mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

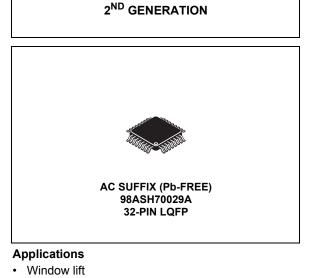
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NXP Semiconductors

LIN system basis chip with high-side drivers

The 33910G5/BAC is a SMARTMOS Serial Peripheral Interface (SPI) controlled System Basis Chip (SBC), combining many frequently used functions in an MCU based system, plus a Local Interconnect Network (LIN) transceiver. The 33910 has a 5.0 V, 50 mA/60 mA low dropout regulator with full protection and reporting features. The device provides full SPI readable diagnostics and a selectable timing watchdog for detecting errant operation. The LIN Protocol Specification 2.0 and 2.1 compliant LIN transceiver has waveshaping circuitry which can be disabled for higher data rates.


Two 50 mA/60 mA high-side switches with optional pulse-width modulated (PWM) are implemented to drive small loads. One high voltage input is available for use in contact monitoring, or as external wake-up input. This input can be used as high voltage Analog Input. The voltage on this pin is divided by a selectable ratio and available via an analog multiplexer.

The 33910 has three main operating modes: Normal (all functions available), Sleep (V_{DD} off, wake-up via LIN, wake-up inputs (L1), cyclic sense and forced wake-up), and Stop (V_{DD} on with limited current capability, wake-up via CS, LIN bus, wake-up inputs, cyclic sense, forced wake-up and external reset).

The 33910 is compatible with LIN Protocol Specification 2.0, 2.1, and SAEJ2602-2.

Features

- Full-duplex SPI interface at frequencies up to 4.0 MHz
- LIN transceiver capable of up to 100 kbps with wave shaping
- Two 50 mA/60 mA high-side switches
- One high voltage analog/logic Input •
- Configurable window watchdog
- 5.0 V low drop regulator with fault detection and low voltage reset (LVR) circuitry
- Switched/protected 5.0 V output (used for Hall sensors)

33910

SYSTEM BASIS CHIP WITH LIN

- Mirror switch
- Door lock
- Sunroof
- Light control

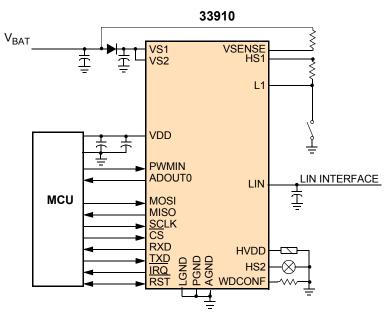


Figure 1. 33910 simplified application diagram

1 Orderable parts

The 33910G5 data sheet is within MC33910G5 product specifications - page 3 to page 49 The 33910BAC data sheet is within MC33911BAC product specifications - page 50 to page 95

Table 1. Orderable part variations ⁽¹⁾

Device	Temperature	Package	Changes
MC33910G5AC/R2	-40 °C to 125 °C		 Increase ESD GUN IEC61000-4-2 (gun test contact with 150 pF, 330 Ω test conditions) performance to achieve ±6.0 kV min on the LIN pin.
MC34910G5AC/R2	-40 °C to 85 °C	32 LQFP	 Immunity against ISO7637 pulse 3b Reduce EMC emission level on LIN Improve EMC immunity against RF – target new specification including 3x68 pF Comply with J2602 conformance test
MC33910BAC/R2	-40 °C to 125 °C		Initial release
MC34910BAC/R2	-40 °C to 85 °C		initial release

Notes

1. To order parts in Tape & Reel, add the R2 suffix to the part number.

1 MC33910G5 product specifications - page <u>3</u> to page <u>49</u>

2 Internal block diagram

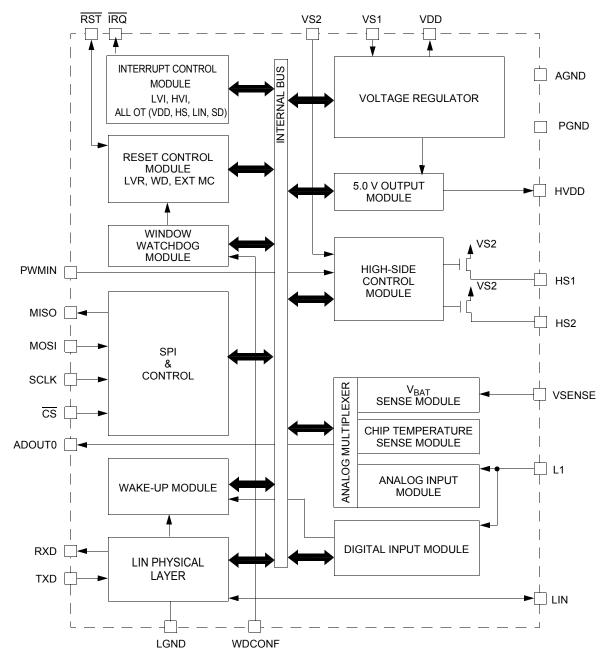


Figure 2. 33910 simplified internal block diagram

3 Pin connections

3.1 Pinout diagram

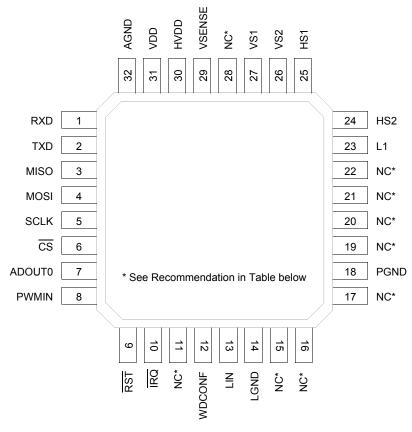


Figure 3. 33910 pin connections

3.2 Pin definitions

A functional description of each pin can be found in the Functional pin description.

Table 2. 33910 pin definitions

Pin	Pin name	Formal name	Definition
1	RXD	Receiver Output	This pin is the receiver output of the LIN interface which reports the state of the bus voltage to the MCU interface.
2	TXD	Transmitter Input	This pin is the transmitter input of the LIN interface which controls the state of the bus output.
3	MISO	SPI Output	SPI (Serial Peripheral Interface) data output. When $\overline{\text{CS}}$ is high, pin is in the high-impedance state.
4	MOSI	SPI Input	SPI (Serial Peripheral Interface) data input.
5	SCLK	SPI Clock	SPI (Serial Peripheral Interface) clock Input.
6	CS	SPI Chip Select	SPI (Serial Peripheral Interface) chip select input pin. \overline{CS} is active low.
7	ADOUT0	Analog Output Pin 0	Analog Multiplexer Output.
8	PWMIN	PWM Input	High-side Pulse Width Modulation Input.

