to view all orderable parts (for MC33xxxD enter 33xxx), and review parametrics.
- [4] Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

[5] The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.

[6] Per JEDEC JESD51-6 with the board horizontal.

- [7] Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- [8] Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- [9] Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

5.2 Absolute maximum ratings

Table 4. Maximum ratings

Symbol	Description (Rating)	Min.	Max.	Unit
I/Os				
VIN	Main IC supply	-0.3	24	V
VDDIO	I/O supply voltage. Connect to voltage rail between 1.7 V and 3.3 V.	-0.3	3.6	V
SCL	SCL when used in I^2C mode. SCLK when used in SPI mode.	-0.3	3.6	V
SDA	SDA when used in I ² C mode. MISO when used in SPI mode.	-0.3	3.6	V
RESETBMCU	RESETBMCU open drain output	-0.3	3.6	V
PWRON	PWRON input	-0.3	3.6	V
STANDBY	STANDBY input	-0.3	3.6	V
ONKEY	ONKEY push button input	-0.3	4.8	V
INTB	INTB open-drain output	-0.3	3.6	V
WDI	Watchdog input from processor	-0.3	3.6	V
VDDOTP			Ì	
VDDOTP	Connect to ground in the application	-0.3	10	V
BUCK 1				
SW1IN	Buck 1 input supply	-0.3	4.8	V
SW1LX	Buck 1 switching node	-0.3	4.8	V
SW1FB	Buck 1 feedback input	-0.3	3.6	V
BUCK 2				
SW2IN	Buck 2 input supply	-0.3	4.8	V
SW2LX	Buck 2 switching node	-0.3	4.8	V
SW2FB	Buck 2 output voltage feedback	-0.3	3.6	V
BUCK 3			Ì	
SW3IN	Buck 3 input supply	-0.3	4.8	V
SW3LX	Buck 3 switching node	-0.3	4.8	V
SW3FB	Buck 3 output voltage feedback	-0.3	3.6	V
LDO1				
VLDO1IN	LDO1 input supply	-0.3	4.8	V

PF1510

Power management integrated circuit (PMIC) for low power application processors

Symbol	Description (Rating)	Min.	Max.	Unit
VLDO1	LDO1 output	-0.3	3.6	V
LDO2	I			
VLDO2IN	LDO2 input supply	-0.3	4.8	V
VLDO2	LDO2 output	-0.3	3.6	V
LDO3				
VLDO3IN	LDO3 input supply	-0.3	4.8	V
VLDO3	LDO3 output	-0.3	3.6	V
VSNVS				
VSNVS	VSNVS regulator output	-0.3	3.6	V
LICELL	Coin cell input	-0.3	3.6	V
FRONT-END LD	00			
LDO2P7	LDO2P7 regulator output	-0.3	3.6	V
USBPHY	USBPHY regulator output	-0.3	5.5	V
INPUT/OUTPUT	SUPPLY			
VINREFDDR	VREFDDR input supply	-0.3	3.6	V
VREFDDR	VREFDDR output	-0.3	3.6	V
IC CORE			Ì	
VSYS	Main input voltage to PMIC	-0.3	4.8	V
VDIG	VDIG regulator output (used within PF1510)	-0.3	1.65	
VCORE	VCORE regulator output (used within PF1510)	-0.3	1.65	V
ELECTRICAL R	ATINGS			
V _{ESD}	ESD ratings Human body model ^[1] Charge device model (corner pins) Charge device model (all other pins)		±2000 ±750 ±500	V

[1] Testing is performed in accordance with the human body model (HBM) (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω), and the charge device model (CDM), Robotic (C_{ZAP} = 4.0 pF).

5.3 Electrical characteristics

5.3.1 Electrical characteristics – Front-end LDO

All parameters are specified at $T_A = -40$ to 105 °C, VIN = 5.0 V, VSYS = 3.7 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 5.0 V, VSYS = 3.7 V and 25 °C, unless otherwise noted.

Table 5. Front-end LDO

Symbol	Parameter	Measurement condition	Min.	Тур.	Max.	Unit		
FRONT-END LDO INPUT								
V _{IN}	VIN voltage range	Operating voltage	V _{UVLO}	—	V _{OVLO}	V		
VIN_WITHSTAND	VIN maximum withstand voltage rating		—	—	22	V		
V _{IN_OVLO}	VIN overvoltage threshold	Rising	6.0	6.5	7.0	V		
V _{OVLO_HYS}	VIN overvoltage threshold hysteresis	Falling	50	150	250	mV		
t _{D-OVLO}	VIN overvoltage delay		5.0	10	15	μs		
V _{UVLO}	VIN to GND minimum turn on threshold accuracy	VIN rising	3.8	4.0	4.2	V		
V _{UVLO-HYS}	VIN UVLO hysteresis		400	500	600	mV		
VIN2SYS_50	VIN to VSYS minimum turn on threshold accuracy	VIN rising, 50 mV setting	20	50	80	mV		
VIN2SYS_175	VIN to VSYS minimum turn on threshold accuracy	VIN rising, 175 mV setting	100	175	250	mV		

Table 6. Input currents

Symbol	Parameter	Measurement condition	Min.	Тур.	Max.	Unit		
VIN CURRENT LIMIT								
ILIM ₁₀	VIN current limit (10 mA settings)	10 mA	6.0	8.5	11	mA		
ILIM ₁₅	VIN current limit (15 mA settings)	15 mA	10.5	12.75	16	mA		
ILIM ₂₀	VIN current limit (20 mA settings)	20 mA	14	17	21	mA		
ILIM ₂₅	VIN current limit (25 mA settings)	25 mA	17.5	21.25	26	mA		
ILIM ₃₀	VIN current limit (30 mA setting)	30 mA	21	25.5	30	mA		
ILIM ₃₅	VIN current limit (35 mA settings)	35 mA	24.5	29.75	35	mA		
ILIM ₄₀	VIN current limit (40 mA settings)	40 mA	28	34	40	mA		
ILIM ₄₅	VIN current limit (45 mA settings)	45 mA	31.5	38.25	45	mA		
ILIM ₅₀	VIN current limit (50 mA settings)	50 mA	35	42.5	50	mA		
ILIM ₁₀₀	VIN current limit (100 mA settings)	100 mA	85	95	105	mA		
ILIM ₁₅₀	VIN current limit (150 mA settings)	150 mA	125	137.5	160	mA		
ILIM ₂₀₀	VIN current limit (200 mA settings)	200 mA	170	190	210	mA		

