imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

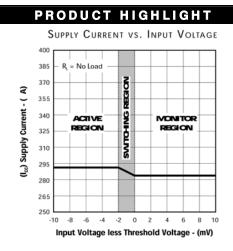
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Undervoltage Sensing Circuit


PRODUCTION DATA SHEET

DESCRIPTION

The MC34064 is an undervoltage 34064 consists of a temperature stable Highlight below. reference comparator with hysteresis, high-current clamping diode and open

collector output stage capable of sensing circuit designed specifically sinking up to 60mA. The MC34064's for use as a reset controller in RESET output is specified to be fully microprocessor- based systems. It functional at VIN=1V. A major offers the designer an economical, improvement over competing products space-efficient solution for low supply is the glitch-free supply current during voltage detection when used in undervoltage detection. Competing combination with a single pullup products demand a step function resistor. Adding one capacitor offers increase in operating current during the the functionality of a programmable time that you least want or need it: delay time after power returns. The during power loss. See Product

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

KEY FEATURES

- Monitors 5V Supplies (VT = 4.6V Tvp.)
- Outputs Fully Defined At VIN = 1V (See Figure 1)
- Glitch-Free Supply Current During Switching (See Product Highlight)
- Ultra-Low Supply Current (500µA Max.)
- **Temperature Compensated** ICC For Extremely Stable Current Consumption
- **µP** Reset Function Programmable With 1 External **Resistor And Capacitor**
- **Comparator Hysteresis** Prevents Output Oscillation
- Electrically Compatible With Motorola MC34064
- Pin-to-Pin Compatible With Motorola MC34064 / MC34164

APPLICATIONS

- All Microprocessor Or Microcontroller Designs Using **5V Supplies**
- Simple 5V Undervoltage Detection

	PACKAGE ORDER INFO				
T _A (°C)	DM Plastic SOIC 8-Pin	LP Plastic TO-92 3-Pin	Plastic SOT-89 PK 3-Pin		
$I_A(C)$	RoHS / Pb-free Transition DC: 0440	RoHS / Pb-free Transition DC: 0509	RoHS / Pb-free Transition DC: 0518		
0 to 70	MC34064DM	MC34064LP	MC34064PK		
-40 to 85	MC33064DM	MC33064LP	MC33064PK		

Note: Available in Tape & Reel. Append the letters "TR" to the part number. (i.e. LX34064DM-TR)

Undervoltage Sensing Circuit

PRODUCTION DATA SHEET

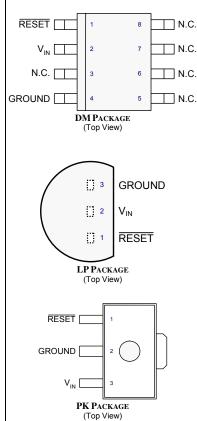
ABSOLUTE MAXIMUM RATINGS

Input Supply Voltage (V_{IN}) RESET Output Voltage (V_{OUT})	
Output Sink Current (I_{OL})	
Clamp Diode Forward Current (I _F), Pin 1 to Pin 2	100mA
Operating Temperature Range	
Operating Ambient Temperature Range (TA)	
MC34064	$\dots 0^{\circ} C$ to $70^{\circ} C$
MC33064	40°C to 85°C
Storage Temperature Range	65°C to 150°C
Package Peak Temp. for Solder Reflow (40 seconds maximum	n exposure) 260°C (+0 -5)

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

THERMAL DATA	
DM Plastic SOIC 8-Pin	
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	165°C/W
LP Plastic TO-92 3-Pin	
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	156°C/W
PK Plastic SOT-89 3-Pin	
THERMAL RESISTANCE-JUNCTION TO TAB, θ_{JT}	35°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	71°C/W

Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.


The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

RECOMMENDED OPERATING CONDITIONS

Conditions: Range over which the device is functional.

Parameter	Symbol	MC3x064			Units
Falalletei	Symbol	Min	Тур	Max	Units
Input Supply Voltage	V _{IN}	1		6.5	V
RESET Output Voltage	Vout		6.5		V
Clamp Diode Forward Current	IF		50		mA

