imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Fully integrated quad valve controller system on chip

The SB0410 device is a SMARTMOS valve and motor controller system designed for use in harsh industrial environments.

It has four high-current low-side drivers for use with solenoid valves, and highside gate pre-driver to control a DC motor through an inexpensive external Nchannel MOSFETs. Alongside this, the SB0410 has three analog to digital converters, plus two low-side driver allowing to drive resistive charges. The digital I/O pins can be configured for both 5.0 V and 3.3 V levels for easy connection to any microprocessor. The SB0410 uses standard SPI protocol communication.

The SB0410 is a perfect solution for hydraulic and pneumatic applications.

Features

- Operating voltage 6.0 V to 36 V
- · Four valves control
- Four current regulated valves up to 2.25 A (5.0 kHz)
- Pump motor pre-driver up to 16 kHz PWM
- 16-bit SPI interface
- Three 10-bit ADC channels
- Two low-side driver for resistive charge ($R_{DS(on)}$ 14.0 Ω)
- Die temperature warning
- Supervision

- Medical test equipment
 - nt farm tractor)

 Food control in animal
 - farm

Figure 1. SB0410 simplified 5.0 V application diagram

NP

* This document contains certain information on a new product. Specifications and information herein are subject to change without notice.

Table of Contents

1	Orde	rable parts	3
2	Interr	nal block diagram	4
3	Pin c	onnections	5
	3.1	Pinout diagram	5
	3.2	Pin definitions	6
4	Gene	eral product characteristics	8
	4.1	Maximum ratings	8
	4.2	Operating conditions	9
	4.3	Supply currents	0
	4.4	Thermal ratings 1	0
	4.5	Logical inputs and outputs 1	1
5	Gene	eral description	2
	5.1	Block diagram	12
	5.2	Functional description 1	12
	5.3	Features 1	12
6	Func	tional block description	4
	6.1	Error handling 1	4
	6.3	Pump motor pre-driver	21
	6.4	Low-side driver for resistive load	24
	6.5	Analog to digital converter (x3ch)	25
	6.6	Supervision	26
	6.7	SPI and data register	31
7	Туріс	al applications	9
	7.1	Application diagrams	19
8	Pack	aging	;0
	8.1	Package mechanical dimensions	50
9	Revis	sion history	53

1 Orderable parts

This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.nxp.com and perform a part number search for the following device numbers.

Table 1. Orderable part variations

Part number	Temperature (T _A)	Package	Notes
MC34SB0410AE	-40 °C to 125 °C	7.0 mm x 7.0 mm, 48 LQFP-EP	(1)

Notes

1. To order parts in Tape & Reel, add the R2 suffix to the part number.

2 Internal block diagram

Figure 2. SB0410 simplified internal block diagram

3 Pin connections

3.1 Pinout diagram

Figure 3. SB0410 48-pin LQFP-EP pinout diagram

NXP Semiconductors

3.2 Pin definitions

Table 2. SB0410 pin definitions

Pin number	Pin name	Pin function	Definition	DOSV = 5.0 V	DOSV = 3.3 V	Notes
1, 48	LSD1	Low-side driver for current regulated or PWMed valves	Open drain output for low-side driver 1	no	no	(2)
2	GND_P1	Supply	Power ground 1	no	no	(4)
3	GND_P2	Supply	power ground 2	no	no	(4)
4, 5	LSD2	Low-side driver for current regulated or PWMed valves	Open drain output for low-side driver 2	no	no	(2)
6	GND_P3	Supply	Power ground 3	no	no	(4)
7	GND_P4	Supply	Power ground 4	no	no	(4)
8, 9	LSD3	Low-side driver for current regulated or PWMed valves	Open drain output for low-side driver 3	no	no	(2)
10	GND_P5	Supply	Power ground 5	no	no	(4)
11	GND_P6	Supply	Power ground 6	no	no	(4)
12,13	LSD4	Low-side driver for current regulated or PWMed valves	Open drain output for low-side driver 4	no	no	(2)
14	GND_P7	Supply	Power ground 7	no	no	(4)
15	LD1	Low-side driver 1 for general purpose	Open drain output for low-side driver 1	no	no	
16	LD2	Low-side driver 2 for general purpose	Open drain output for low-side driver 2	no	no	
17	VPWR	Supply	Supply pin connect to battery through reverse diode	no	no	
18	GND_P8	Supply	Power ground 8	no	no	(4)
19	PD_D	Motor pump driver	Drain feedback pump motor FET. Connect to drain of external pump motor FET	no	no	
20	VBOOT	Motor pump driver	Bootstrap	no	no	
21	PD_G	Motor pump driver	Gate output to control pump motor FET. Connect to gate of external pump motor FET	no	no	
22	PD_S	Motor pump driver	Source feedback pump motor FET Connect to source of external pump motor FET	no	no	
26	SCLK	SPI	SPI interface clock input	no	no	
27	SI	SPI	SPI interface digital input	no	no	
28	CSB	SPI	SPI interface chip interface	no	no	
29	PDI	Motor pump driver	Pump driver input for MCU control	no	no	
30	GND_P9	Supply	Power Ground 9	no	no	(4)
31	VINT_D	Internal function	2.5 V internal supply for digital	no	no	(3)
32	GND_D	Supply	Digital ground	no	no	
33	DOSV	Supply	Digital output voltage supply, DOSV undervoltage reset	5.0 V	3.3 V	
37	SO	SPI	SPI interface digital output	DOSV	/ bias	
38	GND_P10	Supply	Power Ground 10	no	no	(4)
39	ADIN1	ADC	Analog to digital input 1	no	no	
40	ADIN2	ADC	Analog to digital input 2	no	no	