Table 2. 33910 pin definitions (continued)

Pin	Pin name	Formal name	Definition
9	RST	Internal Reset I/O	Bidirectional Reset I/O pin - driven low when any internal reset source is asserted. RST is active low.
10	IRQ	Internal Interrupt Output	Interrupt output pin, indicating wake-up events from Stop modemode or events from Normal and Normal request modes. IRQ is active low.
11	NC	Not Connected	This pin must not be connected.
12	WDCONF	Watchdog Configuration Pin	This input pin is for configuration of the watchdog period and allows the disabling of the watchdog.
13	LIN	LIN Bus	This pin represents the single-wire bus transmitter and receiver.
14	LGND	LIN Ground Pin	This pin is the device LIN ground connection. It is internally connected to the PGND pin.
15, 16, 17, 19, 20, 21 & 22	NC	Not Connected	This pin must not be connected or connected to ground.
18	PGND	Power Ground Pin	This pin is the device low-side ground connection. It is internally connected to the LGND pin.
23	L1	Wake-up Input	This pin is the wake-up capable digital input ⁽²⁾ . In addition, L1 input can be sensed analog via the analog multiplexer.
24 25	HS2 HS1	High-side Outputs	High-side switch outputs.
26 27	VS2 VS1	Power Supply Pin	These pins are device battery level power supply pins. VS2 is supplying the HSx drivers while VS1 supplies the remaining blocks. ⁽³⁾
28	NC	Not Connected	This pin can be left opening or connected to any potential ground or power supply
29	VSENSE	Voltage Sense Pin	Battery voltage sense input. ⁽⁴⁾
30	HVDD	Hall Sensor Supply Output	+5.0 V switchable supply output pin. ⁽⁵⁾
31	VDD	Voltage Regulator Output	+5.0 V main voltage regulator output pin. ⁽⁶⁾
32	AGND	Analog Ground Pin	This pin is the device analog ground connection.

Notes

2. When used as digital input, a series 33 k Ω resistor must be used to protect against automotive transients.

3. Reverse battery protection series diodes must be used externally to protect the internal circuitry.

4. This pin can be connected directly to the battery line for voltage measurements. The pin is self protected against reverse battery connections. It is strongly recommended to connect a 10 k Ω resistor in series with this pin for protection purposes.

5. External capacitor (1.0 μ F < C < 10 μ F; 0.1 Ω < ESR < 5.0 Ω) required.

6. External capacitor (2.0 μ F < C < 100 μ F; 0.1 Ω < ESR < 10 Ω) required.

4 Electrical characteristics

4.1 Maximum ratings

Table 3. Maximum ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Ratings	Value	Unit	Notes
Electrical ratings			L	1
V _{SUP(SS)} V _{SUP(PK)}	Supply Voltage at VS1 and VS2 • Normal Operation (DC) • Transient Conditions (load dump)	-0.3 to 27 -0.3 to 40	V	
V _{DD}	Supply Voltage at VDD	-0.3 to 5.5	V	
V _{IN} V _{IN(IRQ)}	Input/Output Pins Voltage • CS, RST, SCLK, PWMIN, ADOUT0, MOSI, MISO, TXD, RXD, HVDD • Interrupt Pin (IRQ)	-0.3 to V _{DD} +0.3 -0.3 to 11	V	(7) (8)
V _{HS}	HS1 and HS2 Pin Voltage (DC)	-0.3 to V _{SUP} +0.3	V	
V _{L1DC} V _{L1TR}	L1 Pin Voltage Normal Operation with a series 33 k resistor (DC) Transient input voltage with external component (according to ISO7637-2) (See Figure 5) 	-18 to 40 ±100	V	
V _{VSENSE}	VSENSE Pin Voltage (DC)	-27 to 40	V	
V _{BUSDC} V _{BUSTR}	LIN Pin Voltage Normal Operation (DC) Transient input voltage with external component (according to ISO7637-2) (See Figure 5) 	-18 to 40 -150 to 100	V	
I _{VDD}	VDD Output Current	Internally Limited	A	
V _{ESD1-1} V _{ESD1-2} V _{ESD1-3} V _{ESD2-1} V _{ESD2-2}	ESD Capability • AECQ100 • Human Body Model - JESD22/A114 (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω) • LIN Pin • L1 • all other Pins • Charge Device Model - JESD22/C101 (C_{ZAP} = 4.0 pF) • Corner Pins (Pins 1, 8, 9, 16, 17, 24, 25 and 32) • All other Pins (Pins 2-7, 10-15, 18-23, 26-31) • According to LIN Conformance Test Specification / LIN EMC Test Specification, August 2004 (C_{ZAP} = 150 pF, R_{ZAP} = 330 Ω) • Contact Discharge, Unpowered	±8.0 k ±6.0 k ±2000 ±750 ±500	v	
VESD3-1 VESD3-2 VESD3-3 VESD3-4 VESD4-1 VESD4-2 VESD4-3	 Contact Discharge, Unpowered LIN pin with 220 pF LIN pin without capacitor VS1/VS2 (100 nF to ground) L1 input (33 kΩ serial resistor) According to IEC 61000-4-2 (C_{ZAP} = 150 pF, R_{ZAP} = 330 Ω) Unpowered LIN pin with 220 pF and without capacitor VS1/VS2 (100 nF to ground) L1 input (33 kΩ serial resistor) 	±20 k ±11 k >±12 k ±6000 ±8000 ±8000 ±8000		

Notes

7. Exceeding voltage limits on specified pins may cause a malfunction or permanent damage to the device.

8. Extended voltage range for programming purpose only.

Table 3. Maximum ratings (continued)

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Ratings	Value	Unit	Notes
Thermal ratings	·			
T _A	Operating Ambient Temperature • 33910 • 34910	-40 to 125 -40 to 85	°C	(9)
ТJ	Operating Junction Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-55 to 150	°C	
R _{θJA}	Thermal Resistance, Junction to Ambient Natural Convection, Single Layer board (1s) Natural Convection, Four Layer board (2s2p)	85 56	°C/W	(9), (10) (9), (11)
R _{θJC}	Thermal Resistance, Junction to Case	23	°C/W	(12)
T _{PPRT}	Peak Package Reflow Temperature During Reflow	Note 14	°C	(13), (14)

Notes

9. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

10. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.

11. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

12. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

13. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

14. NXP's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), go to www.NXP.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

4.2 Static electrical characteristics

Table 4. Static electrical characteristics

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
upply voltage i	range (VS1, VS2)					
V _{SUP}	Nominal Operating Voltage	5.5	-	18	V	
V _{SUPOP}	Functional Operating Voltage	-	-	27	V	(15)
V _{SUPLD}	Load Dump	-	-	40	V	
upply current r	ange (V _{SUP} = 13.5 V)	1		•		
I _{RUN}	Normal Mode (I _{OUT} at V _{DD} = 10 mA), LIN Recessive State	-	4.5	10	mA	(16)
I _{STOP}	Stop Mode, VDD ON with I_{OUT} = 100 µA, LIN Recessive State • 5.5 V < V _{SUP} < 12 V • V _{SUP} = 13.5 V • 13.5 V < V _{SUP} < 18 V		47 62 180	80 90 400	μΑ	(16), (17) (18) _, (19)
I _{SLEEP}	Sleep Mode, VDD OFF, LIN Recessive State • 5.5 V < V_{SUP} < 12 V • V_{SUP} = 13.5 V • 13.5 V $\leq V_{SUP}$ < 18 V		27 33 160	35 48 300	μA	(16), (18)

Supply under/overvoltage detections

ICYCLIC

V _{BATFAIL} V _{BATFAIL_HYS}	Power-On Reset (BATFAIL) • Threshold (measured on VS1) • Hysteresis (measured on VS1)	1.5 -	3.0 0.9	3.9 -	V	(21), (20)
V _{SUV} V _{SUV_HYS}	V _{SUP} Undervoltage Detection (VSUV Flag) (Normal and Normal Request Modes, Interrupt Generated) • Threshold (measured on VS1) • Hysteresis (measured on VS1)	5.55 -	6.0 0.2	6.6 _	V	
V _{SOV} V _{SOV_HYS}	V _{SUP} Overvoltage Detection (VSOV Flag) (Normal and Normal Request Modes, Interrupt Generated) • Threshold (measured on VS1) • Hysteresis (measured on VS1)	18 -	19.25 1.0	20.5 -	V	

10

_

Notes

15. Device is fully functional. All features are operating.

16. Total current (I_{VS1} + I_{VS2}) measured at GND pins excluding all loads, cyclic sense disabled.

17. Total I_{DD} current (including loads) below 100 μ A.

18. Stop and Sleep modes current increases if V_{SUP} exceeds13.5 V.

Cyclic Sense Supply Current Adder

19. This parameter is guaranteed after 90 ms.

20. This parameter is guaranteed by process monitoring but not production tested.

21. The Flag is set during power up sequence. To clear the flag, a SPI read must be performed.

(20)

μA

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
age regulato	r ⁽²²⁾ (VDD)					
V _{DDRUN}	Normal Mode Output Voltage • 1.0 mA < I _{VDD} < 50 mA; 5.5 V < V _{SUP} < 27 V	4.75	5.00	5.25	V	
IVDDRUN	Normal Mode Output Current Limitation	60	110	200	mA	
V _{DDDROP}	Dropout Voltage • I _{VDD} = 50 mA	-	0.1	0.25	V	(23)
V _{DDSTOP}	Stop Mode Output Voltage • I _{VDD} < 5.0 mA	4.75	5.0	5.25	V	
IVDDSTOP	Stop Mode Output Current Limitation	6.0	13	36	mA	
LR _{RUN} LR _{STOP}	Line Regulation • Normal mode, 5.5 V < V_{SUP} < 18 V; I_{VDD} = 10 mA • Stop mode, 5.5 V < V_{SUP} < 18 V; I_{VDD} = 1.0 mA			25 25	mV	
LD _{RUN} LD _{STOP}	Load Regulation • Normal mode, 1.0 mA < I _{VDD} < 50 mA • Stop mode, 0.1 mA < I _{VDD} < 5.0 mA			80 50	mV	
T _{PRE}	Overtemperature Prewarning (Junction) Interrupt generated, VDDOT Bit Set 	90	115	140	°C	(24)
T _{PRE_HYS}	Overtemperature Prewarning Hysteresis	-	13	-	°C	(24)
Τ _{SD}	Overtemperature Shutdown Temperature (Junction)	150	170	190	°C	(24)
T _{SD_HYS}	Overtemperature Shutdown Hysteresis	-	13	-	°C	(24)

Hall sensor supply output ⁽²⁵⁾ (HVDD)

H _{VDDACC}	V _{DD} Voltage matching H _{VDDACC} = (HVDD-VDD) / VDD * 100% • I _{HVDD} = 15 mA	-2.0	-	2.0	%	
I _{HVDD}	Current Limitation	20	35	50	mA	
H _{VDDDROP}	Dropout Voltage • I _{HVDD =} 15 mA; I _{VDD} = 5.0 mA	_	160	300	mV	
LR _{HVDD}	Line Regulation • I _{HVDD} = 5.0 mA; I _{VDD} = 5.0 mA	_	_	40	mV	
LD _{HVDD}	Load Regulation • 1.0 mA > I _{HVDD} > 15 mA; I _{VDD} = 5.0 mA	_	_	20	mV	

