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MC33077/D

MC33077

Low Noise Dual Operational
Amplifier

The MC33077 is a precision high quality, high frequency, low noise

monolithic dual operational amplifier employing innovative bipolar

design techniques. Precision matching coupled with a unique analog

resistor trim technique is used to obtain low input offset voltages.

Dual−doublet frequency compensation techniques are used to enhance

the gain bandwidth product of the amplifier. In addition, the MC33077

offers low input noise voltage, low temperature coefficient of input

offset voltage, high slew rate, high AC and DC open loop voltage gain

and low supply current drain. The all NPN transistor output stage

exhibits no deadband cross−over distortion, large output voltage

swing, excellent phase and gain margins, low open loop output

impedance and symmetrical source and sink AC frequency

performance.

The MC33077 is available in plastic DIP and SOIC−8 packages (P

and D suffixes).

Features

• Low Voltage Noise: 4.4 nV/ Hz� @ 1.0 kHz

• Low Input Offset Voltage: 0.2 mV

• Low TC of Input Offset Voltage: 2.0 �V/°C

• High Gain Bandwidth Product: 37 MHz @ 100 kHz

• High AC Voltage Gain: 370 @ 100 kHz

1850 @ 20 kHz

• Unity Gain Stable: with Capacitance Loads to 500 pF

• High Slew Rate: 11 V/�s

• Low Total Harmonic Distortion: 0.007%

• Large Output Voltage Swing: +14 V to −14.7 V

• High DC Open Loop Voltage Gain: 400 k (112 dB)

• High Common Mode Rejection: 107 dB

• Low Power Supply Drain Current: 3.5 mA

• Dual Supply Operation: ±2.5 V to ±18 V

• Pb−Free Package is Available

Device Package Shipping†

ORDERING INFORMATION

MC33077D SOIC−8 98 Units/Rail

MC33077DR2 SOIC−8 2500 Tape & Reel

PDIP−8

P SUFFIX

CASE 626

1

8

SOIC−8

D SUFFIX

CASE 7511

8

MARKING

DIAGRAMS

1

8

1

8

A = Assembly Location

WL, L = Wafer Lot

YY, Y = Year

WW, W = Work Week

MC33077P PDIP−8 50 Units/Rail

PIN CONNECTIONS
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8 VCC

Output 2

Inputs 2

Inputs 1

(Dual, Top View)

−

+
1

−
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2

Output 1

33077

ALYW

MC33077P

          AWL

       YYWW
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MC33077DR2G SOIC−8

(Pb−Free)

2500 Tape & Reel

†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
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Figure 1. Representative Schematic Diagram (Each Amplifier)

Q2

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage (VCC to VEE) VS +36 V

Input Differential Voltage Range VIDR (Note 1) V

Input Voltage Range VIR (Note 1) V

Output Short Circuit Duration (Note 2) tSC Indefinite sec

Maximum Junction Temperature TJ +150 °C

Storage Temperature Tstg −60 to +150 °C

ESD Protection at any Pin
− Human Body Model

− Machine Model

Vesd
550
150

V

Maximum Power Dissipation PD (Note 2) mW

Operating Temperature Range TA −40 to + 85 °C

Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If
stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected. Functional operation
should be restricted to the Recommended Operating Conditions.

1. Either or both input voltages should not exceed VCC or VEE (See Applications Information).
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (See power dissipation performance

characteristic, Figure 2).
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DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)

Characteristics Symbol Min Typ Max Unit

Input Offset Voltage (RS = 10 �, VCM = 0 V, VO = 0 V)

TA = +25°C
TA = −40° to +85°C

|VIO|

−

−

0.13

−

1.0

1.5

mV

Average Temperature Coefficient of Input Offset Voltage

RS = 10 �, VCM = 0 V, VO = 0 V, TA = −40° to +85°C
�VIO/�T

− 2.0 −

�V/°C

Input Bias Current (VCM = 0 V, VO = 0 V)