Table 2. SB0410 pin definitions (continued)

Pin number	Pin name	Pin function	Definition	DOSV = 5.0 V	DOSV = 3.3 V	Notes
41	ADIN3	ADC	Analog to digital input 3	no	no	
42	VCC5	Supply	5.0 V supply pin	5V	5V	
43	GND_A	Supply	Analog ground	no	no	
44	VINT_A	Internal function	2.5 V internal supply for analog	no	no	(3)
45	GND_P11	Supply	Power ground 11	no	no	(4)
46	RSTB	Reset	Reset	no	no	
47	GND_P0	Supply	Power ground 0	no	no	(4)
23, 24, 25, 34, 35, 36	NC	Not connected	Pin used for production tests and must be grounded	no	no	
Exposed pad	GND_P12	Supply	Power ground 12	no	no	(4)

Notes

2. Pins with the same name must be shorted together

3. 220 nF/10 V capacitor needed

4. All GND_Px pins must be shorted together at the PCB level.

4 General product characteristics

4.1 Maximum ratings

Table 3. Maximum ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)	Min.	Max.	Unit	Notes	
Supply					1	
V _{VPWR}	Analog Power Supply Voltage	-0.3	40	V		
V _{DOSV}	Digital Output Supply Voltage	-0.3	7.0	V		
V _{VCC5}	Digital Power Supply Voltage	-0.3	7.0	V		
V _{GND_A}	Ground Analog	-0.3	0.3	V		
V _{GND_D}	Ground Digital	-0.3	0.3	V		
V _{GND_P}	Ground Exposed Pad	-0.3	0.3	V		
Internal function	·					
V _{VINT_A}	Internal Regulator Analog Power Supply	-0.3	3.0	V		
V _{VINT_D}	Internal Regulator Digital Power Supply	-0.3	3.0	V		
Charge pump						
V _{CP}	Internal Charge Pump	-0.3 or V _{PWR} -0.3	V _{PWR} +15	V		
High-side driver f	or general purpose					
V _{HS}	High-side Driver	-0.3	40 or V _{PWR} +0.3	V		
High-side driver f	or valve's fail-safe FET					
V _{HD_G}	Gate of the High-side Pre-driver	-20	55	V		
V _{HD_S}	Source of the High-side Pre-driver	-0.3	40	V		
V _{HD_D}	Drain of the High-side Pre-driver	-0.3	40	V		
Motor pump drive	r					
V _{PD_G}	Gate of the Motor Pump Pre-driver	-0.3 or PD_S-0.3	V _{BOOT + 0.3}	V		
V _{PD_S}	Source of the Motor Pump Pre-driver	-20	40	V		
V _{PD_D}	Drain of the Motor Pump Pre-driver	-20	40	V		
V _{BOOT}	Bootstrap Voltage	-10	V _{BOOT} +0.3	V		
V _{PDI}	Motor Control Input Voltage	-0.3	7.0	V		
Reset	Reset					
V _{RSTB}	Reset Pin	-0.3	7.0	V		
A to D converter						
V _{ADINx}	Input Analog to Digital	-0.3	7.0	V		

Table 3. Maximum ratings (continued)

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)	Min.	Max.	Unit	Notes
SPI	•				
V _{SO}	Serial Peripheral Interface Slave Output	-0.3	DOSV +0.3	V	
V _{SI}	Serial Peripheral Interface Slave Input	-0.3	7.0	V	
V _{CSB}	Serial Peripheral Interface Chip Select	-0.3	7.0	V	
V _{SCLK}	Serial Peripheral Interface Clock	-0.3	7.0	V	
Low-side driver for	or valves (LSD1-4)				
V _{LSDx}	Low-side Driver for Valves	_	active clamp	V	
Low-side driver					
V _{LSD}	Low-side Driver	-100 mA	40	V	
Energy capability	•				
E _{LSD1-4}	Energy Capability (EAR) at 125 °C • LSD1—4, with 20 mH load	_	30	mJ	
Currents					
I _{LSDX(POS)}	Drain Continuous Current; during on state LSDx 	_	5.0	А	
I _{LSDX(NEG)}	Maximum Negative Current for 5.0 ms Without Being Destroyed LSDx 	-6.0	_	А	
I _{DIG}	Input Current • SI, CSB, SCLK, RSTB, PDI	-20	20	mA	

4.2 Operating conditions

This section describes the operating conditions and the current consumptions. Conditions apply to all the following data, unless otherwise noted.

Table 4. Operating conditions

Voltage parameters are absolute voltages referenced to GND. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
V _{PWR}	Functional Operating Supply Voltage. Device is fully functional.All features are operating	6.0	_	36	V	
V _{CC5}	Functional Operating Supply Voltage. Device is fully functional.All features are operating.	4.75	_	5.25	V	
V _{DOSV}	Functional Operating Supply Voltage. Device is fully functional.All features are operating.	3.13	_	5.25	V	

4.3 Supply currents

This section describes the operating conditions and the current consumptions. Conditions apply to all the following data, unless otherwise noted.