PACKAGE PIN OUT

RoHS / Pb-free 100% matte Tin Lead Finish

www.Microsemi.com

Undervoltage Sensing Circuit

PRODUCTION DATA SHEET

IC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature $0^{\circ}C \leq T_A \leq 70^{\circ}C$ for the MC34064 and $-40^{\circ}C \leq TA \leq 85^{\circ}C$ for the MC33064. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Symbol	Symbol Test Conditions	MC3x064			Unite	
Parameter	Symbol		Min	Тур	Max	Units	
COMPARATOR SECTION							
Threshold Voltage							
High State Output	V _{T+}	V _{IN} Increasing – 4V to 5V	4.5	4.61	4.7	V	
Low State Outputs	V _{T-}	V _{IN} Decreasing – 5V to 4V	4.5	4.59	4.7	V	
Hysteresis	V _H		0.01	0.02	0.05	V	
RESET OUTPUT SECTION							
Output Low Level Saturation Voltage	VOL	VIN = 4.0V, IOL = 8.0mA			1.0	V	
		VIN = 4.0V, IOL = 2.0mA			0.4	V	
		VIN = 1.0V, IOL = 0.1mA			0.1	V	
Output Low Level Current	IOL	VIN = VOUT = 4.0V	10	27	60	mA	
Output Off-State Leakage	ЮН	VIN = VOUT = 5.0V		0.02	0.5	μA	
Clamp Diode Forward Voltage	VF	Pin 1 to Pin 2, IF = 10mA	0.6	0.9	1.2	V	
TOTAL DEVICE							
Supply Current	ICC	VIN = 5.0V		390	500	μA	

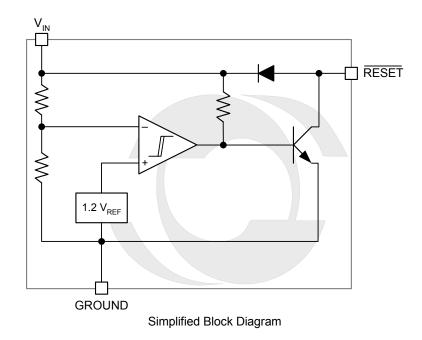
CHART AND APPLICTION INDEX

Characteristic Curves

Figure

- 1. Input Voltage and RESET Output Voltage vs. Time
- 2. Power-Up RESET Voltage
- 3. Power-Down RESET Voltage
- 4. RESET Output Voltage vs. Input Voltage
- 5. Threshold Voltage vs. Temperature
- 6. Threshold Hysteresis vs. Temperature
- 7. Supply Current vs. Input Voltage
- 8. Supply Current vs. Temperature
- 9. Low Level Output Current vs. Temperature
- 10. Low Level Output Saturation Voltage vs.
- Temperature
- 11. Low Level Output Saturation Voltage vs.
- Temperature
- 12. Clamp Diode Forward Voltage vs. Forward Current
- 13. Propagation Delay HIGH to LOW
- 14. Propagation Delay LOW to HIGH

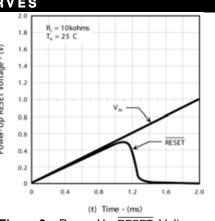
Application Circuits

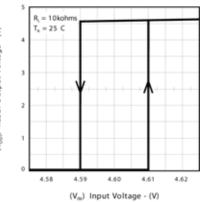

- Figure #
- 15. Low Voltage Microprocessor Reset
- 16. Switching the Load off when Battery Reaches
- ^{16.} Below 4.3V
- 17. Voltage Monitor
- 18. MOSFET Low Voltage Gate Drive Protection
- 19. Low Voltage Microprocessor Reset with Additional
- ^{19.} Hysteresis
- 20. Solar Powered Battery

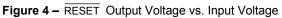
Undervoltage Sensing Circuit

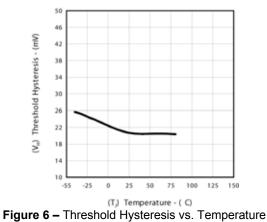
PRODUCTION DATA SHEET

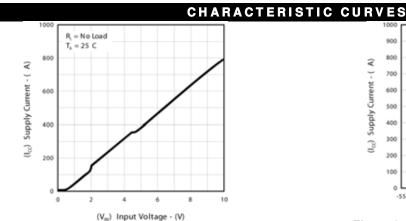
SIMPLIFIED BLOCK DIAGRAM

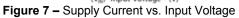


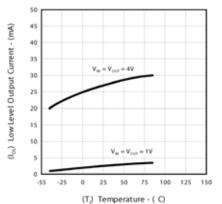

Undervoltage Sensing Circuit

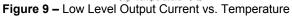

PRODUCTION DATA SHEET

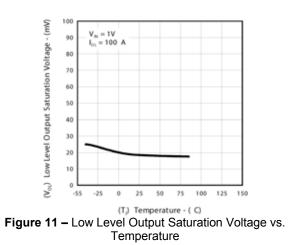


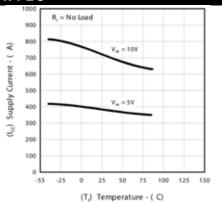


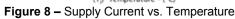


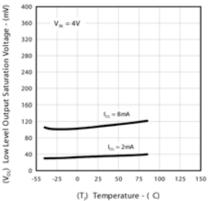

Undervoltage Sensing Circuit

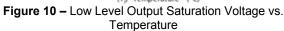

PRODUCTION DATA SHEET

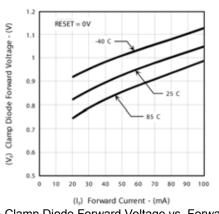
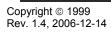