TA = +25°C
TA = −40° to +85°C

IIB
−

−

280

−

1000

1200

nA

Input Offset Current (VCM = 0 V, VO = 0 V)

TA = +25°C
TA = −40° to +85°C

IIO
−

−

15

−

180

240

nA

Common Mode Input Voltage Range (�VIO ,= 5.0 mV, VO = 0 V) VICR ±13.5 ±14 − V

Large Signal Voltage Gain (VO = ±1.0 V, RL = 2.0 k�)

TA = +25°C
TA = −40° to +85°C

AVOL

150

125

400

−

−

−

kV/V

Output Voltage Swing (VID = ±1.0 V)

RL = 2.0 k�
RL = 2.0 k�
RL = 10 k�
RL = 10 k�

VO+

VO −

VO+

VO −

+13.0

−

+13.4

−

+13.6

−14.1

+14.0

−14.7

−

−13.5

−

−14.3

V

Common Mode Rejection (Vin = ±13 V) CMR 85 107 − dB

Power Supply Rejection (Note 3)

VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V

PSR

80 90 −

dB

Output Short Circuit Current (VID = ±1.0 V, Output to Ground)

Source

Sink

ISC

+10

−20

+26

−33

+60

+60

mA

Power Supply Current (VO = 0 V, All Amplifiers)

TA = +25°C
TA = −40° to +85°C

ID
−

−

3.5

−

4.5

4.8

mA

3. Measured with VCC and VEE simultaneously varied.
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AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)

Characteristics Symbol Min Typ Max Unit

Slew Rate (Vin = −10 V to +10 V, RL = 2.0 k�, CL = 100 pF, AV = +1.0) SR 8.0 11 − V/�s

Gain Bandwidth Product (f = 100 kHz) GBW 25 37 − MHz

AC Voltage Gain (RL = 2.0 k�, VO = 0 V)

f = 100 kHz

f = 20 kHz

AVO

−

−

370

1850

−

−

V/V

Unity Gain Bandwidth (Open Loop) BW − 7.5 − MHz

Gain Margin (RL = 2.0 k�, CL = 10 pF) Am − 10 − dB

Phase Margin (RL = 2.0 k�, CL = 10 pF) ∅ m − 55 − Deg

Channel Separation (f = 20 Hz to 20 kHz, RL = 2.0 k�, VO = 10 Vpp) CS − −120 − dB

Power Bandwidth (VO = 27p−p, RL = 2.0 k�, THD ≤ 1%) BWp − 200 − kHz

Distortion (RL = 2.0 k��
AV = +1.0, f = 20 Hz to 20 kHz

VO = 3.0 VRMS

AV = 2000, f = 20 kHz

VO = 2.0 Vpp

VO = 10 Vpp

AV = 4000, f = 100 kHz

VO = 2.0 Vpp

VO = 10 Vpp

THD

−

−

−

−

−

0.007

0.215

0.242

0.3.19

0.316

−

−

−

−

−

%

Open Loop Output Impedance (VO = 0 V, f = fU) |ZO| − 36 − �

Differential Input Resistance (VCM = 0 V) Rin − 270 − k�

Differential Input Capacitance (VCM = 0 V) Cin − 15 − pF

Equivalent Input Noise Voltage (RS = 100 �)

f = 10 Hz

f = 1.0 kHz

en

−

−

6.7

4.4

−

−

nV/ Hz√

Equivalent Input Noise Current (f = 1.0 kHz)

f = 10 Hz

f = 1.0 kHz

in
−

−

1.3

0.6

−

−

pA/ Hz√

P
D

(M
A

X
), M

A
X

IM
U

M
 P

O
W

E
R

 D
IS

S
IP

AT
IO

N
 (m

W
)

