

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Document Number: MC33663

Rev. 2.0, 12/2013

LIN 2.1 / SAEJ2602-2 Dual LIN Physical Layer

The local interconnect network (LIN) is a serial communication protocol designed to support automotive networks in conjunction with controller area network (CAN). As the lowest level of a hierarchical network, LIN enables cost-effective communication with sensors and actuators when all the features of CAN are not required.

The 33663 product line integrates two physical layer LIN bus dedicated to automotive LIN sub-bus applications. The MC33663LEF and MC33663SEF devices offer normal baud rate (20 kbps) and the MC33663JEF slow baud rate (10 kbps). Both devices integrate fast baud rate (above 100 kbps) for test and programming modes. They present excellent electromagnetic compatibility (EMC) and radiated emission performance, electrostatic discharge (ESD) robustness and safe behavior, in the event of LIN bus short-to-ground or LIN bus leakage during low-power mode.

Features

- Operational from $V_{SUP}\ 7.0$ to 18 V DC, functional up to 27 V DC, and handles 40 V during load dump
- Compatible with LIN protocol specification 2.1, and SAEJ2602-2
- · Very high immunity against electromagnetic interference
- · Low standby current in Sleep mode
- · Over-temperature protection
- · Permanent dominant state detection
- · Fast baud rate mode selection reported by RXD
- Active bus waveshaping offering excellent radiated emission performance
- Sustains ±15.0 kV ESD IEC6100-4-2 on LIN BUS and VSUP pins
- 5.0 and 3.3 V compatible digital inputs without any external components required

33663

DUAL LIN TRANSCEIVER

EF SUFFIX (PB-FREE) 98ASB42565B 14-PIN SOICN

ORDERING INFORMATION				
Device (add an R2 suffix for Tape and reel orders) Temperature Range (T _A) Package				
MC33663ALEF				
MC33663AJEF	-40 to 125°C	14 SOICN		
MC33663ASEF				

Figure 1. 33663 Simplified Application Diagram

 ^{*} This document contains certain information on a new product.
 Specifications and information herein are subject to change without notice.

DEVICE VARIATIONS

Table 1. Device Variations

Freescale Part No. (Add an R2 suffix for Tape and reel orders)	Maximum Baud Rate	Temperature Range (T _A)	Package
MC33663ALEF	20 kbps		
MC33663ASEF	20 kbps with restricted limits for transmitter and receiver symmetry	-40 to 125 °C	14 SOICN
MC33663AJEF	10 kbps		

INTERNAL BLOCK DIAGRAM

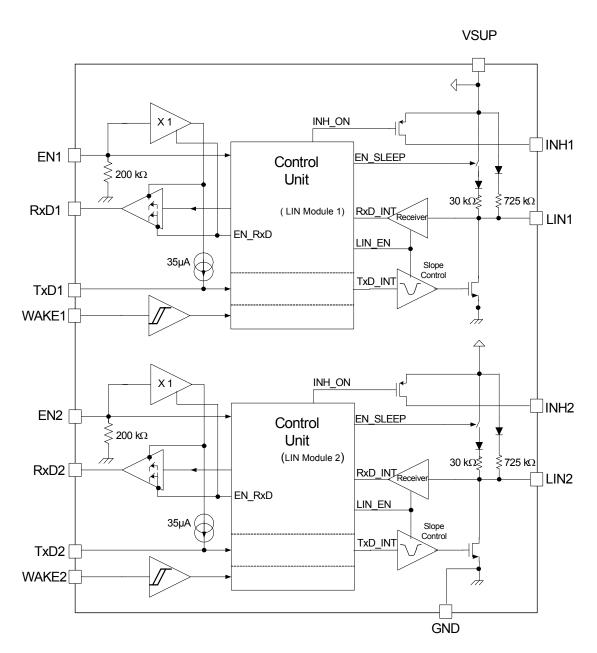


Figure 2. 33663 Simplified Internal Block Diagram

PIN CONNECTIONS

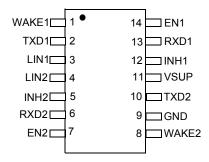


Figure 3. 33663 14-SOIC Pin Connections

Table 2. 33663 Pin Definitions

Pin	Pin Name	Formal Name	Definition
1	WAKE1	Wake Input	This pin is a high-voltage input used to wake-up the LIN1 from Sleep mode.
2	TXD1	Data Input	This pin is the transmitter input of the LIN1 interface which controls the state of the bus output.
3	LIN1	LIN Bus	This bidirectional pin represents the LIN1 single-wire bus transmitter and receiver.
4	LIN2	LIN Bus	This bidirectional pin represents the LIN2 single-wire bus transmitter and receiver.
5	INH2	Inhibit Output	This pin can have two main functions: controlling an external switchable voltage regulator having an inhibit input, or driving an external bus resistor connected to LIN2 in the master node application.
6	RXD2	Data Output	This pin is the receiver output of the LIN2 interface, which reports the state of the bus voltage to the MCU interface.
7	EN2	Enable Control	This pin controls the operation mode of the LIN2 interface.
8	WAKE2	Wake Input	This pin is a high-voltage input used to wake-up the LIN2 device from Sleep mode.
9	GND	Ground	This pin is the device ground pin.
10	TXD2	Data Input	This pin is the transmitter input of the LIN2 interface, which controls the state of the bus output.
11	VSUP	Power Supply	This pin is device battery level power supply.
12	INH1	Inhibit Output	This pin can have two main functions: controlling an external switchable voltage regulator having an inhibit input, or driving an external bus resistor connected to LIN1 in the master node application.
13	RXD1	Data Output	This pin is the receiver output of the LIN1 interface, which reports the state of the bus voltage to the MCU interface.
14	EN1	Enable Control	This pin controls the operation mode of the LIN1 interface.