PF1510 Data sheet: advance information

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Measurement condition	Min.	Тур.	Max.	Unit
ILIM ₃₀₀	VIN current limit (300 mA setting)	300 mA	260	285	320	mA
ILIM ₄₀₀	VIN current limit (400 mA settings)	400 mA	345	380	425	mA
ILIM ₅₀₀	VIN current limit (500 mA settings)	500 mA	430	475	530	mA
ILIM ₆₀₀	VIN current limit (600 mA settings)	600 mA	520	570	640	mA
ILIM ₇₀₀	VIN current limit (700 mA settings)	700 mA	610	665	750	mA
ILIM ₈₀₀	VIN current limit (800 mA settings)	800 mA	690	760	850	mA
ILIM ₉₀₀	VIN current limit (900 mA settings)	900 mA	780	855	950	mA
ILIM ₁₀₀₀	VIN current limit (1000 mA settings)	1000 mA	855	950	1100	mA
ILIM ₁₅₀₀	VIN current limit (1500 mA settings)	1500 mA	1260	1400	1700	mA
R _{INSD}	Input self discharge resistance		18	30	42	kΩ

Table 7. Switch impedances and leakage currents

Symbol	Parameter	Measurement Condition	Min.	Тур.	Max.	Unit
R _{VIN2SYS}	VIN to VSYS resistance		100	250	550	mΩ
I _{SYS}	VSYS leakage current	VSYS = 0 V	0	0.2	10	μA

Table 8. Watchdog timer

Symbol	Parameter	Measurement condition	Min.	Тур.	Max.	Unit
t _{WD}	Watchdog timer period		—	80	—	s
t _{WDACC}	Watchdog timer accuracy		-20	0	20	%

Table 9. Internal 2.7 V Regulator (LDO2P7)

Symbol	Parameter	Measurement condition	Min.	Тур.	Max.	Unit
V _{GDRV}	Output voltage		2.6	2.7	2.8	V
I _{GDRV}	Output current		5.0	_	_	mA
V _{DO(GDRV)}	Dropout voltage		0	—	800	mV

Table 10. USBPHY LDO

Symbol	Parameter	Measurement condition	Min.	Тур.	Max.	Unit
V _{USB_PHY}	Output voltage	I _{OUT} = 10 mA; 3.3 V and 4.9 V settings. VIN = 5.5 V	-5.0	—	5.0	%
I _{USB_PHY}	Maximum output current		60	_	_	mA
USB _{RDIS}	Internal discharge resistance		500	1000	1500	Ω
USB _{CAPSTA}	Output capacitor for stable operation	0 μA < I _{OUT} < 60 mA, MAX ESR = 10 mΩ	0.7	1.0	2.2	μF
I _{QUSB}	Quiescent supply current		—	35	—	μA

PF1510 Data sheet: advance information

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Measurement condition	Min.	Тур.	Max.	Unit
USBPHY _{LDREG}	DC load regulation	VIN = 5.5 V, 30 µA < I _{OUT} < 60 mA	0	5.0	13	mV
USBPHY _{DO}	Dropout voltage	VIN = 5.0 V, I _{OUT} = 60 mA	_	200	350	mV
USBPHYI _{LIM}	Output current limit		65	150	200	mA
PSRR _{USB_PHY}	PSRR	VIN = 5.5 V, C _{OUT} = 1.0 µF	55	60	75	dB

5.3.2 Electrical characteristics – SW1 and SW2

All parameters are specified at $T_A = -40$ to 105 °C, VSYS = $V_{SWxIN} = 2.5$ to 4.5 V, $V_{SWx} = 1.2$ V, $I_{SWx} = 200$ mA, typical external component values, $f_{SWx} = 2.0$ MHz, unless otherwise noted. Typical values are characterized at VSYS = $V_{SWxIN} = 3.6$ V, $V_{SWx} = 1.1$ V, $I_{SWx} = 100$ mA, and 25 °C, unless otherwise noted.

Table 11. SW1 and SW2 electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{SWxIN}	Operating input voltage	2.5	—	4.5	V
I _{SWx}	Rated output current	1000	—	—	mA
V _{SWx}	Output voltage accuracy DVS enabled mode (OTP_SWx_DVS_SEL = 0) Normal power mode, 2.5 V < V_{SWxIN} < 4.5 V, 0 < I_{SWx} < 1.0 A 0.6 V ≤ V_{SWx} ≤ 1.0 V	-15	—	15	mV
V _{SWx}	Output voltage accuracy DVS enabled mode (OTP_SWx_DVS_SEL = 0) Normal power mode, 2.5 V < V _{SWxIN} < 4.5 V, 0 < I _{SWx} < 1.0 A 1.0 V < V _{SWx} \leq 1.3875 V	-2.0		2.0	%
V _{SWx}	Output voltage accuracy DVS enabled mode (OTP_SWx_DVS_SEL = 0) Low-power mode, 2.5 V < V_{SWxIN} < 4.5 V, 0 < ISWx < 0.1 A 0.6 V ≤ V_{SWx} ≤ 1.0 V	-30		30	mV
V _{SWx}	Output voltage accuracy DVS enabled mode (OTP_SWx_DVS_SEL = 0) Low-power mode, 2.5 V < V_{SWxIN} < 4.5 V, 0 < I_{SWx} < 0.1 A 1.0 V < V_{SWx} ≤ 1.3875 V	-3.0	_	3.0	%
V _{SWx}	Output voltage accuracy DVS disabled mode (OTP_SWx_DVS_SEL = 1) Normal power mode, 2.5 V < V _{SWxIN} < 4.5 V, 0 < I _{SWx} < 1.0 A 1.1 V \leq V _{SWx} \leq 1.5 V	-45	_	45	mV
V _{SWx}	Output voltage accuracy DVS disabled mode (OTP_SWx_DVS_SEL = 1) Normal power mode, 2.5 V < V_{SWxIN} < 4.5 V, 0 < I_{SWx} < 1.0 A 1.8 V ≤ V_{SWx} ≤ 3.3 V	-3.0	_	3.0	%
V _{SWx}	Output voltage accuracy DVS disabled mode (OTP_SWx_DVS_SEL = 1) Low-power mode, 2.5 V < V_{SWxIN} < 4.5 V, 0 < I_{SWx} < 0.1 A 1.1 V < $V_{SWx} \le 1.5$ V	-55	_	55	mV
V _{SWx}	Output voltage accuracy DVS disabled mode (OTP_SWx_DVS_SEL = 1) Low-power mode, 2.5 V < V _{SWxIN} < 4.5 V, 0 < I_{SWx} < 0.1 A 1.8 V ≤ V _{SWx} ≤ 3.3 V	-4.0	—	4.0	%
ΔV _{SWx}	Output ripple	—	5.0	_	mV
SWxEFF	Efficiency $V_{SWxIN} = 3.6 \text{ V}, L_{SWx} = 1.0 \mu\text{H}, \text{ DCR} = 50 m\Omega$ LP/ ULP mode, 1.2 V, 1.0 mA	—	88	—	%