Table 5. Supply currents

Characteristics noted under conditions 6.0 V \leq V_{PWR} \leq 36 V, 4.75 V \leq V_{CC5} \leq 5.25 V, 3.13 V \leq V_{DOSV} \leq 5.25 V, -40 °C \leq T_J \leq 125 °C, GND = 0 V, unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
VPWR current of	onsumptions		- <u>!</u>	- <u>!</u>	1	·
I _{QVPWR}	Quiescent Current of VPWR Measured at 36 V, V_{CC5} = 0 V	—	_	30	μΑ	
I _{VPWR}	Current of VPWR in Operating Mode	—	_	20	mA	
VCC5 current c	onsumptions					
I _{VCC5}	Current of VCC5 Pin in Operating Mode (SPI frequency at 10 MHz)	—	10	—	mA	
DOSV current c	DOSV current consumptions					
I _{DOSV}	Current of DOSV Pin in Operating Mode (SPI frequency at 10 MHz)	_	10		mA	
IDOSV current c	current of VCCS Finan Operating Mode (SPI frequency at 10 MHz) onsumptions Current of DOSV Pin in Operating Mode (SPI frequency at 10 MHz)		10	_	mA	

4.4 Thermal ratings

Table 6. Thermal data

Typical values noted reflect the approximate parameter means at T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
TJ	Operational Junction Temperature	-40		150	°C	
T _{STG}	Storage Temperature	-65		150	°C	
R _{θJC}	R0JC, Thermal Resistance, Junction to Case (Package exposed pad) - Steady state			1.5	°C/W	(5)
T _{PPRT}	Peak Package Reflow Temperature During Reflow		-	Note 6	°C	(6)

Notes

5. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.

6. NXP's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), Go to www.nxp.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC34xxxD enter 34xxx), and review parametrics.

4.5 Logical inputs and outputs

Table 7. Logical inputs/outputs

VPWR = 6.0 V to 36 V, VCC5 = 4.75 V to 5.25 V, DOSV = 3.13 V to 5.25 V, T_J = -40 °C to 125 °C, unless otherwise specified.

Symbol	Description (rating)	Min.	Max.	Unit	Notes
Logical inputs					
V _{IH_X}	Input High-voltage • RSTB, SI, CSB, SCLK, PDI	_	2.0	V	
V _{IL_X}	Input Low-voltage • RSTB, SI, CSB, SCLK, PDI	0.8	_	V	
Logical outputs					
V _{OH_X}	Input High-voltage, with 1.0 mA • SO	0.8 x DOSV	_	V	
V _{OL_X}	Input Low-voltage, with 1.0 mA • SO	_	0.4	V	
VOL_RSTB	RSTB Low-voltage, with 1.0 mA • RSTB	_	0.4	V	

5 General description

5.1 Block diagram

Figure 4. SB0410 functional block diagram

5.2 Functional description

The SB0410 device is a valves and DC motor controller, designed for use in harsh industrial environments, requiring few external components.

The SB0410 has four high-current low-side drivers to use with solenoid valves, and one high-side pre-drivers to controlling an external Nchannel MOSFETs to use with a DC motor at high frequency thanks to the integrated bootstrap. In conjunction with this primary functionality, the SB0410 has two low-side drivers to control a resistive load. The digital I/O pins can be used for both 5.0 V and 3.3 V levels for easy connection to any microprocessor. The device includes three Analog to Digital converters. The SB0410 uses standard SPI protocol for communication.

5.3 Features

This section presents the detailed features of SB0410.

Table 8. Device features set

Function	Description
	 Solenoid driver (300 mΩ max. R_{DS(on)} at 125 °C) works either as current regulator or as PWM
	Current regulation deviation: ±2.0%
	Configurable PWM frequency from 3.0 kHz to 5.0 kHz
	 10-bit resolution on the current value targeted (Regulated mode).
Low side Selensid Driver (x4)	8-bit resolution on the duty cycle. (PWM mode)
Low-side Soleriold Driver (x4)	Open load detection
	V _{DS} state monitoring
	Overcurrent shutdown
	Overtemperature shutdown
	Send current regulation error flag
	 Motor pump pre-driver up to 16 kHz. PWM frequency controllable through SPI command or a digital signal (PDI pin).
Pump Pre-driver	Overcurrent shutdown between external FET drain and source
	Overtemperature shutdown

Table 8. Device features set (continued)

Function	Description
	 Low-side driver (20 mA max, R_{DS(on)} 8.0 Ω)
	Open load detection
Low-side Driver for Resistive Charge (x2)	V _{DS} state monitoring
	Overcurrent shutdown
	Overtemperature shutdown
	10-bit ADC
Appleg to Digital Convertor	External ADINx pins (x3)
Analog to Digital Converter	Internal voltages and temperature information
	Duty cycle to current converter for low-side (LSDx).
	VINT_x undervoltage (internal regulator)
	VCC5 & DOSV undervoltage (supply voltage from external)
	External reset fault
	V _{PWR} undervoltage and overvoltage detections
Supervision	Mismatch MAIN-AUX OSC CLK
	Temperature warning
	SPI failure
	Bootstrap issue
	GND supervision