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Table 3. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit
ELECTRICAL RATINGS			
Power Supply Voltage (VSUP)			V
Normal Operation (DC) Transient input voltage with external component (according to ISO7637-2 & ISO7637-3 & "Hardware Requirements for LIN, CAN, and Flexray Interfaces in Automotive Applications" specification Rev. 1.1/December 2nd, 2009) (See Table 4 and Figure 4)	V _{SUP(SS)}	-0.3 to 27	
- Pulse 1 (test up to the limit for Damage - Class A ⁽¹⁾)	V	-100	
- Pulse 2a (test up to the limit for Damage - Class $A^{\left(1\right)}$)	V _{SUP(S1)} V _{SUP(S2A)}	+75	
- Pulse 3a (test up to the limit for Damage - Class $A^{(1)}$)	V _{SUP(S2A)}	-150	
- Pulse 3b (test up to the limit for Damage - Class A ⁽¹⁾)	V _{SUP(S3B)}	+100	
- Pulse 5b (Class A) ⁽¹⁾	V _{SUP(S5B)}	-0.3 to 40	
Logic Voltage (RXD _{1,2} , TXD _{1,2} , EN _{1,2} Pins)	V _{LOG}	-0.3 to 5.5	V
WAKE (V _{WAKE1} ,V _{WAKE2})			V
Normal Operation with in series $2*18 \text{ k}\Omega$ resistor (DC)	V _{WAKE(SS)}	-27 to 40	
Transient input voltage with external component (according to ISO7637-2 & ISO7637-3 & "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications" specification Rev1.1 / December 2nd, 2009) (See Table 4 and Figure 5)			
- Pulse 1 (test up to the limit for Damage - Class D ⁽²⁾)	V _{WAKE(S1)}	-100	
- Pulse 2a (test up to the limit for Damage - Class D ⁽²⁾)	V _{WAKE(S2A)}	+75	
- Pulse 3a (test up to the limit for Damage - Class D ⁽²⁾)	V _{WAKE(S3A)}	-150	
- Pulse 3b (test up to the limit for Damage - Class $D^{(2)}$)	V _{WAKE(S3B)}	+100	
LIN Bus Voltage (V _{LIN1} , V _{LIN2})			V
Normal Operation (DC)	V _{LIN(SS)}	-27 to 40	
Transient (Coupled Through 1.0 nF Capacitor) (according to ISO7637-2 & ISO7637-3) (See <u>Table 4</u> and <u>Figure 6</u>)			
- Pulse 1 (test up to the limit for Damage - Class D ⁽²⁾)	V _{LIN(S1)}	-100	
- Pulse 2a (test up to the limit for Damage - Class $D^{(2)}$)	V _{LIN(S2A)}	+75	
- Pulse 3a (test up to the limit for Damage - Class $D^{(2)}$)	V _{LIN(S3A)}	-150	
- Pulse 3b (test up to the limit for Damage - Class D ⁽²⁾)	V _{LIN(S3B)}	+100	

- 1. Class A: All functions of a device/system perform as designed during and after exposure to disturbance.
- 2. Class D: At least one function of the Transceiver stops working properly during the test and will return into proper operation automatically when the exposure to the disturbance has ended. No physical damage of the IC occurs.

Table 3. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit
ELECTRICAL RATINGS			
INH Voltage/Current (V _{INH1} , V _{INH2})			V
DC Voltage	V_{INH}	-0.3 to V _{SUP} + 0.3	
Transient (Coupled Through 1.0 nF Capacitor, according to ISO7637-2 & ISO7637-3 & "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications" specification Rev1.1 / December 2nd, 2009) (See Table 4 and Figure 7)			
- Pulse 1 (test up to the limit for Damage - Class D ⁽³⁾)	V _{INH(S1)}	-100	
- Pulse 2a (test up to the limit for Damage - Class D ⁽³⁾)	V _{INH(S2a)}	+75	
- Pulse 3a (test up to the limit for Damage - Class D ⁽³⁾)	V _{INH(S3a)}	-150	
- Pulse 3b (test up to the limit for Damage - Class D ⁽³⁾)	V _{INH(S3b)}	+100	

Notes

3. Class D: At least one function of the Transceiver stops working properly during the test and will return into proper operation automatically when the exposure to the disturbance has ended. No physical damage of the IC occurs.

Table 3. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit
ELECTRICAL RATINGS			
ESD Capability			V
AECQ100			
Human Body Model - JESD22/A114 (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω)			
LIN1, LIN2 pins versus GND	V _{ESD1-1}	±10.0 k	
WAKE1, WAKE2 pins versus GND	V _{ESD1-2}	±8.0 k	
All other Pins	V _{ESD1-4}	±4.0 k	
Charge Device Model - JESD22/C101 (C _{ZAP} = 4.0 pF)			
Corner pins (Pins 1, 7, 8 and 14)	V _{ESD2-1}	±750	
All other pins (Pins 2-6, 9-13)	V _{ESD2-2}	±750	
Machine Model - JESD22/A115 (C_{ZAP} = 220 pF, R_{ZAP} = 0 Ω)			
All pins	V _{ESD3-1}	±200	
According to "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications" specification Rev1.1 / December 2nd, 2009			
$(C_{ZAP} = 150 \text{ pF}, R_{ZAP} = 330 \Omega)$			
Contact Discharge, Unpowered			
LIN1, LIN2 pins without capacitor	V _{ESD4-1}	±15 k	
LIN1, LIN2 pins with 220 pF capacitor	V _{ESD4-2}	±15 k	
VSUP (10 μF to ground)	V _{ESD4-3}	±25 k	
WAKE1, WAKE2 (2*18 kΩ serial resistor)	V _{ESD4-4}	±20 k	
LIN1, LIN2 pins with 220 pF capacitor and indirect ESD coupling (according to ISO10605 - Annex F)	V _{ESD4-5}	±15 k	
According to ISO10605 - Rev 2008 test specification			
(2.0 kΩ / 150 pF) - Unpowered - Contact discharge	V _{ESD5-1}	±25 k	
LIN1, LIN2 pins without capacitor		±25 k	
LIN1, LIN2 pins with 220 pF capacitor	V _{ESD5-2}	±25 k	
VSUP (10 μF to ground)	V _{ESD5-3}	±25 k ±25 k	
WAKE1, WAKE2 (2*18 kΩ serial resistor)	V _{ESD5-4}	IZU K	
(2.0 kΩ / 330 pF) - Powered - Contact discharge	V _{ESD6-1}	±8 k	
LIN1, LIN2 pins without capacitor	VESD6-1 V _{ESD6-2}	±8 k	
LIN1, LIN2 pins with 220 pF capacitor	VESD6-2 V _{ESD6-3}	±25 k	
VSUP (10 μF to ground)	VESD6-3 V _{ESD6-4}	±25 k	
WAKE1, WAKE2 (2*18 kΩ serial resistor)	*ESD6-4	TZJ K	

Table 3. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit
Thermal Ratings			
Operating Temperature Ambient Junction	T _A	-40 to 125 -40 to 150	°C
Storage Temperature	T _{STG}	-40 to 150	°C
Thermal Resistance, Junction to Ambient	$R_{ hetaJA}$	150	°C/W
Peak package reflow temperature during reflow ^{(4),(5)}	T _{PPRT}	Note 5	°C
Thermal Shutdown Temperature	T _{SHUT}	150 to 200	°C
Thermal Shutdown Hysteresis Temperature	T _{HYST}	20	°C