Figure 2. Maximum Power Dissipation

versus Temperature

Figure 3. Input Bias Current

versus Supply Voltage
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Figure 4. Input Bias Current

versus Temperature

Figure 5. Input Offset Voltage

versus Temperature

Figure 6. Input Bias Current versus

Common Mode Voltage

Figure 7. Input Common Mode Voltage Range

versus Temperature

Figure 8. Output Saturation Voltage versus

Load Resistance to Ground

Figure 9. Output Short Circuit Current

versus Temperature
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Figure 10. Supply Current

versus Temperature

Figure 11. Common Mode Rejection

versus Frequency

Figure 12. Power Supply Rejection

versus Frequency

Figure 13. Gain Bandwidth Product

versus Supply Voltage

Figure 14. Gain Bandwidth Product

versus Temperature

Figure 15. Maximum Output Voltage

versus Supply Voltage
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Figure 16. Output Voltage

versus Frequency

Figure 17. Open Loop Voltage Gain

versus Supply Voltage

Figure 18. Open Loop Voltage Gain

versus Temperature

Figure 19. Output Impedance

versus Frequency

Figure 20. Channel Separation

versus Frequency

Figure 21. Total Harmonic Distortion

versus Frequency
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Figure 22. Total Harmonic Distortion

versus Frequency

Figure 23. Total Harmonic Distortion

versus Output Voltage

Figure 24. Slew Rate versus Supply Voltage Figure 25. Slew Rate versus Temperature

Figure 26. Voltage Gain and Phase

versus Frequency

Figure 27. Open Loop Gain Margin and Phase

Margin versus Output Load Capacitance
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Figure 28. Phase Margin versus

Output Voltage

Figure 29. Overshoot versus

Output Load Capacitance

Figure 30. Input Referred Noise Voltage

and Current versus Frequency

Figure 31. Total Input Referred Noise Voltage

versus Source Resistant

Figure 32. Phase Margin and Gain Margin

versus Differential Source Resistance

Figure 33. Inverting Amplifier Slew Rate
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Figure 34. Non−inverting Amplifier Slew Rate Figure 35. Non−inverting Amplifier Overshoot

Figure 36. Low Frequency Noise Voltage

versus Time
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APPLICATIONS INFORMATION

The MC33077 is designed primarily for its low noise, low

offset voltage, high gain bandwidth product and large output

swing characteristics. Its outstanding high frequency

gain/phase performance make it a very attractive amplifier for

high quality preamps, instrumentation amps, active filters and

other applications requiring precision quality characteristics.

The MC33077 utilizes high frequency lateral PNP input

transistors in a low noise bipolar differential stage driving a

compensated Miller integration amplifier. Dual−doublet

frequency compensation techniques are used to enhance the

gain bandwidth product. The output stage uses an all NPN

transistor design which provides greater output voltage

swing and improved frequency performance over more

conventional stages by using both PNP and NPN transistors

(Class AB). This combination produces an amplifier with

superior characteristics.

Through precision component matching and innovative

current mirror design, a lower than normal temperature

coefficient of input offset voltage (2.0 �V/°C as opposed to 

10 �V/°C), as well as low input offset voltage, is accomplished.

The minimum common mode input range is from 1.5 V

below the positive rail (VCC) to 1.5 V above the negative rail

(VEE). The inputs will typically common mode to within

1.0 V of both negative and positive rails though degradation

in offset voltage and gain will be experienced as the common

mode voltage nears either supply rail. In practice, though not

recommended, the input voltage may exceed VCC by

approximately 3.0 V and decrease below the VEE by

approximately 0.6 V without causing permanent damage to

the device. If the input voltage on either or both inputs is less

than approximately 0.6 V, excessive current may flow, if not

limited, causing permanent damage to the device.

The amplifier will not latch with input source currents up

to 20 mA, though in practice, source currents should be

limited to 5.0 mA to avoid any parametric damage to the

device. If both inputs exceed VCC, the output will be in the

high state and phase reversal may occur. No phase reversal

will occur if the voltage on one input is within the common

mode range and the voltage on the other input exceeds VCC.