6 Functional block description

6.1 Error handling

Table 9. Error handling

Type of error	Detection condition	Action	Clear SPI flag	Restart condition
Pump motor PWM driver	L			
Overcurrent between external FET Drain and Source	ON	PD_G Off+ SPI fault flag (PD_oc)	Write 1 to PD_clr_flt	Write 1 to PD_clr_flt and then turn on PDI
Overtemperature	ON	PD_G Off+ SPI fault flag (PD_ot)	Write 1 to PD_clr_flt	Write 1 to PD_clr_flt and then turn on PDI
LSDx				
Open load	OFF	SPI flag (LSDx_op)	Read diagnosis	No
V _{DS} state monitoring	ON/OFF	Read V _{DS} state by SPI (vds_LSDx)	Update with min filter time (T1) rise and fall edge	No
Overcurrent	ON	OFF fault FET only+ SPI fault flag (LSDx_oc)	Write 1 to LSD_clr_flt	Write 1 to LSD_clr_flt and turn on by SPI command (LSDx duty cycle or current set point)
Overtemperature	ON	OFF fault FET + SPI fault flag (LSDx_ot)	Write 1 to LSD_clr_flt	Write 1 to LSD_clr_flt and turn on by SPI command (LSDx duty cycle or current set point)
Current regulation error	ON	SPI flag (LSDx_crer)	Read diagnosis	No
LDx				
OpenLoad	OFF	SPI flag (LDx_op)	Read diagnosis	No
V _{DS} state monitoring	ON/OFF	V _{DS} state by SPI (V _{DS_LDx})	Update with min filter time (T1) rise and fall edge	No
Overcurrent	ON	OFF fault FET + SPI fault flag (LDx_oc)	Write 1 to LDx_clr_flt	Write 1 to LDx_clr_flt and turn on by SPI command (LDx_on)
Overtemperature	ON	OFF fault FET + SPI fault flag (LDx_ot)	Write 1 to LDx_clr_flt	Write 1 to LDx_clr_flt and turn on by SPI command (LDx_on)
Supervision				
VINT_x undervoltage	All except Sleep mode	SPI registers reset & Vint_uv go to High (See <u>Table 19</u>)	Read Vint_uv bit (See Table 19)	No
VCC5 & DOSV undervoltage	All except Sleep mode	SPI registers reset except some bit. (See <u>Table 19</u>)	Wait undervoltage reset filter time T1 (see <u>Table 19</u>)	See <u>Table 19,</u>
External reset fault	No internal RSTB pulldown	SPI registers reset except some bit. (See <u>Table 19</u>)	Read the corresponding message of the SPI register (see <u>Table 19</u>)	See <u>Table 19,</u>
VPWR undervoltage	RSTB is high state	All LSDx Off (Clear all LSDx duty cycle registers or current set point) + SPI fault flag (V _{PWR_UV})	1. Normal condition 2. Read diagnosis (V _{PWR_UV})	1. Normal condition 2. Turn on by SPI command (LSDx duty cycle or current set point)
VPWR overvoltage	RSTB is in high state	All LSDx Off (Clear all LSDx duty cycle registers or current set point) + SPI fault flag (V _{PWR_OV})	1. Normal condition 2. Read diagnosis (V _{PWR_OV})	1. Normal condition 2. Turn on by SPI command (LSDx duty cycle or current set point)
Mismatch SB0410 MAIN-AUX OSC CLK	RSTB is in high state	SPI registers goes to initial state low except (see <u>Table 19</u> ,)	Read RST_clk bit	No
Temperature warning	RSTB is in high state	SPI flag	1. Normal condition 2. Read diagnosis	No

Table 9. Error handling (continued)

Type of error	Detection condition	Action	Clear SPI flag	Restart condition				
Supervision (continued)								
SPI failure	RSTB is in high state	SPI flag (Fmsg)	Read diagnosis	No				
V _{PRE} 1x monitoring ⁽⁸⁾	RSTB is in high state	Send by SPI (ADC)	No	No				
VINT_x monitoring ⁽⁸⁾	RSTB is in high state	Send by SPI (ADC)	No	No				
V _{GS_PD} monitoring	RSTB is in high state	Send by SPI (ADC)	No	No				
Temperature monitoring ⁽⁸⁾	RSTB is in high state	Send by SPI (ADC)	No	No				
GND_D supervision	RSTB is in high state	SPI flag only (FGND)	No	No				
GND_A supervision; indirect detection by VCC5 or DOSV	RSTB is in high state	SPI flag only (VCC5_UV or DOSV_UV)	No	No				

Notes

7. To clear an error flag, SW engineer has to read the register concerned and then write a "1" on the xxx_clr_flt flag.

8. SW engineering can monitor internal supply voltage in real time with ADC SPI reading, and can use fail-safe function. If these ADC results are not in a certain range, uC can reset the SB0410 (see ADC section).

6.2 Low-side driver

6.2.1 Introduction

The SB0410 is designed to drive in current regulated or in digital mode inductive loads in low-side configuration. All four channels are managed by logic and faults are individually reported through the SPI. The device is self-protected against short-circuit, overtemperature, can detects an open-load and finally allows to monitor in real-time the V_{DS} state.

When Channels 1 to 4 work as a current regulator, a freewheeling diodes must be connected. Each channel comprises an output transistor, a pre-driver circuit, a diagnostic circuitry, and a current regulator. The SPI registers (10 to 13) defines the current output targeted. This output is controlled through the output PWM of the power stage. The LSD1-4 current slopes are controlled by a SPI command to reduce switching loss.