- 4. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.
- 5. Freescale's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

Table 4. Limits / Maximum test voltage for transient immunity tests

Test Pulse	V _S [V]	Pulse repetition frequency [Hz] (1/T ₁)	Test duration [min]	R _i [Ω]	Remarks
1	-100	2	1 for function test	10	t ₂ = 0s
2a	+75	2	10 for damage test	2	
3a	-150	10		50	
3b	+100	10		50	

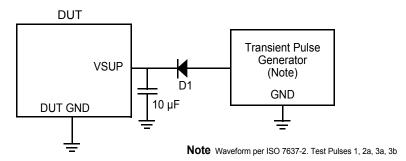


Figure 4. Test Circuit for Transient Test Pulses (V_{SUP})

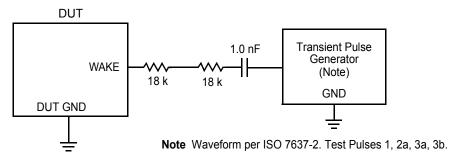


Figure 5. Test Circuit for Transient Test Pulses (WAKE1,WAKE2)

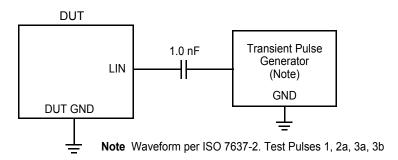


Figure 6. Test Circuit for Transient Test Pulses (LIN1,LIN2)

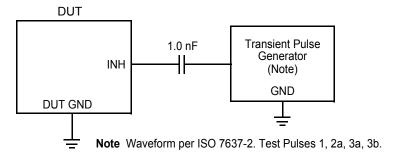



Figure 7. Test Circuit for Transient Test Pulses (INH1,INH2)

STATIC ELECTRICAL CHARACTERISTICS

Table 5. Static Electrical Characteristics

Characteristics noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
VSUP PIN (DEVICE POWER SUPPLY)					
Nominal Operating Voltage	V _{SUP}	7.0	13.5	18.0	V
Functional Operating Voltage ⁽⁶⁾	V _{SUPOP}	6.7	_	27	٧
Load Dump	V _{SUPLD}	1	_	40	٧
Power-On Reset (POR) Threshold V _{SUP} Ramp Down and INH1, INH2 goes High to Low	V _{POR}	3.5	_	5.3	V
Power-On Reset (POR) Hysteresis	V _{PORHYST}	-	270	-	mV
V _{SUP} Under-voltage Threshold (positive and negative) Transmission disabled and LIN1,LIN2 bus goes in recessive	V_{UVL}, V_{UVH}	5.8	_	6.7	V
V _{SUP} Under-voltage Hysteresis (V _{UVL} - V _{UVH})	V _{UVHYST}	-	130	-	mV
Supply Current LIN1 and LIN2 in Sleep Mode $V_{SUP} \leq 13.5 \text{ V}, \text{ Recessive State} \\ 13.5 \text{ V} < V_{SUP} < 27 \text{ V} \\ V_{SUP} \leq 13.5 \text{ V}, \text{ Shorted to GND}$	_{S1} _{S2} _{S3}	- - -	12.0 - 48	22 36 140	μА
Supply Current LIN1 Normal Mode - LIN2 Sleep Mode (and vice versa) Bus ₁ Recessive, BUS ₂ Sleep, Excluding INH1,INH2 OR (Bus ₂ Recessive, BUS ₁ Sleep, Excluding INH1,INH2)	ls_N_REC1,2	-	4.0	5.0	mA
${\sf Bus}_1$ Dominant, ${\sf BUS}_2$ Sleep, Excluding INH1,INH2 OR (${\sf Bus}_2$ Dominant, ${\sf BUS}_1$ Sleep, Excluding INH1,INH2)	I _{S_N_DOM1,2}	-	6.0	8.0	
Supply Current when LIN1 and LIN2 are in Normal or Slow or Fast Mode Bus ₁ Recessive, Bus ₂ Recessive, Excluding INH1,INH2 Output Current Bus ₁ Recessive, Bus ₂ Dominant, Excluding INH1,INH2 Output Current Bus ₁ Dominant, Bus ₂ Recessive, Excluding INH1,INH2 Output Current Bus ₁ Dominant, Bus ₂ Dominant, Excluding INH1,INH2 Output Current	I _S (REC1,REC2) I _S (REC1,DOM2) I _S (DOM1,REC2) I _S (DOM1,DOM2)		8.0 12.0 12.0 12.0	9.0 13.0 13.0 16.0	mA
RXD1, RXD2 OUTPUT PINS (LOGIC)	, , ,				
Low Level Output Voltage $I_{\text{IN}} \leq 1.5 \text{ mA}$	V _{OL}	0.0	-	0.9	V
High Level Output Voltage V_{EN} = 5.0 V, $I_{OUT} \le 250 \ \mu A$ V_{EN} = 3.3 V, $I_{OUT} \le 250 \ \mu A$	V _{OH}	4.25 3.0		5.25 3.5	V

Notes

6. Device is functional. All features are operating. Electrical parameters are not guaranteed.

Table 5. Static Electrical Characteristics

Characteristics noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
TXD1, TXD2 INPUT PINS (LOGIC)					
Low Level Input Voltage	V _{IL}	_	_	0.8	V
High Level Input Voltage	V _{IH}	2.0	_	_	V
Input Threshold Voltage Hysteresis	V _{INHYST}	100	300	600	mV
Pull-up Current Source V _{EN} = 5.0 V, 1.0 V < V _{TXD} < 3.5 V	I _{PU}	-60	-35	-20	μА
EN1, EN2 INPUT PINS (LOGIC)				l	
Low Level Input Voltage	V _{IL}	-	_	0.8	V
High Level Input Voltage	V _{IH}	2.0	-	-	V
Input Voltage Threshold Hysteresis	V _{INHYST}	100	400	600	mV
Pull-down Resistor	R _{PD}	100	230	350	kohm
LIN PHYSICAL LAYER - TRANSCEIVER LIN (LIN1, LIN2) ⁽⁷⁾					
Operating Voltage Range ⁽⁸⁾	V _{BAT}	8.0	_	18	V
Supply Voltage Range	V _{SUP}	7.0	_	18	V
Voltage Range (within which the device is not destroyed)	V _{SUP_NON_OP}	-0.3	_	40	V
Current Limitation for Driver Dominant State Driver ON, V _{BUS} = 18 V	I _{BUS_LIM}	40	90	200	mA
Input Leakage Current at the Receiver Driver off; V _{BUS} = 0 V; V _{BAT} = 12 V	I _{BUS_PAS_DOM}	-1.0	_	_	mA
Leakage Output Current to GND $ \begin{aligned} &\text{Driver Off; 8.0 V} < V_{BAT} < 18 \text{ V; 8.0 V} < V_{BUS} < 18 \text{ V; } V_{BUS} \geq V_{BAT}; \\ &V_{BUS} \geq V_{SUP} \end{aligned} $	IBUS_PAS_REC	-	-	20	μА
Control Unit Disconnected from Ground ⁽⁹⁾ GND _{DEVICE} = V _{SUP} ; V _{BAT} = 12 V; 0 < V _{BUS} < 18 V	I _{BUS_NO_GND}	-1.0	_	1.0	mA
V _{BAT} Disconnected; V _{SUP_DEVICE} = GND; 0 V < V _{BUS} < 18 V ⁽¹⁰⁾	I _{BUSNO_BAT}	-	-	10	μΑ
Receiver Dominant State ⁽¹¹⁾	V _{BUSDOM}	-	-	0.4	V _{SUP}
Receiver Recessive State ⁽¹²⁾	V _{BUSREC}	0.6	_	_	V _{SUP}