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Min.	Тур.	Max.	Unit
SWxEFF	Efficiency V_{SWxIN} = 3.6 V, L_{SWx} = 1.0 µH, DCR = 50 mΩ Normal power mode, 1.2 V, 50 mA	—	90	—	%
SWxEFF	Efficiency V_{SWxIN} = 3.6 V, L_{SWx} = 1.0 µH, DCR = 50 m Ω Normal power mode, 1.2 V, 150 mA	—	92	—	%
SWxEFF	Efficiency V_{SWxIN} = 3.6 V, L_{SWx} = 1.0 µH, DCR = 50 mΩ Normal power mode, 1.2 V, 400 mA	—	89	—	%
SWxEFF	Efficiency V_{SWxIN} = 3.6 V, L_{SWx} = 1.0 µH, DCR = 50 mΩ Normal power mode, 1.2 V, 1000 mA	—	83	_	%
I _{SWXLIMH}	Current limiter peak (high-side MOSFET) current detection SWxILIM[1:0] = 00 SWxILIM[1:0] = 01 SWxILIM[1:0] = 10 SWxILIM[1:0] = 11	0.7 0.8 1.0 1.4	1.0 1.2 1.5 2.0	1.3 1.6 2.0 2.6	A
I _{SWxLIML}	Current limiter low-side MOSFET current detection (sinking current)	0.7	1.0	1.3	A
I _{SWxQ}	Quiescent current (at 25 °C) Low-power mode with DVS disabled (OTP_SWx_DVS_SEL = 1)	_	1.0	_	μA
I _{SWxQ}	Quiescent current (at 25 °C) Low-power mode with DVS enabled (OTP_SWx_DVS_SEL = 0)	_	6.0	_	μA
I _{SWxQ}	Quiescent current (at 25 °C) Normal power mode with DVS disabled (OTP_SWx_DVS_SEL = 1)	_	5.5	_	μA
I _{SWxQ}	Quiescent current (at 25 °C) Normal power mode with DVS enabled (OTP_SWx_DVS_SEL = 0)	_	10	_	μA
V _{SWxOSH}	Startup overshoot (Normal mode) I _{SWx} = 0 mA DVS speed = 12.5 mV/4 μs, VSYS = V _{SWxIN} = 3.6 V, V _{SWx} = 1.35 V	_	_	25	mV
t _{ONSWx}	Turn on time 10 % to 90 % of end value DVS speed = 12.5 mV/4 µs, VSYS = V _{SWxIN} = 3.6 V, V _{SWx} = 1.35 V	—	—	500	μs
V _{SWxLOTR}	Transient load regulation (Normal power mode) Transient load = 50 mA to 250 mA, di/dt = 200 mA/µs Overshoot Undershoot		25 25		mV
R _{ONSWxP}	SWx P-MOSFET R _{DS(on)} at V _{SWxIN} = 3.6 V	—	200	—	mΩ
R _{ONSWxN}	SWx N-MOSFET R _{DS(on)} at V _{SWxIN} = 3.6 V	—	150	_	mΩ
R _{SWxDIS}	Turn off discharge resistance	—	500	_	Ω

5.3.3 Electrical characteristics – SW3

All parameters are specified at $T_A = -40$ to 105 °C, VSYS = $V_{SW3IN} = 2.5$ to 4.5 V, $V_{SW3} = 1.8$ V, $I_{SW3} = 200$ mA, typical external component values, $f_{SW3} = 2.0$ MHz, unless otherwise noted. Typical values are characterized at VSYS = $V_{SW3IN} = 3.6$ V, $V_{SW3} = 1.8$ V, $I_{SW3} = 200$ mA, and 25 °C, unless otherwise noted.

Table 12.	SW3	electrical	characteristics
-----------	-----	------------	-----------------

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{SW3IN}	Operating input voltage	2.5	—	4.5	V
V _{SW3}	Output voltage accuracy (all voltage settings) Normal power mode, 2.5 V < V _{SW3IN} < 4.5 V, 0 < I _{SW3} < 1.0 A	-2.0	_	2.0	%
V _{SW3}	Output voltage accuracy (all voltage settings) Low-power mode, 2.5 V < V _{SW3IN} < 4.5 V, 0 < I _{SW3} < 0.1 A	-3.0	_	3.0	%