6.2.2 Digital mode

LSD1 to 4 can be used in digital mode (also called "PWM"). This function integrates a current recirculation thanks to the gate-drain clamp circuitry embedded. The output transistor is equipped with an active clamp limiting LSDx voltage to vcl_lsd. During turn-off, the inductive load forces the increasing output voltage until the active voltage clamps, such as when the power FET turns on again.

Figure 5. PWM low-side driver

The duty cycle of PWM low-side drivers is programmed via an 8-bit SPI message. The duty cycle between 0% and 100% can be selected and the LSB of the 8 bits is weighted with an 0.39% duty. Each channel has an 8-bit SPI register of PWM duty cycle.

The PWM low-side driver uses each channel as a digital low-side switch.

PWMx duty cycle = 0xFF - Digital low-side switch ON (conducting)

PWMx duty cycle = 0x00 - Digital low-side switch OFF

6.2.3 Interleave function

The SB0410 provides interleaved phase shift switching to minimize switching noise of the solenoid coil. Each LSDx is shift to 1/4 of the period from the previous one. this interleave function started with the LSD1.

Table 10. Low-side driver electrical characteristics

VPWR = 6.0 V to 36 V, DOSV = 3.13 V to 5.25 V, T ₁ = -40 °C to 125 °C, unless otherwise specific	ed.
---	-----

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
Power output	•		l	l	L	
R _{ON_LSD14}	On Resistance Channel 1 to 4: CR • T_J = 125 °C; 9.0 V \leq V _{PWR} \leq 36 V; I _{LOAD} = 2.0 A	_	_	0.225	Ω	
R _{ON_LSD14_E}	On Resistance Channel 1 to 4: CR (extended mode) • T_J = 125 °C; 5.5 V ≤ V _{PWR} ≤ 9.0 V; I _{LOAD} = 2.0 A	_	_	0.330	Ω	
I _{LEAK_LSD}	Drain Leakage Current • LSD = 36 V	_	_	10	μA	
V _{CL_LSD}	Active Clamp Voltage	_	38	45	V	
Timings						
tr_cr1 t _{F_CR1}	Rise Time/Fall Time • 10% to 90%, I _{LOAD} = 1.0 A, V _{PWR} = 36 V; no capacitor didt = 0 (SPI bit)	1.0 0.1	1.7 1.35	3.0 3.0	μs	
^t r_cr2 t _{F_} cr2	Rise Time/Fall Time • 10% to 90%, I _{LOAD} = 1.0 A, V _{PWR} = 36 V; no capacitor didt = 1 (SPI bit)	0.05 0.1	0.5 1.0	1.0 3.0	μs	
t _D on CR t _D off CR	Turn on/off Delay Time • Digital 1 to 10% or 90%, I _{LOAD} = 1.0 A, V _{PWR} = 36 V, no capacitor	0.0	_	3.0	μs	(9)
Lf_PWM	Output PWM frequency for LSD1-4 • LF_PWM xx = 111 • LF_PWM xx = 110 • LF_PWM xx = 101 • LF_PWM xx = 100 • LF_PWM xx = 000 (default) • LF_PWM xx = 011 • LF_PWM xx = 001 • LF_PWM xx = 010	-20%	3.0 3.2 3.4 3.6 3.9 4.2 4.5 5.0	20%	kHz	
0x00 0x01 0xFE 0xFF	PWM Duty Cycle Programming (8-bits)	 	OFF 0.39 — 99.61 ON	 	%	

Notes

9. Digital: internal digital signal delivered by interleave synchronization block. See Figure 6.

6.2.4 Current regulation mode

When the external fly-back diode is connected, the current re-circulation executes via the diode to the battery. When Channels 1 to 4 work as a current regulator, freewheeling diodes must be connected.

Figure 7. PWM low-side driver (current regulated)

The load current is sensed by an internal low-side sense FET and digitized by an internal A/D converter. The target value of the current is given SPI messages. A digital current regulation circuitry compares the actual load current with the target current value and steers the duty cycle of the low-side power switch. The PI regulator characteristic can be adjusted via the SPI.

6.2.4.1 Target current

Each current regulator channel has its own 10-bit target current register. The LSB of the 10 bits is weighted with 2.2 mA. A zero value disables the power stage of the respective channel. A new target current is instantaneously passed to the settling time, which is the settling of the new current value.

PWMx target current value = 00 0000 0000 \rightarrow 0 mA

PWMx target current value = 00 0000 0001 \rightarrow 2.2 mA

•••

PWMx target current value = 11 1111 1110 \rightarrow 2.248 A

PWMx target current value = 11 1111 1111 \rightarrow 2.250 A

CR_DIS12/34	CR_fb	Mode	LSD1-4 duty cycle (8-bit) or current read (10-bit)
0	0	current regulation	Read current target (to check SPI write)
0	1	current regulation	Read output duty cycle value for gate driver.
1	0	PWM	Read programmed PWM duty cycle (to check SPI write)
1	1	PWM	Read hardware ADC current value

6.2.4.2 Current measurement

The output current is measured during the "ON' phase of the low-side driver. A fraction of the output current is diverted and (using a "current mirror" circuit) generates across an internal resistance a voltage relative to ground, this being proportional to the output current.