- 7. Parameters guaranteed for 7.0 V \leq V_{SUP} \leq 18 V.
- 8. Voltage range at the battery level, including the reverse battery diode.
- 9. Loss of local ground must not affect communication in the residual network.
- 10. Node has to sustain the current that can flow under this condition. The bus must remain operational under this condition.
- 11. LIN threshold for a dominant state.
- 12. LIN threshold for a recessive state.

Table 5. Static Electrical Characteristics

Characteristics noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Receiver Threshold Center	V _{BUS_CNT}				V _{SUP}
(V _{TH_DOM} + V _{TH_REC})/2		0.475	0.5	0.525	
Receiver Threshold Hysteresis	V _{HYS}				V _{SUP}
(V _{TH_REC} - V _{TH_DOM})		_	_	0.175	
LIN dominant level with 500 $\Omega,$ 680 Ω and 1.0 $k\Omega$ load on the LIN bus	V _{LINDOM_LEVEL}	-	_	0.25	V _{SUP}
V _{BAT_} SHIFT	V _{SHIFT_BAT}	0.0	_	11.5%	V_{BAT}
GND_SHIFT	V _{SHIFT_GND}	0.0	_	11.5%	V_{BAT}
LIN Wake-up Threshold from Sleep Mode	V _{BUSWU}	1	4.3	5.3	V
LIN Pull-up Resistor to V _{SUP}	R _{SLAVE}	20	30	60	kΩ
LIN internal capacitor ⁽¹³⁾	C _{LIN}	_	_	30	pF
Over-temperature Shutdown ⁽¹⁴⁾	T _{LINSD}	150	160	200	°C
Over-temperature Shutdown Hysteresis	T _{LINSD_HYS}	-	20	_	°C

INH1, INH2 OUTPUT PINS

Driver ON Resistance (Normal Mode)	INH _{ON}				Ω
I _{INH} = 50 mA		_	_	50	
Current load capability	I _{INH_load}				mA
From 7.0 V < V _{SUP} < 18 V		_	-	30	
Leakage Current (Sleep Mode)	I _{LEAK}				μΑ
0 < V _{INH} < V _{SUP}		-5.0	-	5.0	
Over-temperature Shutdown ⁽¹⁵⁾	T _{INHSD}	150	160	200	°C
Over-temperature Shutdown Hysteresis	T _{INHSD_HYS}	_	20	-	°C

- 13. This parameter is guaranteed by process monitoring but not production tested.
- 14. When an over-temperature shutdown occurs, the LIN transmitter and receiver are in recessive state and INH switched off. This parameter is tested with a test mode on ATE and characterized at laboratory.
- 15. When an over-temperature shutdown occurs, the INH1, INH2 high side are switched off and the LIN transmitter and receiver are in recessive state. This parameter is tested with a test mode on ATE and characterized at laboratory.

Table 5. Static Electrical Characteristics

Characteristics noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
WAKE1, WAKE2 INPUT PINS	·				
High to Low Detection Threshold (5.5 V < V _{SUP} < 7 V)	V _{WUHL1}	2.0	_	3.9	V
Low to High Detection Threshold (5.5 V < V _{SUP} < 7 V)	V _{WULH1}	2.4	-	4.3	V
Hysteresis (5.5 V < V _{SUP} < 7 V)	V _{WUHYS1}	0.2	-	0.8	V
High to Low Detection Threshold (7 V \leq V _{SUP} $<$ 27 V)	V _{WUHL2}	2.4	-	3.9	V
Low to High Detection Threshold (7 V \leq V _{SUP} $<$ 27 V)	V _{WULH2}	2.9	-	4.3	V
Hysteresis (7 V ≤ V _{SUP} < 27 V)	V _{WUHYS2}	0.2	-	0.8	V
Wake-up Input Current (V _{WAKE} < 27 V)	I _{WU}	_	-	5.0	μΑ