Phase reversal may occur if the input voltage on either or

both inputs is less than 1.0 V above the negative rail. Phase

reversal will be experienced if the voltage on either or both

inputs is less than VEE.

Through the use of dual−doublet frequency compensation

techniques, the gain bandwidth product has been greatly

enhanced over other amplifiers using the conventional

single pole compensation. The phase and gain error of the

amplifier remains low to higher frequencies for fixed

amplifier gain configurations.

With the all NPN output stage, there is minimal swing loss

to the supply rails, producing superior output swing, no

crossover distortion and improved output phase symmetry

with output voltage excursions (output phase symmetry

being the amplifiers ability to maintain a constant phase

relation independent of its output voltage swing). Output

phase symmetry degradation in the more conventional PNP

and NPN transistor output stage was primarily due to the

inherent cut−off frequency mismatch of the PNP and NPN

transistors used (typically 10 MHz and 300 MHz,

respectively), causing considerable phase change to occur as

the output voltage changes. By eliminating the PNP in the

output, such phase change has been avoided and a very

significant improvement in output phase symmetry as well

as output swing has been accomplished.

The output swing improvement is most noticeable when

operation is with lower supply voltages (typically 30% with

± 5.0 V supplies). With a 10 k load, the output of the

amplifier can typically swing to within 1.0 V of the positive

rail (VCC), and to within 0.3 V of the negative rail (VEE),

producing a 28.7 Vpp signal from ±15 V supplies. Output

voltage swing can be further improved by using an output

pull−up resistor referenced to the VCC. Where output signals

are referenced to the positive supply rail, the pull−up resistor

will pull the output to VCC during the positive swing, and

during the negative swing, the NPN output transistor

collector will pull the output very near VEE. This

configuration will produce the maximum attainable output

signal from given supply voltages. The value of load

resistance used should be much less than any feedback

resistance to avoid excess loading and allow easy pull−up of

the output.

Output impedance of the amplifier is typically less than

50 � at frequencies less than the unity gain crossover

frequency (see Figure 19). The amplifier is unity gain stable

with output capacitance loads up to 500 pF at full output

swing over the −55° to +125°C temperature range. Output

phase symmetry is excellent with typically 4°C total phase

change over a 20 V output excursion at 25°C with a 2.0 k�
and 100 pF load. With a 2.0 k� resistive load and no

capacitance loading, the total phase change is approximately

one degree for the same 20 V output excursion. With a

2.0 k� and 500 pF load at 125°C, the total phase change is

typically only 10°C for a 20 V output excursion (see

Figure 28).

As with all amplifiers, care should be exercised to insure

that one does not create a pole at the input of the amplifier

which is near the closed loop corner frequency. This becomes

a greater concern when using high frequency amplifiers since

it is very easy to create such a pole with relatively small values

of resistance on the inputs. If this does occur, the amplifier’s

phase will degrade severely causing the amplifier to become

unstable. Effective source resistances, acting in conjunction

with the input capacitance of the amplifier, should be kept to

a minimum to avoid creating such a pole at the input (see

Figure 32). There is minimal effect on stability where the

created input pole is much greater than the closed loop corner

frequency. Where amplifier stability is affected as a result of

a negative feedback resistor in conjunction with the
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amplifier’s input capacitance, creating a pole near the closed

loop corner frequency, lead capacitor compensation

techniques (lead capacitor in parallel with the feedback

resistor) can be employed to improve stability. The feedback

resistor and lead capacitor RC time constant should be larger

than that of the uncompensated input pole frequency. Having

a high resistance connected to the noninverting input of the

amplifier can create a like instability problem. Compensation

for this condition can be accomplished by adding a lead

capacitor in parallel with the noninverting input resistor of

such a value as to make the RC time constant larger than the

RC time constant of the uncompensated input resistor acting

in conjunction with the amplifiers input capacitance.