Data sheet: advance information

PF1510

14 / 100

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Min.	Тур.	Max.	Unit
ΔV _{SW3}	Output ripple	—	5.0	—	mV
SW3EFF	Efficiency V_{SW3IN} = 3.6 V, L_{SW3} = 1.0 µH, DCR = 50 mΩ LP/ ULP Mode, 1.8 V, 1.0 mA	_	88	_	%
SW3EFF	Efficiency V_{SW3IN} = 3.6 V, L_{SWx} = 1.0 µH, DCR = 50 m Ω Normal power mode, 1.8 V, 50 mA	_	90	_	%
SW3EFF	Efficiency V_{SW3IN} = 3.6 V, L_{SWx} = 1.0 mH, DCR = 50 m Ω Normal power mode, 1.8 V, 100 mA	_	91	_	%
SW3EFF	Efficiency V_{SW3IN} = 3.6 V, L_{SWX} = 1.0 µH, DCR = 50 m Ω Normal power mode, 1.8 V, 400 mA	_	92	_	%
SW3EFF	Efficiency V_{SW3IN} = 3.6 V, L_{SWx} = 1.0 µH, DCR = 50 m Ω Normal power mode, 1.8 V, 1000 mA	_	83	_	%
Isw3limh	Current limiter peak (high-side MOSFET) current detection SW3ILIM[1:0] = 00 SW3ILIM[1:0] = 01 SW3ILIM[1:0] = 10 SW3ILIM[1:0] = 11	0.7 0.8 1.0 1.4	1.0 1.2 1.5 2.0	1.3 1.6 2.0 2.6	A
I _{SW3LIML}	Current limiter low-side MOSFET current detection (sinking current)	0.7	1.0	1.3	A
I _{SW3Q}	Quiescent current (at 25 °C) Low-power mode	_	1.0	_	μA
V _{SW3OSH}	Start-up overshoot (Normal mode) I _{SW3} = 0 mA VSYS = V _{SW3IN} = 3.6 V, V _{SW3} = 1.8 V		—	50	mV
t _{onsw3}	Turn on time 10 % to 90 % of end value VSYS = V _{SW3IN} = 3.6 V, V _{SW3} = 1.8 V	_	—	500	μs
Vsw3lotr	Transient load regulation (Normal power mode) Transient load = 50 mA to 250 mA, di/dt = 200 mA/µs Overshoot Undershoot		50 50		mV
R _{ONSW3N}	SW3 N-MOSFET R _{DS(on)} at V _{SW3IN} = 3.6 V	-	150	_	mΩ
R _{ONSW3P}	SW3 P-MOSFET R _{DS(on)} at V _{SW3IN} = 3.6 V	-	200	-	mΩ
R _{SW3DIS}	Turn off discharge resistance	—	300	—	Ω

5.3.4 Electrical characteristics – LDO1

All parameters are specified at $T_A = -40$ to 105 °C, VSYS = 2.5 to 4.5 V, $V_{LDOIN1} = 3.6$ V, VLDO1[4:0] = 11111, $I_{LDO1} = 10$ mA, typical external component values, unless otherwise noted. Typical values are characterized at VSYS = 3.6 V, $V_{LDOIN1} = 3.6$ V, VLDO1[4:0] = 11111, $I_{LDO1} = 10$ mA, and 25 °C, unless otherwise noted.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{LDO1IN}	Operating input voltage V _{LDO1} + 250 mV \leq VSYS \leq 4.5 V	1.0	_	4.5	V
V _{LDO1NOM}	Nominal output voltage	—	See <u>Table 33</u>	—	V
I _{LDO1MAX}	Rated output load current, Normal mode	300	—	—	mA
I _{LDO1MAXLPM}	Rated output load current, Low-power mode	10	—	—	mA

Table 13. LDO1 electrical characteristics

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{LDO1TOL}	Output voltage tolerance, Normal mode $V_{LDO1INMIN} < V_{LDO1IN} < 4.5 V$, 0 mA < I _{LDO1} \leq 300 mA				%
	$0.8 V \le V_{LDO1} < 1.8 V$	-2.5	—	2.5	
	$1.8 V \leq V_{\text{LDO1}} \leq 3.3 V$	-2.5	-	2.5	
	mode)	-4.0	_	4.0	
I _{LDO1LIM}	Current limit	320	_	1000	mA
	I_{LDO1} when V_{LDO1} is forced to $V_{LDO1NOM}/2$				
ILDO10CP	LDO1FAULTI threshold (also used to disable LDO1 when REGSCPEN = 1)	320	—	1000	mA
I _{LDO1Q}	Quiescent current (at 25 °C) No load, change in Ivess and Ive DOIN1				μA
	When LDO1 enabled in Normal mode	_	17	_	
	When LDO1 enabled in Low-power mode	—	2.5	—	
R _{DSON_QFN_LDO1}	Dropout on resistance	—	—	350	mΩ
PSRR _{LDO1}	PSRR				dB
	I _{LDO1} = 150 mA, 20 Hz to 20 kHz	—	56	—	
	V _{LDO1} = 3.30 V, V _{LDO1IN} = 3.8 V, VSYS = 4.2 V				
TR _{VLDO1}	Turn on time				μs
	10 % to 90 % of end value	—	200	500	
	$V_{LDO1INMIN} < V_{LDO1IN} \le 4.5 \text{ V}, \text{ I}_{LDO1} = 0.0 \text{ mA}$				
R _{LDO1DIS}	Turn off discharge resistance	—	250	—	Ω
LDO10UT _{OSHT}	Start-up overshoot (% of final value)				%
	$V_{LDO1INMIN} < V_{LDO1IN} \le 4.5 \text{ V}, \text{ I}_{LDO1} = 0.0 \text{ mA}$	—	1.0	2.0	
V _{LDO1LOTR}	Transient load response				mV
	$V_{LDO1INMIN}$ < V_{LDO1IN} \leq 4.5 V, I_{LDO1} = 10 mA to 200 mA in 10 μs				
	Overshoot	-	50	-	
	Undershoot	—	50	-	

5.3.5 Electrical characteristics – LDO2

All parameters are specified at $T_A = -40$ to 105 °C, VSYS = 3.6 V, $V_{LDOIN2} = 3.6$ V, VLDO2[3:0] = 1111, $I_{LDO2} = 10$ mA, typical external component values, unless otherwise noted. Typical values are characterized at VSYS = 3.6 V, $V_{LDOIN2} = 3.6$ V, VLDO2[3:0] = 1111, $I_{LDO2} = 10$ mA, and 25 °C, unless otherwise noted.