DYNAMIC ELECTRICAL CHARACTERISTIC

Table 6. Dynamic Electrical Characteristics

Characteristics noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LIN1, LIN2 PHYSICAL LAYER DRIVERS CHARACTERISTICS FOR NORMAL SLEW RATE - 20.0 KBIT/S SPECIFICATION ⁽¹⁶⁾⁽¹⁷⁾ 33663L AND 33663S DEVICE	SEC ACCORDING TO	LIN PHYSIC	AL LAYE	R	
Duty Cycle 1:	D1				
$TH_{REC(MAX)} = 0.744 * V_{SUP}; TH_{DOM(MAX)} = 0.581 * V_{SUP}$					
D1 = $t_{BUS_REC(MIN)}/(2 \text{ x } t_{BIT})$, t_{BIT} = 50 μs , 7.0 $V \leq V_{SUP} \leq$ 18 V		0.396	_	_	
Duty Cycle 2:	D2				
$TH_{REC(MIN)} = 0.422 * V_{SUP}; TH_{DOM(MIN)} = 0.284 * V_{SUP}$					
D2 = $t_{BUS_REC(MAX)}/(2 \times t_{BIT})$, t_{BIT} = 50 μs , 7.6 $V \le V_{SUP} \le$ 18 V		_	_	0.581	
Duty Cycle 3:	D3				
$TH_{REC(MAX)} = 0.778 * V_{SUP}; TH_{DOM(MAX)} = 0.616 * V_{SUP}$	D3	0.417	_	_	
TH _{REC(MAX)} = 0.778 * V _{SUP} ; TH _{DOM(MAX)} = 0.616 * V _{SUP} $D3 = t_{BUS_REC(MIN)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.0 \ V \le V_{SUP} \le 18 \ V$		0.417	-	_	
$TH_{REC(MAX)} = 0.778 * V_{SUP}; TH_{DOM(MAX)} = 0.616 * V_{SUP}$ $D3 = t_{BUS_REC(MIN)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.0 \ V \leq V_{SUP} \leq 18 \ V$ Duty Cycle 4:	D3	0.417	-	_	
TH _{REC(MAX)} = 0.778 * V _{SUP} ; TH _{DOM(MAX)} = 0.616 * V _{SUP} $D3 = t_{BUS_REC(MIN)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.0 \ V \le V_{SUP} \le 18 \ V$		0.417	-	0.590	
$\begin{split} & \text{TH}_{REC(MAX)} = 0.778 \text{ * V}_{SUP}; \text{ TH}_{DOM(MAX)} = 0.616 \text{ * V}_{SUP} \\ & \text{D3} = t_{BUS_REC(MIN)} / (2 \text{ x t}_{BIT}), t_{BIT} = 96 \mu\text{s}, 7.0 \text{ V} \leq \text{V}_{SUP} \leq 18 \text{ V} \\ & \text{Duty Cycle 4:} \\ & \text{TH}_{REC(MIN)} = 0.389 \text{ * V}_{SUP}; \text{ TH}_{DOM(MIN)} = 0.251 \text{ * V}_{SUP} \end{split}$	D4	0.417	-	0.590	
$\begin{split} &TH_{REC(MAX)} = 0.778 * V_{SUP}; \ TH_{DOM(MAX)} = 0.616 * V_{SUP} \\ &D3 = t_{BUS_REC(MIN)}/(2 \text{ x } t_{BIT}), \ t_{BIT} = 96 \ \mu\text{s}, \ 7.0 \ \text{V} \leq V_{SUP} \leq 18 \ \text{V} \end{split}$ Duty Cycle 4: $&TH_{REC(MIN)} = 0.389 * V_{SUP}; \ TH_{DOM(MIN)} = 0.251 * V_{SUP} \\ &D4 = t_{BUS_REC(MAX)}/(2 \text{ x } t_{BIT}), \ t_{BIT} = 96 \ \mu\text{s}, \ 7.6 \ \text{V} \leq V_{SUP} \leq 18 \ \text{V} \end{split}$	D4	0.417	-	0.590	kBit/s
$TH_{REC(MAX)} = 0.778 * V_{SUP}; TH_{DOM(MAX)} = 0.616 * V_{SUP}$ $D3 = t_{BUS_REC(MIN)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, \ 7.0 \ V \le V_{SUP} \le 18 \ V$ $Duty \ Cycle \ 4:$ $TH_{REC(MIN)} = 0.389 * V_{SUP}; TH_{DOM(MIN)} = 0.251 * V_{SUP}$ $D4 = t_{BUS_REC(MAX)}/(2 \times t_{BIT}), \ t_{BIT} = 96 \ \mu s, \ 7.6 \ V \le V_{SUP} \le 18 \ V$ $LIN1, \ LIN2 \ PHYSICAL \ LAYER - DRIVERS \ CHARACTERISTICS \ FOR \ FAS$	D4 ST SLEW RATE BR _{FAST}	-	_ _ _ BIT/SEC ⁽¹⁸	100	kBit/s
$TH_{REC(MAX)} = 0.778 * V_{SUP}; TH_{DOM(MAX)} = 0.616 * V_{SUP}$ $D3 = t_{BUS_REC(MIN)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.0 \ V \le V_{SUP} \le 18 \ V$ $Duty \ Cycle \ 4:$ $TH_{REC(MIN)} = 0.389 * V_{SUP}; TH_{DOM(MIN)} = 0.251 * V_{SUP}$ $D4 = t_{BUS_REC(MAX)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.6 \ V \le V_{SUP} \le 18 \ V$ $LIN1, LIN2 \ PHYSICAL \ LAYER - DRIVERS \ CHARACTERISTICS \ FOR \ FAS$ Fast Bit Rate (Programming Mode) $LIN1, LIN2 \ PHYSICAL \ LAYER - TRANSMITTER \ CHARACTERISTICS \ FOR \ FOR \ FOR \ FAST \ FOR \$	D4 ST SLEW RATE BR _{FAST}	-	_ _ _ BIT/SEC ⁽¹⁸	100	kBit/s
$TH_{REC(MAX)} = 0.778 * V_{SUP}; TH_{DOM(MAX)} = 0.616 * V_{SUP}$ $D3 = t_{BUS_REC(MIN)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.0 \ V \leq V_{SUP} \leq 18 \ V$ $Duty \ Cycle \ 4:$ $TH_{REC(MIN)} = 0.389 * V_{SUP}; TH_{DOM(MIN)} = 0.251 * V_{SUP}$ $D4 = t_{BUS_REC(MAX)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.6 \ V \leq V_{SUP} \leq 18 \ V$ $LIN1, LIN2 \ PHYSICAL \ LAYER - DRIVERS \ CHARACTERISTICS \ FOR \ FAST \ Bit \ Rate \ (Programming \ Mode)$ $LIN1, LIN2 \ PHYSICAL \ LAYER - TRANSMITTER \ CHARACTERISTICS \ FOR \ S33663S \ DEVICE$	D4 ST SLEW RATE BR _{FAST}	-		100	<u> </u>
$TH_{REC(MAX)} = 0.778 * V_{SUP}; TH_{DOM(MAX)} = 0.616 * V_{SUP}$ $D3 = t_{BUS_REC(MIN)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.0 \ V \le V_{SUP} \le 18 \ V$ $Duty \ Cycle \ 4:$ $TH_{REC(MIN)} = 0.389 * V_{SUP}; TH_{DOM(MIN)} = 0.251 * V_{SUP}$ $D4 = t_{BUS_REC(MAX)}/(2 \times t_{BIT}), t_{BIT} = 96 \ \mu s, 7.6 \ V \le V_{SUP} \le 18 \ V$ $LIN1, LIN2 \ PHYSICAL \ LAYER - DRIVERS \ CHARACTERISTICS \ FOR \ FAS$ $Fast \ Bit \ Rate \ (Programming \ Mode)$ $LIN1, LIN2 \ PHYSICAL \ LAYER - TRANSMITTER \ CHARACTERISTICS \ FOR \ FOR \ FASS \ CHARACTERISTICS \ FOR \ C$	D4 ST SLEW RATE BR _{FAST} R NORMAL SLEW RA	– TE - 20.0 KI	_ _ BIT/SEC ⁽¹⁸⁾	100	<u> </u>