For optimum frequency performance and stability, careful

component placement and printed circuit board layout

should be exercised. For example, long unshielded input or

output leads may result in unwanted input output coupling.

In order to reduce the input capacitance, the body of resistors

connected to the input pins should be physically close to the

input pins. This not only minimizes the input pole creation

for optimum frequency response, but also minimizes

extraneous signal “pickup” at this node. Power supplies

should be decoupled with adequate capacitance as close as

possible to the device supply pin.

In addition to amplifier stability considerations, input

source resistance values should be low to take full advantage

of the low noise characteristics of the amplifier. Thermal

noise (Johnson Noise) of a resistor is generated by

thermally−charged carriers randomly moving within the

resistor creating a voltage. The RMS thermal noise voltage

in a resistor can be calculated from:

Enr = 4k TR ×  BW/

where:

k = Boltzmann’s Constant (1.38 × 10−23 joules/k)

T = Kelvin temperature

R = Resistance in ohms

BW = Upper and lower frequency limit in Hertz.

By way of reference, a 1.0 k� resistor at 25°C will

produce a 4.0 nV/ Hz√  of RMS noise voltage. If this resistor

is connected to the input of the amplifier, the noise voltage

will be gained−up in accordance to the amplifier’s gain

configuration. For this reason, the selection of input source

resistance for low noise circuit applications warrants serious

consideration. The total noise of the amplifier, as referred to

its inputs, is typically only 4.4 nV/ Hz√  at 1.0 kHz.

The output of any one amplifier is current limited and thus

protected from a direct short to ground, However, under such

conditions, it is important not to allow the amplifier to exceed

the maximum junction temperature rating. Typically for

±15 V supplies, any one output can be shorted continuously

to ground without exceeding the temperature rating.

Figure 37. Voltage Noise Test Circuit

(0.1 Hz to 10 Hzp−p)
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PACKAGE DIMENSIONS

SOIC−8
D SUFFIX

CASE 751−07
ISSUE AB

*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.

SOLDERING FOOTPRINT*

SEATING
PLANE

1

4

58

N

J

X 45�

K

NOTES:
1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE

MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.

6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.

A

B S

DH

C

0.10 (0.004)

DIM

A

MIN MAX MIN MAX

INCHES

4.80 5.00 0.189 0.197

MILLIMETERS

B 3.80 4.00 0.150 0.157

C 1.35 1.75 0.053 0.069

D 0.33 0.51 0.013 0.020

G 1.27 BSC 0.050 BSC

H 0.10 0.25 0.004 0.010

J 0.19 0.25 0.007 0.010

K 0.40 1.27 0.016 0.050

M 0  8  0  8  

N 0.25 0.50 0.010 0.020

S 5.80 6.20 0.228 0.244

−X−

−Y−

G

MYM0.25 (0.010)

−Z−

YM0.25 (0.010) Z S X S

M

� � � �

SOIC−8

1.52

0.060

7.0

0.275

0.6

0.024

1.270

0.050

4.0

0.155

� mm

inches
�SCALE 6:1
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PDIP−8
P SUFFIX

CASE 626−05
ISSUE L

NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN

FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR

SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

1 4

58

F

NOTE 2 −A−

−B−

−T−
SEATING

PLANE

H

J

G

D K

N

C

L

M

MAM0.13 (0.005) B MT

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 9.40 10.16 0.370 0.400
B 6.10 6.60 0.240 0.260
C 3.94 4.45 0.155 0.175
D 0.38 0.51 0.015 0.020
F 1.02 1.78 0.040 0.070
G 2.54 BSC 0.100 BSC
H 0.76 1.27 0.030 0.050
J 0.20 0.30 0.008 0.012
K 2.92 3.43 0.115 0.135
L 7.62 BSC 0.300 BSC
M −−− 10  −−− 10  
N 0.76 1.01 0.030 0.040
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