Notes

22. Specification with external capacitor 2.0 μF < C < 100 μF and 100 m $\Omega \leq ESR \leq$ 10 $\Omega.$

23. Measured when voltage has dropped 250 mV below its nominal Value (5.0 V).

24. This parameter is guaranteed by process monitoring but not production tested.

25. Specification with external capacitor 1.0 μ F < C < 10 μ F and 100 m $\Omega \le$ ESR \le 10 Ω .

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

<mark>бТ input/output</mark> V _{RSTTH} V _{OL} I _{OH}	t pin (RST) VDD Low Voltage Reset Threshold Low-state Output Voltage $\cdot I_{OUT} = 1.5 \text{ mA}; 3.5 \text{ V} \le \text{V}_{SUP} \le 27 \text{ V}$ High-state Output Current (0 V < V _{OUT} < 3.5 V)	4.3	4.5	4.7	V	
V _{OL}	Low-state Output Voltage • I_{OUT} = 1.5 mA; 3.5 V $\leq V_{SUP} \leq$ 27 V		4.5	4.7	V	
	• I _{OUT} = 1.5 mA; 3.5 V \leq V _{SUP} \leq 27 V	0.0			v	
I _{OH}	High-state Output Current (0 V < V_{OUT} < 3.5 V)		-	0.9	V	
		-150	-250	-350	μA	
I _{PD_MAX}	Pull-down Current Limitation (internally limited) $V_{OUT} = V_{DD}$	1.5	_	8.0	mA	
V _{IL}	Low-state Input Voltage	-0.3	_	0.3 x V _{DD}	V	
V _{IH}	High-state Input Voltage	0.7 x V _{DD}	_	V _{DD} +0.3	V	
SO SPI output	pin (MISO)	I				
V _{OL}	Low-state Output Voltage • I _{OUT} = 1.5 mA	0.0	_	1.0	V	
V _{OH}	High-state Output Voltage • I _{OUT} = -250 μA	V _{DD} -0.9	_	V _{DD}	V	
I _{TRIMISO}	Tri-state Leakage Current • 0 V \leq V _{MISO} \leq V _{DD}	-10	_	10	μA	
l input pins (M	IOSI, SCLK, CS)	I				
V _{IL}	Low-state Input Voltage	-0.3	_	0.3 x V _{DD}	V	
V _{IH}	High-state Input Voltage	0.7 x V _{DD}	_	V _{DD} +0.3	V	
I _{IN}	MOSI, SCLK Input Current • 0 V \leq V _{IN} \leq V _{DD}	-10	_	10	μA	
I _{PUCS}	$\frac{\overline{\text{CS}}}{0} \text{ Pull-up Current}$ • 0 V < V _{IN} < 3.5 V	10	20	30	μA	
terrupt output	pin (IRQ)	I				
V _{OL}	Low-state Output Voltage • I _{OUT} = 1.5 mA	0.0	_	0.8	V	
V _{OH}	High-state Output Voltage • I _{OUT} = -250 μA	V _{DD} -0.8	_	V _{DD}	V	
I _{OUT}	Leakage Current • $V_{DD} \le V_{OUT} \le 10 \text{ V}$	-	_	2.0	mA	
llse width mod	ulation input pin (PWMIN)	I		1		1
V _{IL}	Low-state Input Voltage	-0.3	-	0.3 x V _{DD}	V	
V _{IH}	High-state Input Voltage	0.7 x V _{DD}	_	V _{DD} +0.3	V	
I _{PUPWMIN}	Pull-up current • 0 V < V _{IN} < 3.5 V	10	20	30	μA	

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
h-side output	s HS1 and HS2 pins (HS1, HS2)					
R _{DS(on)}	Output Drain-to-Source On Resistance • $T_J = 25 \degree C$, $I_{LOAD} = 50 \ mA$; $V_{SUP} > 9.0 \ V$ • $T_J = 150 \degree C$, $I_{LOAD} = 50 \ mA$; $V_{SUP} > 9.0 \ V$ • $T_J = 150 \degree C$, $I_{LOAD} = 30 \ mA$; $5.5 \ V < V_{SUP} < 9.0 \ V$	- - -	- - -	7.0 10 14	Ω	(26) (26)
I _{LIMHSX}	Output Current Limitation • 0 V < V _{OUT} < V _{SUP} - 2.0 V	60	90	250	mA	(27)
I _{OLHSX}	Open Load Current Detection	-	5.0	7.5	mA	(28)
I _{LEAK}	Leakage Current • -0.2 V < V _{HSX} < V _{S2} + 0.2 V	_	-	10	μA	
V _{THSC}	Short-circuit Detection Threshold • 5.5 V < V _{SUP} < 27 V	V _{SUP} -2.0	-	_	V	(29)
T _{HSSD}	Overtemperature Shutdown	140	160	180	°C	(30), (31
T _{HSSD_HYS}	Overtemperature Shutdown Hysteresis	_	10	_	°C	(31)

πμ I (LI)

••••						
V _{THL}	Low Detection Threshold • 5.5 V < V _{SUP} < 27 V	2.0	2.5	3.0	V	(32)
V _{THH}	High Detection Threshold • 5.5 V < V _{SUP} < 27 V	3.0	3.5	4.0	V	(32)
V _{HYS}	Hysteresis • 5.5 V < V _{SUP} < 27 V	0.4	0.8	1.4	V	(32)
I _{IN}	Input Current • -0.2 V < V _{IN} < VS1	-10	-	10	μA	(33)
R _{L1IN}	Analog Input Impedance	800	1300	2000	kΩ	(34)
RATIO _{L1}	Analog Input Divider Ratio (RATIO _{L1} = V _{L1} / V _{ADOUT0}) • L1DS (L1 Divider Select) = 0 • L1DS (L1 Divider Select) = 1	0.95 3.42	1.0 3.6	1.05 3.78		
V _{RATIOL1-OFFSET}	Analog Output Offset Ratio • L1DS (L1 Divider Select) = 0 • L1DS (L1 Divider Select) = 1	-80 -22	6.0 2.0	80 22	mV	
L1 _{MATCHING}	Analog Inputs Matching • L1DS (L1 Divider Select) = 0 • L1DS (L1 Divider Select) = 1	96 96	100 100	104 104	%	

Notes

26. This parameter is production tested up to T_A = 125 °C, and guaranteed by process monitoring up to T_J = 150 °C.

When overcurrent occurs, the corresponding high-side stays ON with limited current capability and the HSxCL flag is set in the HSSR. 27.

When open load occurs, the flag (HSxOP) is set in the HSSR. 28.

HS automatically shutdown if HSOT occurs or if the HVSE flag is enabled and an overvoltage occurs. 29.

30. When overtemperature shutdown occurs, both high-sides are turned off. All flags in HSSR are set.

31. Guaranteed by characterization but not production tested

32. If L1 pin is unused it must be connected to ground.

33. Analog multiplexer input disconnected from L1 input pin.

Analog multiplexer input connected to L1 input pin. 34.

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
Window watchdog	g configuration pin (WDCONF) ⁽³⁵⁾					•
R _{EXT}	External Resistor Range	20	-	200	kΩ	
WD _{ACC}	Watchdog Period Accuracy with External Resistor (Excluding Resistor Accuracy)	-15	-	15	%	(36)
Analog multiplexe	r		ł		•	
Vadout0_temp	Temperature Sense Analog Output Voltage • $T_A = -40 \degree C$ • $T_A = 25 \degree C$ • $T_A = 125 \degree C$	2.0 2.8 3.6	- 3.0 -	2.8 3.6 4.6	v	
V _{ADOUT0_25}	Temperature Sense Analog Output Voltage per characterization • T_A = 25 °C	3.1	3.15	3.2	V	(37)
S _{TTOV}	Internal Chip Temperature Sense Gain	9.0	10.5	12	mV/K	
S _{TTOV_3T}	Internal Chip Temperature Sense Gain per characterization at three temperatures. See Figure 16, Temperature sense gain	9.9	10.2	10.5	mV/K	(37)
RATIO _{VSENSE}	VSENSE Input Divider Ratio (RATIO _{VSENSE} = V _{VSENSE} / V _{ADOUT0}) • 5.5 V < V _{SUP} < 27 V	5.0	5.25	5.5		
RATIO _{VSENSECZ}	VSENSE Input Divider Ratio (RATIOVSENSE=Vsense/Vadout0) per characterization • 5.5 <vsup< 27="" td="" v<=""><td>5.15</td><td>5.25</td><td>5.35</td><td></td><td>(37)</td></vsup<>	5.15	5.25	5.35		(37)
OFFSET _{VSENSE}	VSENSE Output Related Offset	-30	-10	30	mV	
OFFSET _{VSENSE} _CZ	VSENSE Output Related Offset per characterization	-30	-12.6	0	mV	(37)