- 16. Bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 k Ω , 6.8 nF / 660 Ω , 10 nF / 500 Ω . Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 8.
- 17. See Figure 9
- 18. See <u>Figure 10</u>
- 19. V_{SUP} from 7.0 to 18 V, bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 k Ω , 6.8 nF / 660 Ω , 10 nF / 500 Ω . Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 8.
- 20. See Figure 11

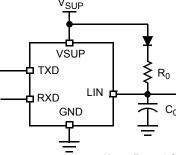
Table 6. Dynamic Electrical Characteristics

Characteristics noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LIN1, LIN2 PHYSICAL LAYER - RECEIVERS CHARACTERISTICS ACCORDI 33663L AND 33663J AND 33663S	NG LIN2.1 ⁽²¹⁾				
Propagation Delay and Symmetry ⁽²²⁾					μS
Propagation Delay of Receiver, t_{REC_PD} = MAX (t_{REC_PDR} , t_{REC_PDF})	t _{REC_PD}	_	_	6.0	
Symmetry of Receiver Propagation Delay, t _{REC_PDF} - t _{REC_PDR}	t _{REC_SYM}	-2.0	_	2.0	
LIN1, LIN2 PHYSICAL LAYER: RECEIVER CHARACTERISTICS WITH TIGH 33663S DEVICE	TEN LIMITS ⁽²¹⁾				
Propagation Delay and Symmetry ⁽²²⁾					μS
Propagation Delay of Receiver, t_{REC_PD} = MAX (t_{REC_PDR} , t_{REC_PDF})	t _{REC_PD_S}	_	_	5.0	
Symmetry of Receiver Propagation Delay, t _{REC_PDF} - t _{REC_PDR}	t _{REC_SYM_S}	-1.3	_	1.3	
LIN1, LIN2 PHYSICAL LAYER: RECEIVER CHARACTERISTICS - LIN SLOP 33663S DEVICE	E IV/IIS		T		1
Propagation Delay and Symmetry ⁽²³⁾ Propagation Delay of Receiver, t _{REC_PD_FAST} = MAX (t _{REC_PDR_FAST} , t _{REC_PDF_FAST})	t _{REC_PD_FAST}	_	_	6.0	μS
Symmetry of Receiver Propagation Delay, $t_{REC_PDF_FAST}$ - $t_{REC_PDR_FAST}$	t _{REC_SYM_FAST}	-1.3	_	1.3	
SLEEP MODE AND WAKE-UP TIMINGS			•		•
Sleep Mode Delay Time ⁽²⁴⁾	t _{SD}				μs
after EN High to Low to INH High to Low with 100µA load on INH		50	_	91	
WAKE-UP TIMINGS					
Bus Wake-up Deglitcher (Sleep Mode) (25)	t _{WUF}	40	70	100	μS
EN Wake-up Deglitcher ⁽²⁶⁾	t _{LWUE}				μS
EN High to INH Low to High		_	_	15	
Wake-up Deglitcher (27)	t _{WF}				μS
Wake state change to INH Low to High		10	48	70	

- 21. V_{SUP} from 7.0 to 18 V, bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 k Ω , 6.8 nF / 660 Ω , 10 nF / 500 Ω . Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 8.
- 22. See Figure 12
- 23. See <u>Figure 13</u>
- 24. See Figures 22 and 23
- 25. See Figures 15 and $\underline{17}$
- 26. See Figures 14, 18, 22, and 23
- 27. See Figures 16, 22, and 23

Table 6. Dynamic Electrical Characteristics


Characteristics noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit	
TXD TIMING						
TXD Permanent Dominant State Delay ⁽²⁸⁾	t _{TXDDOM}	3.75	5.0	6.25	ms	
FIRST DOMINANT BIT VALIDATION						
First dominant bit validation delay when device in Normal Mode ⁽²⁹⁾	t _{FIRST_DOM}	_	50	80	ms	
FAST BAUD RATE TIMING						
EN Low Pulse Duration to Enter in Fast Baud Rate Using Toggle Function ⁽³⁰⁾ EN High to Low and Low to High	t ₁	_	_	45	μS	
TXD Low Pulse Duration to Enter in Fast Baud Rate Using Toggle Function (30)	t ₂	12.5	_	_	μs	
Delay Between EN Falling Edge and TXD Falling Edge to Enter in Fast Baud Rate Using Toggle Function ⁽³⁰⁾	t ₃	12.5	_	_	μs	
Delay Between TXD Rising Edge and EN Rising Edge to Enter in Fast Baud Rate Using Toggle Function ⁽³⁰⁾	t ₄	12.5	_	_	μs	
RXD Low Level duration after EN rising edge to validate the Fast Baud Rate entrance ⁽³⁰⁾	t ₅	1.875		6.25	μs	

Notes

- 28. The LIN is in recessive state and the receiver is still active
- 29. See <u>Figures 14</u>, <u>15</u>, <u>16</u>, and <u>21</u>
- 30. See <u>Figures 19</u> and <u>20</u>

TIMING DIAGRAMS

Note $~R_0$ and C_0 : 1.0 k $\Omega/1.0$ nF, 660 $\Omega/6.8$ nF, and 500 $\Omega/10$ nF.

Figure 8. Test Circuit for Timing Measurements

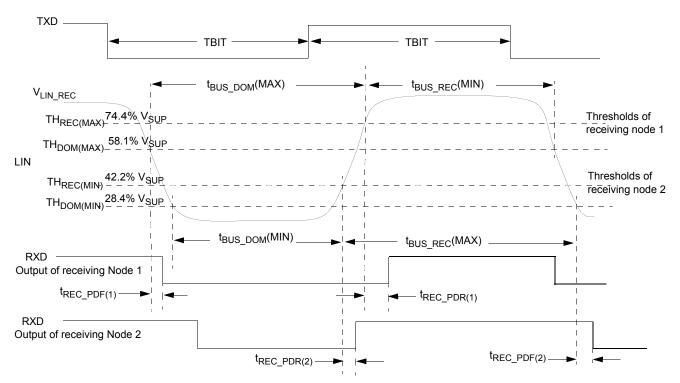


Figure 9. LIN1, LIN2 Timing Measurements for Normal Baud Rate (33663L, 33663S)