 Table 14. LDO2 electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{LDO2IN}	Operating input voltage				V
	$1.8 \text{ V} \le \text{V}_{\text{LDO2NOM}} \le 2.5 \text{ V}$	2.8	-	4.5	
	$2.6 \text{ V} \le \text{V}_{\text{LDO2NOM}} \le 3.3 \text{ V}$	V _{LDO2NOM} + 0.250	-	4.5	
V _{LDO2NOM}	Nominal output voltage	—	See <u>Table 35</u>	_	V
I _{LDO2MAX}	Rated output load current, Normal mode	400	—	—	mA
I _{LDO2MAXLPM}	Rated output load current, Low-power mode	10	—	—	mA
V _{LDO2TOL}	Output voltage tolerance				%
	$V_{LDO2INMIN} < V_{LDO2IN} < 4.5 V$				
	10.0 mA ≤ I _{LDO2} < 400 mA	-2.0	—	2.0	
	$0.0 \text{ mA} < I_{\text{LDO2}} < 10 \text{ mA}$ (Low-power mode)	-4.0	—	4.0	
I _{LDO2LIM}	Current limit	450	750	1050	mA
	I_{LDO2} when V_{LDO2} is forced to $V_{LDO2NOM}/2$				
I _{LDO2OCP}	LDO2FAULTI threshold (also used to disable LDO2 when REGSCPEN = 1)	450	_	1050	mA

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{LDO2Q}	Quiescent Current (25 °C) No load, change in I _{VSVS} and I _{VLDO2IN}				μA
	When V _{LDO2} enabled in Normal mode	—	15	—	
	When V_{LDO2} enabled in Low-power mode	—	1.5	-	
RDSON_QFN_LDO2	Dropout on resistance	-	—	300	mΩ
PSRR _{VLDO2}	PSRR I _{LDO2} = 200 mA, 20 Hz to 20 kHz V _{LDO2} = 3.30 V, V _{LDO2IN} = 3.9 V, VSYS = 4.2 V	_	60	_	dB
t _{onldo2}	Turn on time 10 % to 90 % of end value $V_{LDO2INMIN} < V_{LDO2IN} \le 4.5 V$, $I_{LDO2} = 0.0 mA$	—	200	500	μs
R _{LDO2DIS}	Turn off discharge resistance	—	250	—	Ω
LDO2OUT _{OSHT}	Start-up overshoot (% of final value) $V_{LDO2INMIN} < V_{LDO2IN} \le 4.5 \text{ V}, \text{ I}_{LDO2} = 0.0 \text{ mA}$	—	1.0	2.0	%
V _{LDO2LOTR}	Transient load response $V_{\rm LDO2INMIN}$ < $V_{\rm LDO2IN}$ \leq 4.5 V, $I_{\rm LDO2}$ = 10 mA to 100 mA in 10 μs				mV
	Overshoot	—	50	—	
	Undershoot	—	50	—	

5.3.6 Electrical characteristics – LDO3

All parameters are specified at $T_A = -40$ to 105 °C, VSYS = 2.5 to 4.5 V, $V_{LDOIN3} = 3.6$ V, VLDO3[4:0] = 11111, $I_{LDO3} = 10$ mA, typical external component values, unless otherwise noted. Typical values are characterized at VSYS = 3.6 V, $V_{LDOIN3} = 3.6$ V, VLDO3[4:0] = 11111, $I_{LDO3} = 10$ mA, and 25 °C, unless otherwise noted.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{LDO3IN}	Operating input voltage V_{LDO3} + 250 mV ≤ VSYS ≤ 4.5 V	1.0	—	4.5	V
VLDO3NOM	Nominal output voltage	—	See <u>Table 33</u>	—	V
I _{LDO3MAX}	Rated output load current, Normal mode	300	—	_	mA
I _{LDO3MAXLPM}	Rated output load current, Low-power mode	10	—	—	mA
VLDO3TOL		-2.5 -2.5 -4.0		2.5 2.5 4.0	%
ILDO3LIM	Current limit I_{LDO3} when V_{LDO3} is forced to $V_{LDO3NOM}/2$	320	—	1000	mA
I _{LDO3OCP}	LDO3FAULTI threshold (also used to disable LDO3 when REGSCPEN = 1)	320	—	1000	mA
ILDO3Q	Quiescent current (at 25 °C) No load, change in I _{VSYS} and I _{VLDOIN3} When LDO3 enabled in Normal mode When LDO3 enabled in Low-power mode		17 2.5		μΑ
R _{DSON_QFN_LDO3}	Dropout on resistance	—	_	350	mΩ
PSRR _{LDO3}	PSRR I _{LDO3} = 150 mA, 20 Hz to 20 kHz V _{LDO3} = 3.30 V, V _{LDO3IN} = 3.8 V, VSYS = 4.2 V		56		dB

Table 15. LDO3 electrical characteristics

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Min.	Тур.	Max.	Unit
TR _{VLDO3}	Turn on time 10 % to 90 % of end value V _{LDO3INMIN} < V _{LDO3IN} < 4.5 V, I _{LDO3} = 0.0 mA	_	200	500	μs
R _{LDO3DIS}	Turn off discharge resistance	_	250	_	Ω
LDO3OUT _{OSHT}	Start-up overshoot (% of final value) $V_{LDO3INMIN} < V_{LDO3IN} \le 4.5 \text{ V}, I_{LDO3} = 0.0 \text{ mA}$	_	1.0	2.0	%
V _{LDO3LOTR}	Transient load response V _{LDO3INMIN} < V _{LDO3IN} ≤ 4.5 V, I _{LDO3} = 10 mA to 100 mA in 10 µs Overshoot Undershoot	_	50 50		mV

5.3.7 Electrical characteristics – VREFDDR

 $T_A = -40$ to 105 °C, VSYS = 2.5 to 4.5 V, $I_{REFDDR} = 0.0$ mA, $V_{INREFDDR} = 1.35$ V and typical external component values, unless otherwise noted. Typical values are characterized at VSYS = 3.6 V, $I_{REFDDR} = 0.0$ mA, $V_{INREFDDR} = 1.35$ V, and 25 °C, unless otherwise noted.