Analog output (ADOUT0)

V _{OUT_MAX}	Maximum Output Voltage • -5.0 mA < I _O < 5.0 mA	V _{DD} -0.35	_	V _{DD}	V	
V _{OUT_MIN}	Minimum Output Voltage • -5.0 mA < I _O < 5.0 mA	0.0	-	0.35	V	

RxD output pin (LIN physical layer) (RxD)

V _{OL}	Low-state Output Voltage • I _{OUT} = 1.5 mA	0.0	_	0.8	V	
V _{OH}	High-state Output Voltage • I _{OUT} = -250 μA	V _{DD} -0.8	-	V _{DD}	V	

Notes

35. For V_{SUP} 4.7 V to 18 V

36. Watchdog timing period calculation formula: t_{PWD} [ms] = [0.466 * (R_{EXT} - 20)] + 10 with (R_{EXT} in k Ω)

37. These limits have been defined after laboratory characterization on 3 lots and 30 samples. These tighten limits could not be guaranteed by production test.

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
TXD input pin (LII	N physical layer) (TXD)					
V _{IL}	Low-state Input Voltage	-0.3	_	$0.3 \text{ x V}_{\text{DD}}$	V	
V _{IH}	High-state Input Voltage	0.7 x V _{DD}	_	V _{DD} +0.3	V	
I _{PUIN}	Pin Pull-up Current, 0 V < V _{IN} < 3.5 V	10	20	30	μA	
IN physical laye	r with J2602 feature enabled (bit DIS_J2602 = 0)	I I.				
V _{TH_UNDER_} VOLTAGE	LIN Undervoltage threshold • Positive and Negative threshold (V _{THP} , V _{THN})	5.0		6.0	V	
V _{J2602_DEG}	Hysteresis (V _{THP} - V _{THN})		400		mV	
IN physical laye	r, transceiver (LIN) ⁽³⁸⁾	11				
V _{BAT}	Operating Voltage Range	8.0		18	V	
V _{SUP}	Supply Voltage Range	7.0		18	V	
V _{SUP_NON_OP}	Voltage Range within which the device is not destroyed	-0.3		40	V	
I _{BUS_LIM}	Current Limitation for Driver Dominant State • Driver ON, V _{BUS} = 18 V	40	90	200	mA	
IBUS_PAS_DOM	Input Leakage Current at the receiver • Driver off; V _{BUS} = 0 V; V _{BAT} = 12 V	-1.0	_	-	mA	
IBUS_PAS_REC	Leakage Output Current to GND • Driver Off; 8.0 V < V _{BAT} < 18 V; 8.0 V < V _{BUS} < 18 V; V _{BUS} \ge V _{BAT}	_	_	20	μA	
I _{BUS_NO_GND}	Control Unit Disconnected from Ground • GND _{DEVICE} = V _{SUP} ; V _{BAT} = 12 V; 0 < V _{BUS} < 18 V	-1.0	_	1.0	mA	(39)
I _{BUSNO_BAT}	V _{BAT} Disconnected; V _{SUP_DEVICE} = GND; 0 V < V _{BUS} < 18 V	-	_	100	μA	(40)
V _{BUSDOM}	Receiver Dominant State	-	_	0.4	V _{SUP}	
V _{BUSREC}	Receiver Recessive State	0.6	_	-	V _{SUP}	
V _{BUS_CNT}	Receiver Threshold Center • (V _{TH_DOM} + V _{TH_REC})/2	0.475	0.5	0.525	V _{SUP}	
V _{HYS}	Receiver Threshold Hysteresis • (V _{TH_REC} - V _{TH_DOM})	-	_	0.175	V _{SUP}	
V _{SERDIODE}	Voltage Drop at the Serial Diode in Pull-up Path	0.4		1.0	V	
V _{SHIFT_BAT}	VBAT_SHIFT	0		11.5%	V _{BAT}	
V _{SHIFT_GND}	GND_SHIFT	0		11.5%	V _{BAT}	

Notes

38. Parameters guaranteed for 7.0 V \leq V_{SUP} \leq 18 V.

39. Loss of local ground must not affect communication in the residual network.

40. Node has to sustain the current which can flow under this condition. Bus must remain operational under this condition.

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
LIN physical layer	transceiver (LIN) (continued) ⁽³⁸⁾					
V _{BUSWU}	LIN Wake-up threshold from Stop or Sleep Mode		5.3	5.8	V	(41)
R _{SLAVE}	LIN Pull-up Resistor to V _{SUP}	20	30	60	kΩ	
T _{LINSD}	Overtemperature Shutdown	140	160	180	°C	(42)
T _{LINSD_HYS}	Overtemperature Shutdown Hysteresis	_	10	-	°C	

Notes

41. This parameter is 100% tested on an Automatic Tester. However, since it has not been monitored during reliability stresses, NXP does not guarantee this parameter during the product's life time.

42. When overtemperature shutdown occurs, the LIN bus goes in recessive state and the flag LINOT in LINSR is set.

4.3 Dynamic electrical characteristics

Table 5. Dynamic electrical characteristics

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
nterface tin	ning (see <u>Figure 13</u>)	·				
f _{SPIOP}	SPI Operating Frequency	-	-	4.0	MHz	
t _{PSCLK}	SCLK Clock Period	250	-	N/A	ns	
t _{WSCLKH}	SCLK Clock High Time	110	-	N/A	ns	(43)
t _{WSCLKL}	SCLK Clock Low Time	110	-	N/A	ns	(43)
t _{LEAD}	Falling Edge of \overline{CS} to Rising Edge of SCLK	100	-	N/A	ns	(43)
t _{LAG}	Falling Edge of SCLK to \overline{CS} Rising Edge	100	-	N/A	ns	(43)
t _{SISU}	MOSI to Falling Edge of SCLK	40	-	N/A	ns	(43)
t _{SIH}	Falling Edge of SCLK to MOSI	40	-	N/A	ns	(43)
t _{RSO}	MISO Rise Time • C _L = 220 pF	-	40	_	ns	(43)
t _{FSO}	MISO Fall Time • C _L = 220 pF	-	40	-	ns	(43)
t _{SOEN} t _{SODIS}	Time from Falling or Rising Edges of CS to: • MISO Low-impedance • MISO High-impedance	0.0 0.0		50 50	ns	(43)
t _{VALID}	Time from Rising Edge of SCLK to MISO Data Valid • 0.2 x V _{DD} \leq MISO \geq 0.8 x V _{DD} , C _L = 100 pF	0.0	-	75	ns	(43)