6.2.4.3 PI characteristics

Digital PI-regulator with the Transfer function is programmed via the SPI register.

Transfer function:
$$\frac{KI}{z-1} + KP$$

The integrator feedback register I charac bits define the regulation behavior of all channels. The default value is 1/8. Both current regulators remain idle until a non-zero value in I charac was programmed. A high proportional feedback value accelerates the regulator feedback and provides a faster settling of the regulated current after disturbances like battery voltage surge.

Table 11. Duty cycle descriptions

The duty cycle of the PWM output in clamped minimum by options and maximum 100% (see 6.7, "SPI and data register").

Option	LLC<1>	LLC<0>	Minimum Duty Cycle
0	0	0	 10% the measurement is done at t_{ON}/2 by consequence the regulation current will be set at t_{ON}/2
1	0	1	 3.12% for a duty cycle > 10%, the measurement is done at t_{ON}/2 for a duty cycle 3.2% < DC < 10%, the measurement is done at t_{ON}/2 for 10% of duty cycle up at t_{ON} for 3.2% of duty cycle
2	1	0	$\begin{array}{l} 3.12\% + \mbox{forced min duty cycle to } 1.56\% \mbox{ every two cycles} \\ \bullet \mbox{ for a duty cycle } 10\%, \mbox{ the measurement is done at } t_{ON}/2 \\ \bullet \mbox{ for a duty cycle } 3.2\% < DC < 10\%, \mbox{ the measurement is done at } t_{ON}/2 \mbox{ for } 10\% \mbox{ of duty cycle up at } t_{ON} \mbox{ for } 3.2\% \mbox{ of duty cycle } \\ \bullet \mbox{ for a duty cycle set at } 1.56\%, \mbox{ no measurement is done } \end{array}$
3	1	1	$\begin{array}{l} 3.12\% + skip \mbox{ min duty cycle every two cycles} \\ \bullet \mbox{ for a duty cycle > 10\%, the measurement is done at t_{ON}/2 by consequence the regulation current will be set at t_{ON}/2 \\ \bullet \mbox{ for a duty cycle 3.2\% < DC < 10\%, the measurement is done at t_{ON}/2 for 10\% of duty cycle up at t_{ON} for 3.2\% of duty cycle \\ \bullet \mbox{ no measurement is done during the skipping mode} \end{array}$

If the target current value is not reached within the regulation error delay time of t_{CR_ERR} , the flag of the SPI register "LSDx_crer" is set to high. The current regulation loop is still running and tries to regulate at the target. Because it is not at the target, the duty cycle is either 100%, or minimum duty cycle by option. LSDx_crer error detection has no effect on the driver, only SPI fault reporting. The microcontroller can detect the fault through the SPI (LSDx_crer bit + ADC current reading), and shutdown the driver by sending 0 target current. Set Current – ADC result > "error threshold" during t_{CR_ERR} then LSDx_crer is set to 1.

This flag is latched & can be reset by the SPI read (LSDx_crer). Each of the four current regulation low-side drivers can be used as a PWM low-side switch. CR_disxx flag is enabled HIGH. The 8 MSB bits of the target current message are the PWM duty cycle. The first duty is controlled by the SPI bit FDCL (See SPI and data register).

Table 12. LSD1 to LSD4 current regulation driver electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
Current Regu	lation					
00 0000 0000 00 0000 0001 11 1111 11	Target current programming (10-bits)	 	OFF 2.2 2.25	 	mA A	
I _{CR_DEV}		 	 	65 50 25 ±10 ±2.0	mA mA % %	(10) (11)

VPWR = 6.0 V to 36 V, VCC5 = 4.75 V to 5.25 V, DOSV = 3.13 V to 5.25 V, T_J = -40 °C to +125 °C, unless otherwise specified.

Notes

- 10. Maximum regulation deviation performances noted in the table depend on external conditions (V_{PWR}, load (R,L)).
- 11. The error can be decrease significantly by a calibration of the LSDx and using a current regulation loop done by software.

6.2.5 Fault detection (LSD1 to LSD4)

6.2.5.1 Open load

An open condition is detected when the LSDx output is below the threshold for the defined filter time; the fault bit is set (SPI error flag only). This function only operates during the off state.

6.2.5.2 V_{DS} state monitoring

The V_{DS} state monitoring gives real time state of LSD drain voltage vs OP_IsD voltage. This signal is filtered and sent through the SPI. If the LSDx voltage is higher than the OP_IsD with a filter time (T1), vds_Isd is set to "1".

6.2.5.3 Overcurrent

When the current is above the overcurrent threshold for the defined filter time, the driver is switched off, a SPI fault bit is set, and the driver can be turned back to the "normal state" by a SPI write "1" to "LSDx_clr_flt ", followed by a send target current command.

6.2.5.4 Overtemperature

When the temperature is above the overtemperature threshold for the defined filter time, the driver is switched off, a SPI fault bit is set, and the turn-on SPI command is cleared. The driver can be turned back to the "normal state" when the temperature returns to a normal state, then SPI write "1" to "LSDx clr fit", followed by a send target current command.