Table 16. VREFDDR electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
VINREFDDR	Operating input voltage range	0.9	—	1.8	V
V _{REFDDR}	Output voltage, 0.9 V < V _{INREFDDR} < 1.8 V, 0 mA < I _{REFDDR} < 10 mA	—	V _{INREFDDR} /2	—	V
V _{REFDDRTOL}	Output voltage tolerance, as a percentage of V _{INREFDDR} , 1.2 V < V _{INREFDDR} < 1.65 V, 0 mA < I _{REFDDR} < 10 mA	49.25	50	50.75	%
I _{REFDDRQ}	Quiescent current (at 25 °C)	—	1.1	—	μΑ
	Current limit, I_{REFDDR} when V_{REFDDR} is forced to $V_{\text{INREFDDR}}/4$	10.5	24	38	mA
tonrefddr	Turn on time, 10 % to 90 % of end value, V_{INREFDDR} = 1.2 V to 1.65 V, I_{REFDDR} = 0.0 mA	—	—	100	μs

5.3.8 Electrical characteristics – VSNVS

All parameters are specified at $T_A = -40$ to 105 °C, VSYS = 3.6 V, $V_{SNVS} = 3.0$ V, $I_{SNVS} = 5.0 \ \mu$ A, typical external component values, unless otherwise noted. Typical values are characterized at VSYS = 3.6 V, $V_{SNVS} = 3.0$ V, $I_{SNVS} = 5.0 \ \mu$ A, and 25 °C, unless otherwise noted.

Table 17.	VSNVS	electrical	charac	teristics
-----------	-------	------------	--------	-----------

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{SNVSIN}	Operating input voltage Valid coin cell range Valid VSYS	1.8 2.45		3.3 4.5	V
I _{SNVS}	Operating load current Vsnvsinmin < Vsnvsin < Vsnvsinmax	2000	—	—	μΑ
V _{TL1}	VSYS threshold (VSYS powered to coin cell powered)	—	UVDET failing	—	V
V _{TH1}	VSYS threshold (coin cell powered to VSYS powered)	—	UVDET rising	—	V
V _{SNVS}	Output voltage (when running from VSYS) 0 μA < I _{SNVS} < 2000 μA Output voltage (when running from LICELL)	-7.0 % VCOIN - 0.20	3.0 —	7.0 % —	V
	0 μA < I _{SNVS} < 2000 μA 2.84 V < V _{COIN} < 3.3 V				

Power management integrated circuit (PMIC) for low power application processors

Symbol	Parameter	Min.	Тур.	Max.	Unit
VSNVSDROP	Dropout voltage VSYS = 2.9 V I _{SNVS} = 2000 μA	_	_	220	mV
I _{SNVSLIM}	Current limit VSYS > V _{TH1}	5200	_	24000	μΑ
V _{SNVSTON}	Turn on time (load capacitor, 0.47 μF) 10 % to 90 % of final value V _{SNVS} V _{COIN} = 0.0 V, I _{SNVS} = 0 μA	_	_	3.0	ms
V _{SNVSOSH}	Start-up overshoot I _{SNVS} = 5.0 μA dVSYS/dt = 50 mV/μs	_	40	70	mV
R _{DSONSNVS}	Internal switch R _{DS(on)} V _{COIN} = 2.6 V	—	_	100	Ω

5.3.9 Electrical characteristics – IC level bias currents

All parameters are specified at 25 °C, VSYS = 3.6 V, VIN = 0 V, typical external component values, unless otherwise noted. Typical values are characterized at VSYS = 3.6 V, V_{SNVS} = 3.0 V, and 25 °C, unless otherwise noted.

Mode	PF1510 conditions	System conditions	Typical	Max.	Unit
Coin cell	VSNVS from LICELL All other blocks off VSYS = 0.0 V	No load on VSNVS	1.5	4.0	μA
CORE_OFF	VSNVS from VSYS Wake-up from ONKEY active All other blocks off VSYS > UVDET	No load on VSNVS, PMIC able to wake-up	1.5	4.0	μA
Sleep	VSNVS from VSYS Wake-up from PWRON active Trimmed reference active DDR I/O rail in Low-power mode VREFDDR disabled	No load on VSNVS. DDR memories in self refresh.	12.5	25	μA
Standby/Suspend	VSNVS from either VSYS or LICELL SW1 in ultra Low-power mode SW2 in ultra Low-power mode SW3 in ultra Low-power mode Trimmed reference active VLDO1 is disabled VLDO2 enabled in Low-power mode VLDO3 enabled in Low-power mode VREFDDR enabled	No load on VSNVS. Processor enabled in Low-power mode.	23	46	μΑ
REGS_DISABLE	VSNVS from VSYS Wake-up from ONKEY active Other blocks are off VSYS > UVDET	No load on VSNVS, PMIC able to wake-up	14	20	μA

Table 18. IC level electrical characteristics

6 Detailed description

The PF1510 PMIC features three high efficiency low quiescent current buck regulators, three LDO regulators, a DDR voltage reference to supply voltages for the application processor and peripheral devices.

The buck regulators provide the supply to processor cores and to other low voltage circuits such as I/O and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for the processor cores for power optimization.

The three LDO regulators are general purpose to power various processor rails, system connectivity devices and/or peripherals. Depending on the system power configuration, the general purpose LDO regulators can be directly supplied from the main system supply VSYS or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN.

A specific VREFDDR voltage reference is included to provide accurate reference voltage for DDR memories operation.

The VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS (Secure Non-Volatile Storage)/RTC (Real Time Clock) circuitry on the processor. VSNVS is powered from VSYS or from a coin cell.

The PF1510 uses an integrated linear front-end LDO that provides 4.5 V at VSYS from the 5.0 V VIN.