RST output pin

t _{RST}	Reset Low-level Duration After V _{DD} High (see Figure 12)	0.65	1.0	1.35	ms	
t _{RSTDF}	Reset Deglitch Filter Time	350	480	900	ns	

Window watchdog configuration pin (WDCONF)

Watchdog Time Period					
• External Resistor R_{EXT} = 20 k Ω (1%)	8.5	10	11.5		(4.4)
 External Resistor R_{EXT} = 200 kΩ (1%) 	79	94	108	ms	(44)
Without External Resistor R _{EXT} (WDCONF Pin Open)	110	150	205		
	 External Resistor R_{EXT} = 20 kΩ (1%) External Resistor R_{EXT} = 200 kΩ (1%) 	• External Resistor $R_{EXT} = 20 \text{ k}\Omega (1\%)$ • External Resistor $R_{EXT} = 200 \text{ k}\Omega (1\%)$ 79	• External Resistor $R_{EXT} = 20 \text{ k}\Omega (1\%)$ • External Resistor $R_{EXT} = 200 \text{ k}\Omega (1\%)$ 94	• External Resistor $R_{EXT} = 20 \text{ k}\Omega (1\%)$ 8.5 10 11.5 • External Resistor $R_{EXT} = 200 \text{ k}\Omega (1\%)$ 79 94 108	• External Resistor $R_{EXT} = 20 k\Omega (1\%)$ 8.5 10 11.5 • External Resistor $R_{EXT} = 200 k\Omega (1\%)$ 79 94 108

Notes

43. This parameter is guaranteed by process monitoring but not production tested.

44. Watchdog timing period calculation formula: t_{PWD} [ms] = [0.466 * (R_{EXT} - 20)] + 10 with (R_{EXT} in k Ω)

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
nput	· · · · · · · · · · · · · · · · · · ·					
t _{WUF}	L1 Filter Time Deglitcher	8.0	20	38	μs	(45)
e machine t	iming		1		1	
t _{STOP}	Delay Between CS LOW-to-HIGH Transition (at End of SPI Stop Command) and Stop Mode Activation	-	_	5.0	μs	(45)
t _{NRTOUT}	Normal Request Mode Timeout (see Figure 12)	110	150	205	ms	
T _{ON}	Cyclic Sense ON Time from Stop and Sleep Mode	130	200	270	μs	(46)
	Cyclic Sense Accuracy	-35		+35	%	(45)
t _{S-ON}	Delay Between SPI Command and HS Turn On • 9.0 V < V _{SUP} < 27 V	-	_	10	μs	(47)
t _{S-OFF}	Delay Between SPI Command and HS Turn Off • 9.0 V < V _{SUP} < 27 V	_	_	10	μs	(47)
t _{SNR2N}	Delay Between Normal Request and Normal Mode After a Watchdog Trigger Command (Normal Request Mode)	-	_	10	μs	(45)
t _{WUCS} t _{WUSPI}	Delay Between CS Wake-up (CS LOW to HIGH) in Stop Mode and: • Normal Request mode, VDD ON and RST HIGH • First Accepted SPI Command	9.0 90	15 —	80 N/A	μs	
t _{2CS}	Minimum Time Between Rising and Falling Edge on the $\overline{\text{CS}}$	4.0	_	—	μs	

J2602 deglitcher

t _{J2602_DEG}	V _{SUP} Deglitcher • (DIS_J2602 = 0)	35	50	70	μs	(48)
------------------------	--	----	----	----	----	------

LIN physical layer: driver characteristics for normal slew rate - 20.0 kBit/sec according to LIN physical layer specification^{(49), (50)}

D1		0.396	_	_	
D2	Duty Cycle 2: • TH _{REC(MIN)} = 0.422 * V _{SUP} • TH _{DOM(MIN)} = 0.284 * V _{SUP} • D2 = t _{BUS_REC(MAX)} /(2 x t _{BIT}), t _{BIT} = 50 µs, 7.6 V \leq V _{SUP} \leq 18 V	_	_	0.581	

Notes

45. This parameter is guaranteed by process monitoring but not production tested.

46. This parameter is 100% tested on an Automatic Tester. However, since it has not been monitored during reliability stresses, NXP does not guarantee this parameter during the product's life time.

47. Delay between turn on or off command (rising edge on CS) and HS ON or OFF, excluding rise or fall time due to external load.

48. This parameter has not been monitoring during operating life test.

49. Bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 kΩ, 6.8 nF / 660 Ω, 10 nF / 500 Ω. Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 6.

50. See Figure 7.

Characteristics noted under conditions 5.5 V \leq V_{SUP} \leq 18 V, -40 °C \leq T_A \leq 125 °C for the 33910 and -40 °C \leq T_A \leq 85 °C for the 34910, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
LIN physical lay	er: driver characteristics for slow slew rate - 10.4 kBit/sec according	to LIN phys	ical layer sp	ecification ⁽	51), (52)	•
D3		0.417	_	_		
D4		_	_	0.590		
LIN physical lay	er: driver characteristics for fast slew rate		l .	l	L	
SR _{FAST}	LIN Fast Slew Rate (Programming Mode)	—	20	—	V/µs	
LIN physical lay	er: characteristics and wake-up timings ⁽⁵³⁾		1	1	1	
t _{REC_PD} t _{REC_SYM}	Propagation Delay and Symmetry Propagation Delay of Receiver, t_{REC_PD}=MAX (t_{REC_PDR}, t_{REC_PDF}) Symmetry of Receiver Propagation Delay, t_{REC_PDF} - t_{REC_PDR} 	-2.0	4.2	6.0 2.0	μs	(54)
t _{PROPWL}	Bus Wake-Up Deglitcher (Sleep and Stop modes)	42	70	95	μs	(55), (59), (56)
t _{WAKE_SLEEP} t _{WAKE_STOP}	Bus Wake-Up Event Reported • From Sleep mode • From Stop mode	 9.0	 27	1500 35	μs	(57) (58)
t _{TXDDOM}	TXD Permanent Dominant State Delay	0.65	1.0	1.35	S	

Pulse width modulation input pin (PWMIN)

f _{PWMIN} PWMIN pin • Max. frequency to drive HS output pins	_	10	_	kHz	(59)	
--	---	----	---	-----	------	--

Notes

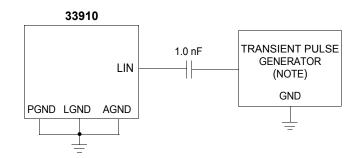
54. See Figure 9.