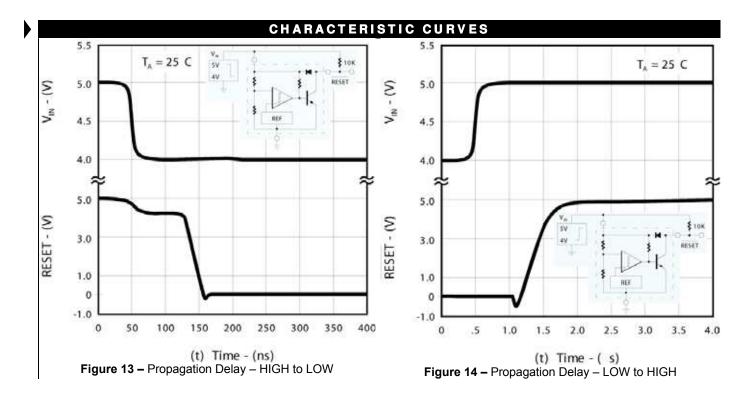








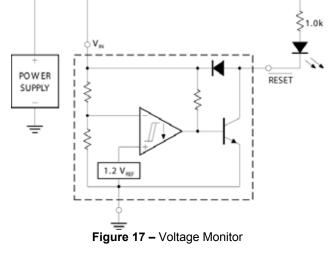

Figure 12 – Clamp Diode Forward Voltage vs. Forward Current

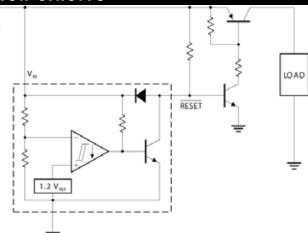
Undervoltage Sensing Circuit

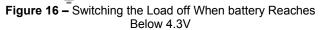
PRODUCTION DATA SHEET

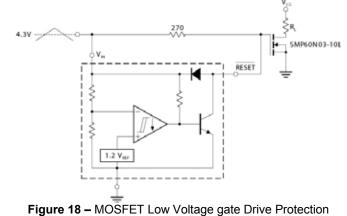
www.Microsemi.com

Undervoltage Sensing Circuit

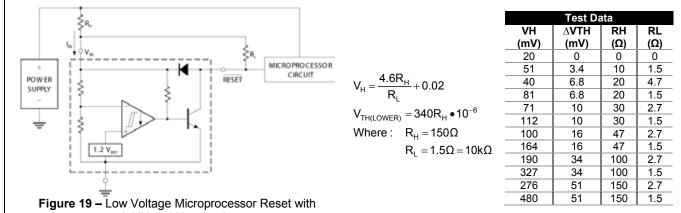

PRODUCTION DATA SHEET



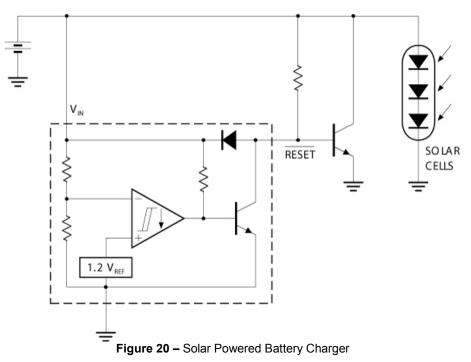

TYPICAL APPLICATION CIRUITS


Image: supervision of the supervis

A time delayed reset can be accomplished with the addition of C_{DLY} . For systems with extremely fast power supply rise times (<500ns) it is recommended that the RC_{DLY} time constant be greater than 5.0µs. $V_{TH(MPU)}$ is the microprocessor reset input threshold.


Overheating of the logic level power MOSFET due to insufficient gate voltage can be prevented with the above circuit. When the input signal is below the 4.6 volt threshold of the MC34064, its output grounds the gate of the L^2 MOSFET.

Undervoltage Sensing Circuit


PRODUCTION DATA SHEET

Additional Hysteresis.

Comparator hysteresis can be increased with the addition of resistor R_H. The hysteresis equation has been simplified and does not account for the change of input current I_{IN} as V_{CC} crosses the comparator threshold. An increase of the lower threshold. $\Delta V_{TH(LOWER)}$ will be observed due to I_{IN} which is typically 340µA at 4.59V. The equations are accurate to ±10% with R_H less than 150 Ω and R_L between 1.5k Ω and 10k Ω .

Undervoltage Sensing Circuit

PRODUCTION DATA SHEET

NOTES

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.