Supply	Output voltage (V)	Programming step size (mV)	Load current (mA)
SW1 / SW2	0.60 to 1.3875 / 1.1 to 3.3	12.5/variable	1000
SW3	1.80 to 3.30	100	1000
LDO1	0.75 to 1.50 1.80 to 3.30	50 100	300
LDO2	1.80 to 3.30	100	400
LDO3	0.75 to 1.50 1.80 to 3.30	50 100	300
USBPHY	3.3 or 4.9	—	60
VSNVS	3.0	N/A	2
VREFDDR	0.5*VINREFDDR	N/A	10

Table 19. Voltage regulators

6.1 Buck regulators

The PF1510 features three high efficiency buck regulators with internal compensation. Each buck regulator is capable of meeting optimum power efficiency operation using reduced power variable-frequency pulse skip switching scheme at light loads as well as operating in forced PWM quasi-fixed frequency switching mode at higher loads. The switching regulator controller combines the advantages of hysteretic and voltage mode control which provides outstanding load regulation and transient response, low output ripple voltage and seamless transition between pulse-skip mode and Active Quasi-fixed frequency switching mode. The control circuitry includes an AC loop which senses the output voltage (at SWxFB pin) and directly feeds it to a fast comparator stage. This comparator sets the switching frequency, which is almost constant for steady state operating conditions. It also provides immediate response to dynamic load changes.

In order to achieve accurate DC load regulation, a voltage feedback loop is used. The internally compensated regulation network achieves fast and stable operation with small external components and low ESR capacitors. The transition into and out of low power

PF1510

pulse-skip switching mode takes place automatically according to the load current to maintain optimum power efficiency. Additionally, further power savings through cutting the buck circuitry quiescent current can be achieved by activating a Low-power mode upon entering either STANDBY or SLEEP PMIC power mode or as commanded via I²C control bits. In SW1 and SW2. An OTP option enables or disables DVS in the regulators. When DVS is disabled and the low-power bit is set, the regulator enters an Ultra Low Power (ULP) mode cuts the operating quiescent current even in order to reach extremely low standby power levels needed for ultra low power processors such as that from Kinetis K and L series.

As indicated above, the buck controller supports PWM (Pulse Width Modulation) mode for medium and high load conditions and low-power variable-frequency pulse skip mode at light loads. During high current mode, it operates in continuous conduction and the switching frequency is up to 2.0 MHz with a controlled on-time variation depending on the input voltage and output voltage. If the load current decreases, the converter seamlessly enters the pulse-skip mode to cut the operating quiescent current and maintain high efficiency down to very light loads. In pulse-skip mode the switching frequency varies linearly with the load current. Since the controller supports both power modes within one single building block, the transition from normal power mode to lower power pulse-skip mode and vice versa is seamless without dramatic effects on the output voltage.

In the adopted pulse-skip scheme, the device generates a single switching pulse to ramp up the inductor current and recharge the output capacitor, followed by a non-switching (pause) period where most of the internal circuits are shutdown to achieve a lowest quiescent current. During this time, the load current is supported by the output capacitor. The duration of the pause period depends on the load current and the inductor peak current.

6.2 SW1 and SW2 detailed description

SW1 and SW2 are identical buck regulators designed to carry a nominal load current of 1.0 A. Detailed characteristics and features of SW1 and SW2 are described in this section. Being identical, reference is made only to SWx though the same specifications apply to SW1 and SW2.

6.2.1 SWx dynamic voltage scaling description

SWx integrates an optional DVS circuit that is enabled via OTP. To reduce overall power consumption, when DVS is enabled SWx output voltage can be varied depending on the mode or activity level of the processor.

• Normal operation:

The output voltage is selected by I^2C bits SWx_VOLT[5:0]. A voltage transition initiated by I^2C is governed by the SWx_DVSSPEED I^2C bit as shown in <u>Table 20</u>.

• Standby mode:

The output voltage can be selected by I^2C bits SWx_STBY_VOLT[5:0]. Voltage transitions initiated by a Standby event are governed by the SWx_DVSSPEED I^2C bit as shown in Table 20. This applies only when DVS is enabled.

· Sleep mode:

The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state retention voltage of a given processor; it is selected by I^2C bits SWx_SLP_VOLT[5:0]. Voltage transitions initiated by a turn off event are governed by the SWx_DVSSPEED I^2C bit for SWx as shown in <u>Table 20</u>. This applies only when DVS is enabled.

PF1510

As shown in Figure 5, during a falling DVS transition, dv/dt of the output voltage depends on the load current. Setting the SWx_FPWM_IN_DVS bit forces the regulator in the FPWM mode during the falling transition allowing it to accurately track the DVS reference removing the load dependency. The SWx_FPWM_IN_DVS bit is active only when OTP_SWx_DVS_SEL = 0.

SWx_DVS speed	Function
0	12.5 mV step each 2.0 μs
1	12.5 mV step each 4.0 μs

6.2.2 SWx DVS and non-DVS operation

SWx has two distinct modes of operation selectable via OTP:

- DVS enabled: a DVS reference is activated and output accuracy of the regulator is tight at the cost of slightly higher quiescent current. See <u>Section 5.3 "Electrical</u> <u>characteristics"</u> for details. In <u>Figure 6</u>, **DVS FB** and **DVS REF** are enabled via OTP for this mode of operation.
- DVS disabled: the regulator operates as a traditional buck converter with a fixed reference and soft-start. The quiescent current in this mode is lower at the cost of output accuracy and transient response. See <u>Section 5.3 "Electrical characteristics"</u> for details. In <u>Figure 6</u>, **VREF FB** and **VREF** are enabled via OTP for this mode of operation.

Data sheet: advance information

PF1510

6.2.3 Regulator control

To improve system efficiency, the buck regulators can operate in different switching/ bias modes. The changing between DCM (Discontinuous Conduction Mode)/CCM (Continuous Conduction Mode) takes place automatically based on detecting the load current level. It can be enforced by one of the following means: I²C programming, exiting/ entering the Standby mode, exiting/entering Sleep/Low-power mode.