55. See Figure 10, for Sleep and Figure 11, for Stop mode.

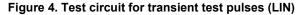
56. This parameter is tested on automatic tester but has not been monitoring during operating life test.

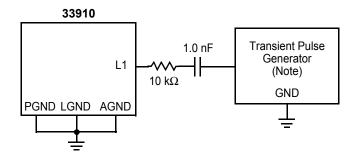
57. The measurement is done with 1.0 μ F capacitor and 0 mA current load on V_{DD}. The value takes into account the delay to charge the capacitor. The delay is measured between the bus wake-up threshold (V_{BUSWU}) rising edge of the LIN bus and when V_{DD} reaches 3.0 V. See <u>Figure 10</u>. The delay depends of the load and capacitor on V_{DD}.

58. In Stop mode, the delay is measured between the bus wake-up threshold (V_{BUSWU}) and the falling edge of the IRQ pin. See Figure 11.

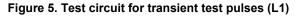

59. This parameter is guaranteed by process monitoring but not production tested.

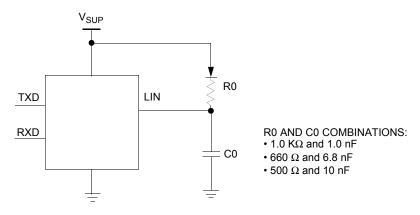
Bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 kΩ, 6.8 nF / 660 Ω, 10 nF / 500 Ω. Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 6.

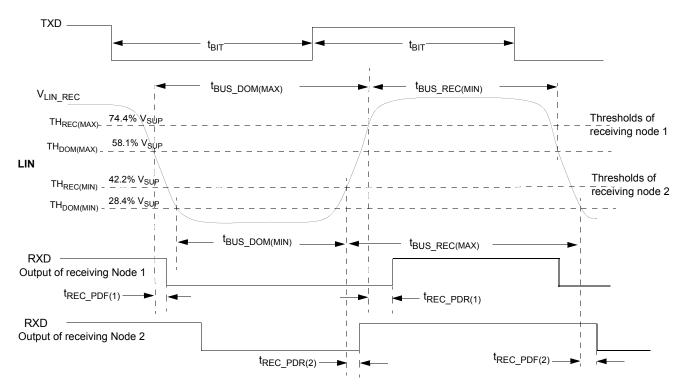

^{52.} See Figure 8


^{53.} V_{SUP} from 7.0 to 18 V, bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 kΩ, 6.8 nF / 660 Ω, 10 nF / 500 Ω. Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 6.

4.4 Timing diagrams




Note Waveform per ISO 7637-2. Test Pulses 1, 2, 3a, 3b.



Note Waveform per ISO 7637-2. Test Pulses 1, 2, 3a, 3b,.

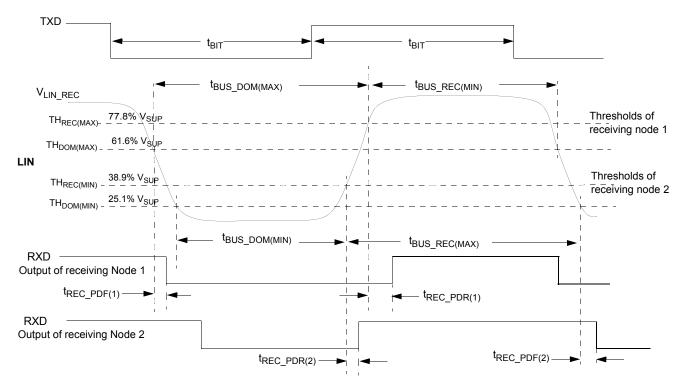


Figure 8. LIN timing measurements for slow slew rate

33910

NXP Semiconductors

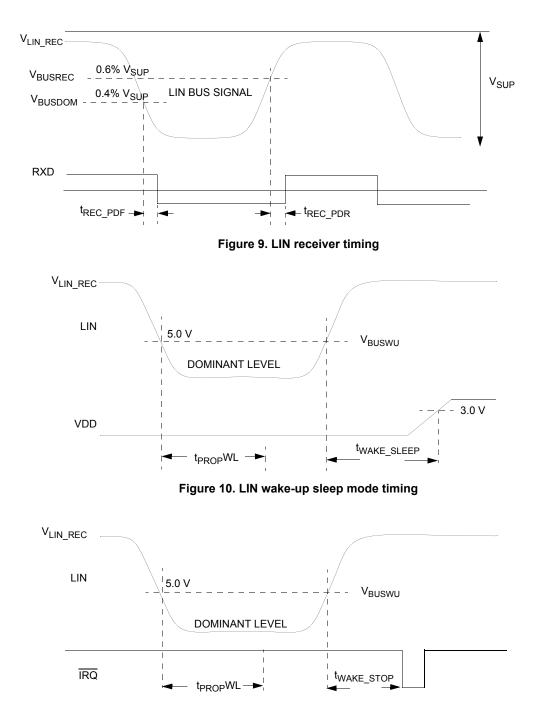
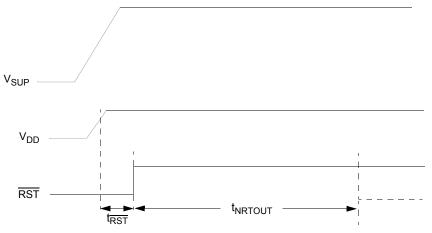
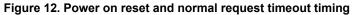
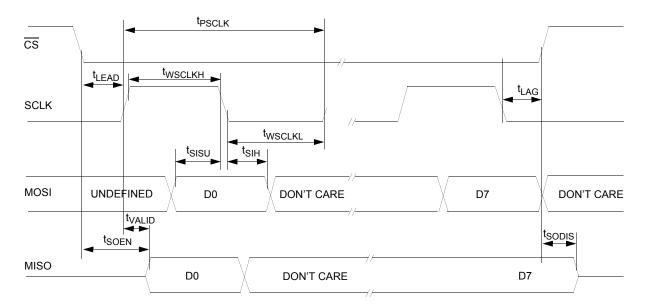
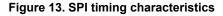






Figure 11. LIN wake-up stop mode timing

5 Functional description

5.1 Introduction

The 33910 was designed and developed as a highly integrated and cost-effective solution for automotive and industrial applications. For automotive body electronics, the 33910 is well suited to perform keypad applications via the LIN bus. Power switches are provided on the device configured as high-side outputs. Other ports are also provided, which include a Hall Sensor port supply, and one wake-up capable pin. An internal voltage regulator provides power to a MCU device. Also included in this device is a LIN physical layer, which communicates using a single wire. This enables this device to be compatible with 3-wire bus systems, where one wire is used for communication, one for battery, and one for ground.