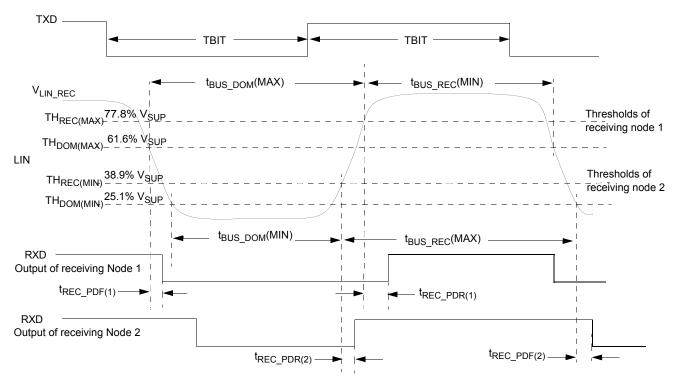
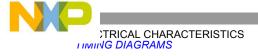



Figure 10. LIN1, LIN2 Timing Measurements for Slow Baud Rate (33663J)

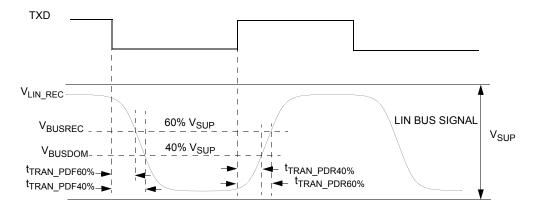


Figure 11. LIN1, LIN2 Transmitter Timing for 33663S

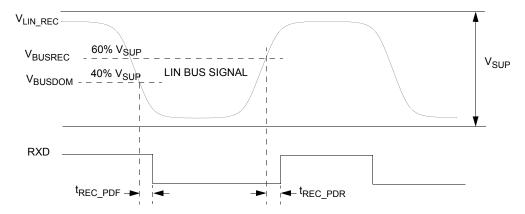


Figure 12. LIN1, LIN2 Receiver Timing

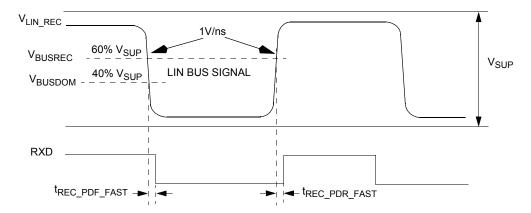


Figure 13. LIN1, LIN2 Receiver Timing LIN Slope 1.0 V/ns

FUNCTIONAL DIAGRAMS

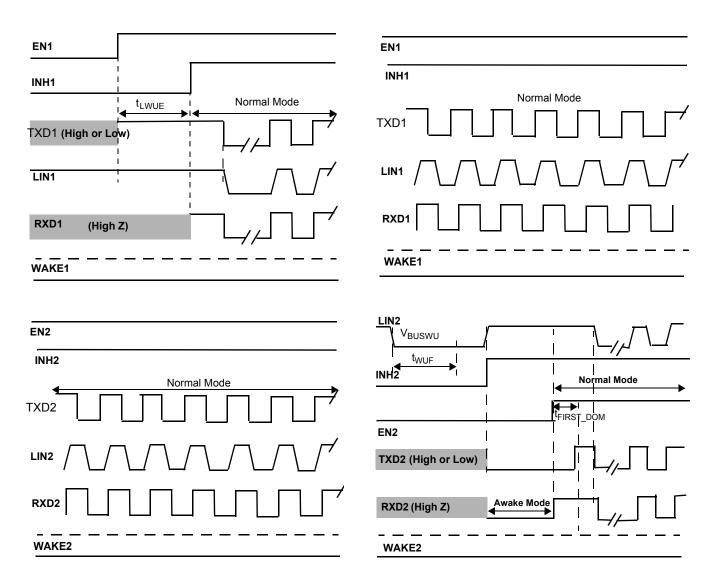


Figure 14. LIN Module 1 EN1 Pin Wake-up with TXD1 High & LIN Module 2 in Normal Mode

Figure 15. LIN Module 1 in Normal Mode & LIN Module 2 LIN2 Wake-up with TXD2 LOW

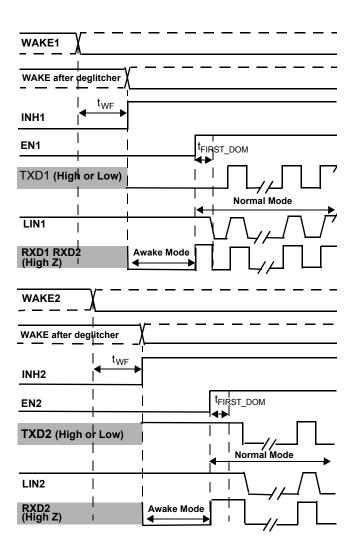


Figure 16. LIN Module 1 Wake1 Pin Wake-up with TXD1 Low & LIN Module 2 Wake2 Pin Wake-up with TXD2 High

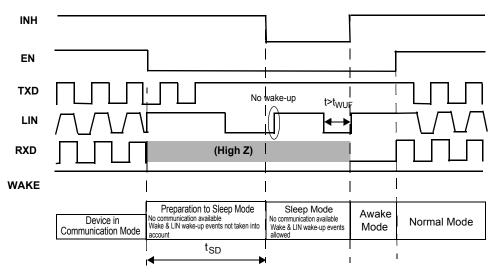


Figure 17. Bus Wake-up with LIN bus in Dominant During the Preparation to Sleep Mode (same sequence for LIN1 & LIN2)

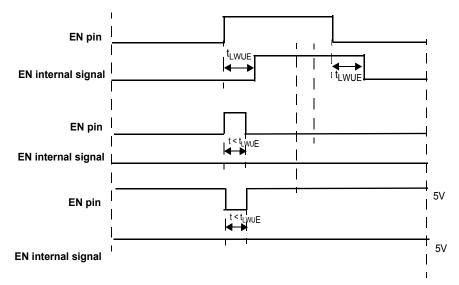


Figure 18. EN1, EN2 Pin Deglitcher

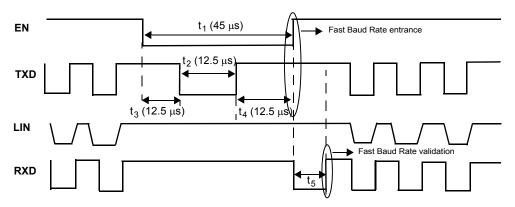


Figure 19. Fast Baud Rate Selection (Toggle Function) for LIN1 or LIN2

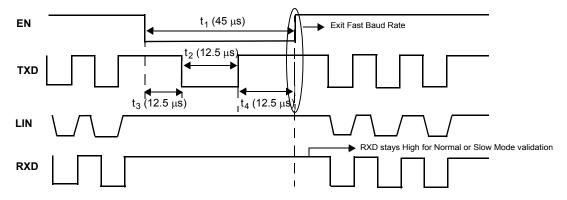


Figure 20. Fast Baud Rate Mode Exit (Back to Normal or Slow Slew Rate) for LIN1 or LIN2