Available modes for buck regulators are presented in <u>Table 21</u>. These switching modes are available with OTP_SWx_DVS_SEL = 0 and OTP_SWx_DVS_SEL = 1. <u>Table 22</u> shows the bit settings for operating the buck converter is these modes based on the PMIC operating state.

Table 21. Buck regulator operating modes

Mode	Description
OFF	The regulator is switched off and the output voltage is discharged using an internal resistor.
Adaptive	This is the default mode of operation of the buck regulator. In this mode, the regulator operates in a quasi-fixed frequency switching mode at moderate and high loads, with pulse skip (variable switching frequency) scheme at light load for optimized efficiency.
F-PWM	In this mode, the regulator is always in PWM mode operation regardless of load conditions.
Low-power	To further extend power savings when the load current is minimal, this mode cuts the quiescent current of the buck converter by reducing the bias to the comparator. The regulator is operated in low power modes (Standby and/or Sleep) with the proper I^2C setting. See <u>Table 22</u> .

The following table shows actions to control different bits for SW1 and SW2.

Table 22. Buck mode control

PMIC state	SWx_EN	SWx_STBY	SWx_OMODE	SWx_LPWR	SWx_FPWM	SWx operating mode
Run/Standby/Sleep	0	Х	Х	х	Х	SW disabled
Run	1	Х	Х	0	0	SW enabled. Operates in DCM at light loads

All information provided in this document is subject to legal disclaimers

i oner inanagementen proceedere	Power management int	egrated circuit	(PMIC) for low	power application	processors
---------------------------------	----------------------	-----------------	----------------	-------------------	------------

PMIC state	SWx_EN	SWx_STBY	SWx_OMODE	SWx_LPWR	SWx_FPWM	SWx operating mode
Run	1	Х	х	0	1	SW enabled. Forced PWM mode
Run	1	Х	Х	1	0	SW Enabled. Does not operate in Low-power mode.
Run	1	Х	х	1	1	SW enabled. Forced PWM mode
Standby	1	0	х	Х	Х	SW disabled
Standby	1	1	х	0	0	SW enabled. Operates in DCM at light loads.
Standby	1	1	х	0	1	SW enabled. Forced PWM mode.
Standby	1	1	х	1	0	SW enabled. Operates in Low-power mode.
Standby	1	1	х	1	1	SW enabled. Forced PWM mode
Sleep	1	Х	0	Х	Х	SW disabled
Sleep	1	Х	1	0	0	SW enabled. Operates in DCM at light loads.
Sleep	1	Х	1	0	1	SW enabled. Forced PWM mode.
Sleep	1	Х	1	1	0	SW enabled. Operates in Low-power mode.
Sleep	1	Х	1	1	1	SW enabled. Forced PWM mode

6.2.4 Current limit protection

SWx features high and low-side FET current limit. When current through the FETs goes above their respective thresholds, the FET is turned off to prevent further increase in current.

The protection is enabled in a cycle-by-cycle mode. Hitting either current limit sets the corresponding interrupt sense bits. If the faults persist for longer than the 8.0 ms debounce time, the interrupt status bit is set.

6.2.5 Output voltage setting in SWx

Output voltage of SWx is programmable via OTP. During startup (REGS_DISABLE mode to RUN mode), contents of the OTP_SWx_VOLT[5:0] are mapped into the SWx_VOLT[5:0], SWx_STBY_VOLT[5:0] and SWx_SLP_VOLT[5:0] register which set the regulator output voltage during Run, Standby and Sleep modes respectively.

In the DVS enabled mode (OTP_SWx_DVS_SEL = 0), values of SWx_VOLT[5:0], SWx_STBY[VOLT[5:0] and SWx_SLP_VOLT[5:0] can be changed via I^2C after the PMIC starts up (RESETBMCU is released).

In the DVS disabled mode (OTP_SWx_DVS_SEL = 1), value of SWx_VOLT[5:0], SWx_STBY[VOLT[5:0] and SWx_SLP_VOLT[5:0] are read-only and must not be written to.

Set point	SWx_VOLT[5:0] SWx_STBY_VOLT[5:0] SWx_SLP_VOLT[5:0]	Output voltage with DVS enabled OTP_SWx_DVS_SEL = 0	Output voltage with DVS disabled OTP_SWx_DVS_SEL = 1
0	000000	0.6000	1.10
1	000001	0.6125	1.20
2	000010	0.6250	1.35
3	000011	0.6375	1.50
4	000100	0.6500	1.80

Table 23. SW1 and SW2 output voltage setting

Power management integrated circuit (PMIC) for low power application processors

Set point	SWx_VOLT[5:0] SWx_STBY_VOLT[5:0] SWx_SLP_VOLT[5:0]	Output voltage with DVS enabled OTP_SWx_DVS_SEL = 0	Output voltage with DVS disabled OTP_SWx_DVS_SEL = 1
5	000101	0.6625	2.50
6	000110	0.6750	3.00
7	000111	0.6875	3.30
8	001000	0.7000	3.30
9	001001	0.7125	3.30
10	001010	0.7250	3.30
11	001011	0.7375	3.30
12	001100	0.7500	3.30
13	001101	0.7625	3.30
14	001110	0.7750	3.30
15	001111	0.7875	3.30
16	010000	0.8000	3.3
17	010001	0.8125	3.30
18	010010	0.8250	3.30
19	010011	0.8375	3.30
20	010100	0.8500	3.30
21	010101	0.8625	3.30
22	010110	0.8750	3.30
23	010111	0.8875	3.30
24	011000	0.9000	3.30
25	011001	0.9125	3.30
26	011010	0.9250	3.30
27	011011	0.9375	3.30
28	011100	0.9500	3.30
29	011101	0.9625	3.30
30	011110	0.9750	3.30
31	011111	0.9875	3.30
32	100000	1.0000	3.30
33	100001	1.0125	3.30
34	100010	1.0250	3.30
35	100011	1.0375	3.30
36	100100	1.0500	3.30
37	100101	1.0625	3.30
38	100110	1.0750	3.30
39	100111	1.0875	3.30

PF1510

All information provided in this document is subject to legal disclaimers.