5.2 Functional pin description

See <u>Figure 1, 33910 simplified application diagram</u>, for a graphic representation of the various pins referred to in the following paragraphs. Also, see Pin connections for a description of the pin locations in the package.

5.2.1 Receiver output pin (RXD)

The RXD pin is a digital output. It is the receiver output of the LIN interface and reports the state of the bus voltage: RXD Low when LIN bus is dominant, RXD High when LIN bus is recessive.

5.2.2 Transmitter input pin (TXD)

The TXD pin is a digital input. It is the transmitter input of the LIN interface and controls the state of the bus output (dominant when TXD is Low, recessive when TXD is High). This pin has an internal pull-up to force recessive state in case the input is left floating.

5.2.3 LIN bus pin (LIN)

The LIN pin represents the single-wire bus transmitter and receiver. It is suited for automotive bus systems and is compliant to the LIN bus specification 2.0, 2.1, and SAE J2602-2. The LIN interface is only active during Normal mode. See Table <u>6. Operating modes</u> overview.

5.2.4 Serial data clock pin (SCLK)

The SCLK pin is the SPI clock input. MISO data changes on the positive transition of the SCLK. MOSI is sampled on the negative edge of the SCLK.

5.2.5 Master out slave in pin (MOSI)

The MOSI digital pin receives SPI data from the MCU. This data input is sampled on the negative edge of SCLK.

5.2.6 Master in slave out pin (MISO)

The MISO pin sends data to an SPI-enabled MCU. It is a digital tri-state output used to shift serial data to the microcontroller. Data on this output pin changes on the positive edge of the SCLK. When CS is High, this pin remains in the high-impedance state.

5.2.7 Chip select pin (\overline{CS})

CS is an active low digital input. It must remain low during a valid SPI communication and allow for several devices to be connected in the same SPI bus without contention. A rising edge on CS signals the end of the transmission and the moment the data shifted in is latched. A valid transmission must consist of 8 bits only. While in STOP mode, a low-to-high level transition on this pin generates a wake-up condition for the 33910.

5.2.8 Analog multiplexer pin (ADOUT0)

The ADOUT0 pin can be configured via the SPI to allow the MCU A/D converter to read the several inputs of the Analog Multiplexer, including the VSENSE and L1 input voltages, and the internal junction temperature.

5.2.9 **PWM** input control pin (**PWMIN**)

This digital input can control the high-sides drivers in Normal Request and Normal mode. To enable PWM control, the MCU must perform a write operation to the High-side Control Register (HSCR). This pin has an internal 20 µA current pull-up.

5.2.10 Reset pin (RST)

This bidirectional pin is used to reset the MCU in case the 33910 detects a reset condition, or to inform the 33910 the MCU has just been reset. After release of the RST pin, Normal Request mode is entered. The RST pin is an active low filtered input and output formed by a weak pull-up and a switchable pull-down structure which allows this pin to be shorted either to V_{DD} or to GND during software development, without the risk of destroying the driver.

5.2.11 Interrupt pin (IRQ)

The IRQ pin is a digital output used to signal events or faults to the MCU while in Normal and Normal Request mode or to signal a wakeup from Stop mode. This active low output transitions to high only after the interrupt is acknowledged by a SPI read of the respective status bits.

5.2.12 Watchdog configuration pin (WDCONF)

The WDCONF pin is the configuration pin for the internal watchdog. A resistor can be connected to this pin to configure the window watchdog period. When connected directly to ground, the watchdog is disabled. When this pin is left open, the watchdog period is fixed to its lower precision internal default value (150 ms typical).

5.2.13 Ground connection pins (AGND, PGND, LGND)

The AGND, PGND, and LGND pins are the Analog and Power ground pins. The AGND pin is the ground reference of the voltage regulator module. The PGND and LGND pins are used for high current load return as in the LIN interface pin. Note: PGND, AGND and LGND pins must be connected together.

5.2.14 Digital/analog pin (L1)

The L1 pin is multi purpose input. It can be used as a digital input, which can be sampled by reading the SPI and used for wake-up when 33910 is in low power mode or used as analog input for the analog multiplexer. When used to sense voltage outside the module, a 33 kohm series resistor must be used on the input.

When used as wake-up input L1 can be configured to operate in cyclic-sense mode. In this mode one or both of the high-side switches are configured to be periodically turned on and sample the wake-up input. If a state change is detected between two cycles a wake-up is initiated. The 33910 can also wake-up from Stop or Sleep by a simple state change on L1. When used as analog input, the voltage present on the L1 pin is scaled down by an selectable internal voltage divider and can be routed to the ADOUT0 output through the analog multiplexer.

Note: If L1 input is selected in the analog multiplexer, it is disabled as the digital input and remains disabled in low power mode. No wakeup feature is available in this condition. When the L1 input is not selected in the analog multiplexer, the voltage divider is disconnected from this input.

5.2.15 High-side output pins (HS1 and HS2)

These two high-side switches are able to drive loads such as relays or lamps. Their structures are connected to the VS2 supply pin. The pins are short-circuit protected and both outputs are also protected against overheating. HS1 and HS2 are controlled by SPI and can respond to a signal applied to the PWMIN input pin. HS1 and HS2 outputs can also be used during low-power mode for the cyclic-sense of the wake inputs.

5.2.16 Power supply pins (VS1 and VS2)

Those are the battery level voltage supply pins. In an application, VS1 and VS2 pins must be protected against reverse battery connection and negative transient voltages with external components. These pins sustain standard automotive voltage conditions such as a load dump at 40 V. The high-side switches (HS1 and HS2) are supplied by the VS2 pin. All other internal blocks are supplied by the VS1 pin.

5.2.17 Voltage sense pin (VSENSE)

This input can be connected directly to the battery line. It is protected against battery reverse connection. The voltage present in this input is scaled down by an internal voltage divider, and can be routed to the ADOUT0 output pin and used by the MCU to read the battery voltage. The ESD structure on this pin allows for excursion up to +40 V and down to -27 V, allowing this pin to be connected directly to the battery line. It is strongly recommended to connect a 10 k Ω resistor in series with this pin for protection purposes.

5.2.18 Hall sensor switchable supply pin (HVDD)

This pin provides a switchable supply for external hall sensors. While in Normal mode, this current limited output can be controlled through the SPI. The HVDD pin needs to be connected to an external capacitor to stabilize the regulated output voltage.

5.2.19 +5.0 V main regulator output pin (VDD)

An external capacitor has to be placed on the VDD pin to stabilize the regulated output voltage. The VDD pin is intended to supply a microcontroller. The pin is current limited against shorts to GND and overtemperature protected. During Stop mode, the voltage regulator does not operate with its full drive capabilities and the output current is limited. During Sleep mode, the regulator output is completely shut down.