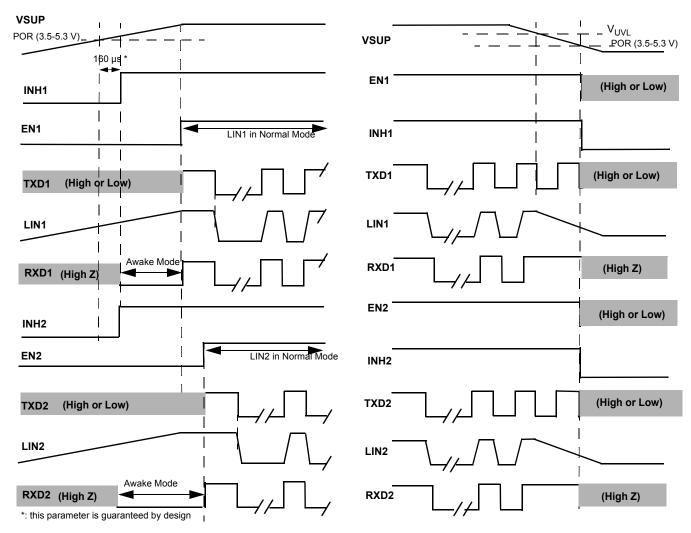


Figure 21. Power Up and Down Sequences

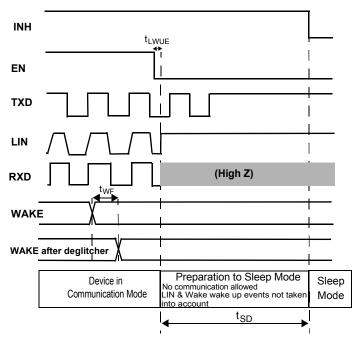


Figure 22. Sleep Mode Sequence for LIN1 or LIN2

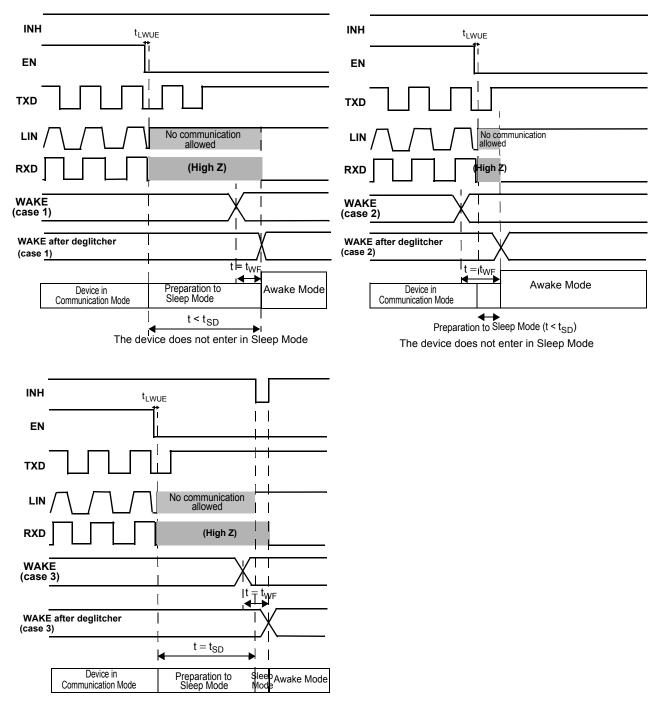


Figure 23. Examples of Sleep Mode Sequences for LIN1 or LIN2

FUNCTIONAL DESCRIPTION

INTRODUCTION

The 33663L and 33663J are both a Physical Layer component dedicated to automotive LIN sub-bus applications.

The 33663L features include a 20 kbps baud rate and the 33663J a 10 kbps baud rate. Both integrate fast baud rate for test and programming modes, excellent ESD robustness, immunity against disturbance, and radiated emission performance. They have safe behavior, in case of a LIN bus short-to-ground, or a LIN bus leakage during low power mode.

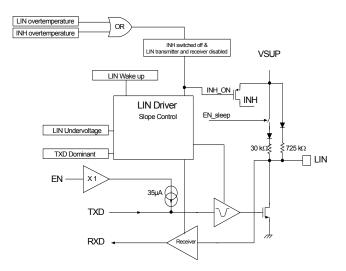
Digital inputs are 5.0 and 3.3 V compatible without any external required components.

The INH1 and INH2 outputs may be used to control an external voltage regulator, or to drive a LIN bus pull-up resistor.

FUNCTIONAL PIN DESCRIPTION

POWER SUPPLY PIN (VSUP)

The VSUP supply pin is the power supply pin for the 33663L or 33663J. In an application, the pin is connected to a battery through a serial diode, for reverse battery protection. The DC operating voltage is from 7.0 to 18 V. This pin sustains standard automotive condition, such as 40 V during load dump. To avoid a false bus message, an under-voltage on VSUP disables the transmission path (from TXD to LIN) when V_{SUP} falls below 6.7 V. Supply current in the Sleep mode is typically 6.0 μ A for one LIN Module.


GROUND PIN (GND)

In case of a ground disconnection at the module level, the 33663L and 33663J do not have significant current consumption on the LIN bus pin when in the recessive state.

LIN BUS PIN (LIN1, LIN2)

The LIN1 and LIN2 pins represent the single-wire bus transmitter and receiver. It is suited for automotive bus systems, and is compliant to the LIN bus specification 1.3, 2.0, 2.1, and SAEJ2602-2.

The LIN interface is only active during Normal mode.

Transmitter Characteristics

The LIN driver is a low side MOSFET with internal over-current thermal shutdown. An internal pull-up resistor with a serial diode structure is integrated, so no external pull-up components are required for the application in a slave node. An additional pull-up resistor of 1.0 k Ω must be added when the interface is used in the master node.

The LIN pin exhibits no reverse current from the LIN bus line to V_{SUP} , even in the event of a GND shift or V_{SUP} disconnection. The 33663 is tested according to the application conditions (i.e. in normal mode and recessive state during communication).

The transmitter has a 20 kbps baud rate (Normal baud rate) for the 33663L and 33663S devices, or 10 kbps baud rate (Slow baud rate) for the 33663J device.

33663