Table 13. Detection Electrical Characteristics

VPWR = 6.0 V to 36 V, VCC5 = 4.75 V to 5.25 V, DOSV = 3.13 V to 5.25 V, T_J = -40 °C to +125 °C, unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
PD_G						
OC _{LSD}	Overcurrent Detection Threshold Current	_	8.5	_	А	
Open load detection	on					
OP _{LSDSRC}	Open Load Detection Threshold (also used for V_{DS} monitoring)	_	2.0	_	V	
V _{DS} Monitoring						
t _{VDS_LSDX}	V _{DS} State Filter Time	_	T1	_	μs	
Overtemperature S	Shutdown					
V _{PD_OC}	Overcurrent detection threshold - VPD_D - VPD_src	-15%	1.0	+15%	V	
Overtemperature S	Shutdown					
OT _{LSD}	Overtemperature Detection Threshold	180	195	210	°C	
Current Regulation	n Error (Regulation mode only)					
ICR _{DELTA}	Current Regulation Error - ADC Result (measurement data) - (target programming current) • 1LSB = 2.25 A/1024 = 2.197 mA	_	25	_	LSB	

6.3 Pump motor pre-driver

6.3.1 Function description

This module is designed for DC motor pump, a maximum of 16 kHz PWM is possible. The pre-driver is made with a bootstrap as well as small charge pump structure to operate to 100% duty cycle.

Figure 8. Pump motor pre-driver

A duty cycle comprised between 0% to 10% and between 90% to 100% is not possible due to the structure.

6.3.2 Fault detection

6.3.2.1 Overcurrent

The pump driver protects the external N-channel power FET on the PD_G pin in overcurrent conditions. The drain-source voltage of the FET on PD_G is checked if the pump driver is switched on. If the measured drain-source voltage exceeds the overcurrent voltage threshold, the output PD_G is switched off. Overcurrent detection logic has a masking time from PDI turn-on against malfunction on transient time. After switching off the power FET by an overcurrent condition, the power FET can be turned back to "normal state" by only SPI write 1 to "PD_cIr_flt" register, and then turn on with PDI.

After pump driver is switched on and it stays on during minimum time period T1/2 (masking period), a cumulate/decumulate process of overcurrent fault detection logic is enabled. After the masking period is over, if both events are present (PDI = 1 and overcurrent condition), there is a cumulate (increment) process taking place measuring the maximum time period T1 to qualify an overcurrent fault event. If both events are present longer than T1, this activates an overcurrent fault (and consequently sets corresponding flag). If PDI = 0, the cumulate process is halted but not reset. If during PDI = 1 the event of the overcurrent condition is not present, this resets a previously cumulated value.

Figure 9. Block diagram of cumulate/de-cumulate process of overcurrent fault detection logic

Function of T1 counter:

- a) Increment
- b) Hold
- c) Reset
- d) Overcurrent fault detected

6.3.2.2 Overtemperature

When the temperature is above the overtemperature threshold for the defined filter time, the driver is switched off and a SPI fault bit is set. The driver can be turned back to the "normal state" by writing a 1 to PD_clr_fit, then turn PDI on.

6.3.2.3 External components of pump pre-driver

An external 15 V Zener clamping (1 direction) is necessary between VBOOT and PD_S to protect the gate of the external Power MOSFET. An internal diode between VBOOT and PD_G ensures that PD_G cannot go higher than VBOOT (1 V_{BE} higher). Optional 15 V Zener clamping can be added between PD_G & PD_S (not necessary). The zener chains are used for avalanche clamping and protection against transients.

A typical external MOSFET is IPB80N04S2, which is 4.0 m Ω (for indication only). An external resistor of 500 k Ω is connected between PD_G & PD_S to turn the MOSFET OFF, in case of an open soldering contact. An external resistor (R_G) in series with PD_G is added to decrease the slew rate and optimize EMC. The value of the C_{BOOT} capacitor between VBOOT & PD_S can be 330 nF (for 5.0 kHz & 20 kHz).

Table 14. Pump motor pre-driver electrical characteristics

VPWR = 6.0 V to 36 V, VCC5 = 4.75 V to 5.25 V, DOSV = 3.13 V to 5.25 V, T_J = -40 °C to +125 °C, unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
PD_G						
V _{PD_ON_5K}	• $5.5 V \le V_{PWR} < 6.0 V$ • $6.0 V \le V_{PWR} < 7.0V$ • $7.0 V \le V_{PWR} < 10 V$ • $10 V \le V_{PWR} < 36 V$	V _{PWR} + 4 V _{PWR} +5 V _{PWR} +7 V _{PWR} +10	 	V _{PWR} + 15 V _{PWR} +15 V _{PWR} +15 V _{PWR} +15	V	(12)
V _{PD_ON_20K}	• $5.5 V \le V_{PWR} < 7.0 V$ • $7.0 V \le V_{PWR} < 12.0V$ • $12.V \le V_{PWR} < 36 V$	V _{PWR} + 4.5 2xV _{PWR} -2.0 V _{PWR} +10		V _{PWR} + 15 V _{PWR} +15 V _{PWR} +15	V	(13)
V _{GS_OFF}	PD_G switch-off voltage	—	_	0.1	V	
I _{PDG_OFF}	Turn-off current	—	300	—	μA	
PD_S						•
ILEAK_PD_SRC	Leakage Current - VCC5 = DOSV = 0.0 V, VPWR = 36 V, PD_S = 36 V	—	_	1.0	mA	
PD_D		1		1		1
I _{LEAK_PD_DRN}	Leakage current - VCC5 = DOSV = 0.0 V, PD_D = VPWR = 36 V	—	—	15	μA	
Overcurrent dete	ction	1		1		1
V _{PD_OC}	Overcurrent detection threshold - VPD_D - VPD_src	-15%	1.0	+15%	V	
t _{PD_OC}	Overcurrent Detection Filter Time - Cumulate counter during on phase after masking time, reset counter if no OC event during 1 cycle	_	T1	_	μs	
Duty _{Alo}	10% to 90% duty cycle is allowed (also 0% and 100% is allowed)	10	—	90	%	
Overtemperature	shutdown					1
OT _{PMD}	Overtemperature Detection Threshold	180	195	210	°C	
tOT _{PMD}	Overtemperature Detection Filter Time	—	T1	_	μs	
VBOOT charge						1
^t BOOT_DELAY	Bootstrap Start Time - Time to charge CBOOT after wake-up of part (VCC5 = 5.0 V). Allow Pump driver to turn on after this timing. (This timing is smaller than reset recovery time (45 ms), so has no effect on the application)	_	30	_	ms	

Notes:

12. Frequency = 5.0 kHz , duty cycle = 10~90% and 100%, voltage measured 20 µs after turn on.

13. Frequency = 20.0 kHz , duty cycle = 10~90% and 100%, voltage measured 5.0 µs after turn on.

6.4 Low-side driver for resistive load

6.4.1 Power output stages

Figure 10. Low-side driver for resistive load diagram block

The low-side driver consists of DMOS power transistors with open drain output. The low-side driver can be driven by SPI commands. The low-side driver is composed of an output transistor, a pre-driver circuit, and diagnostic circuitry. The pre-driver applies the necessary voltage on the output transistor gate to minimize the On resistance of the output switch. To avoid leakage current path, LD has no sink current.

Table 15. Low-side driver electrical characteristics

VPWR = 6.0 V to 36 V, VCC5 = 4.75 V to 5.25 V, DOSV = 3.13 V to 5.25 V, T_J = -40 °C to 125 °C, unless otherwise specified.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
Power output LD						
R _{ON_LD}	On Resistance for LD • $T_J = 125 \text{ °C}, 6.0 \text{ V} \le \text{V}_{PWR} \le 36 \text{ V}$	_	8.0	14	Ω	
	DC Current Capability	_	—	20	mA	
I _{LEAK_LD}	Drain Leakage Current • V _{PWR} = 0, V _{CC5} = 0, LD = 36 V, no sink current	_	_	10	μΑ	
V _{BVDSS_LD}	BVDSS Voltage	40	—	_	V	
I _{NEG_LD}	Maximum Negative Current for 5.0 ms Without Destroying the device	100	—	_	mA	
Timings	•					

t _{D_ON_LD}	Turn On Delay Time for LD	_	_	2.0	μs	(14)
t _{D_OFF_LD}	Turn Off Delay Time for LD			2.0	μs	(14)

Notes

14. From Digital Signal to 50% (turn ON) or 50% (turn OFF). R_L = 1.0 k Ω , V_{PWR} = 36 V, no capacitor

6.4.2 Fault detection

6.4.2.1 Open load

An open condition is detected when the LD output is below the threshold OP_{LD} for the defined filter time $t_{OP_{LD}}$, the fault bit is set Id_OP (SPI error flag only). This function only operates during the Off state.

6.4.2.2 V_{DS} state monitoring

The V_{DS} state monitoring gives real time state of LD drain voltage vs OP_{LD} voltage. This signal is filtered and sent through the SPI vds_ld bit. If the V_{DS} voltage is higher than OP_{LD} with a filter time (T1), vds_ld is set to "1".

6.4.2.3 Overcurrent

When the current is above the overcurrent threshold OC_{LD} for the defined filter time t_{OC_LD} , the driver is switched off, a SPI fault bit Id_OC is set, and the turn-on SPI command is cleared. The driver can be returned to the "normal state" by a SPI write "1" to "LD_clr_flt", then turned on by a SPI command (LD_on).

6.4.2.4 Overtemperature

When the temperature is above the overtemperature threshold OT_{LD} for the defined filter time t_{OT_LD} , the driver is switched off, a SPI fault bit Id_OT is set, and the turn-on SPI command is cleared. The driver can be returned to the "normal state" when the temperature returns to the normal state, a SPI write "1" to "LD_clr_flt", then turning on a SPI command (LD_on).

Table 16. Low-side driver electrical characteristics

VPWR = 6.0 V to 36 V, VCC5 = 4.75 V to 5.25 V, DOSV = 3.13 V to 5.25 V, T_J = -40 °C to 125 °C, unless otherwise specified.

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
Overcurrent shut	Dvercurrent shutdown					
I _{OCLD}	Overcurrent Shutdown Threshold Current for LD	_	100	—	mA	
t _{OC_LD}	Overcurrent Shutdown Filter Time	_	T1	_	μs	
Open load detect	ion					
V _{OPLD}	OpenLoad Detection Threshold (also used for V _{DS} monitoring)	_	2.0	_	V	
t _{OP_LD}	OpenLoad Detection Filter Time	_	T2	_	μs	
V _{DS} monitoring						
t _{VDS_LD}	V _{DS} State Filter Time (rise & fall edge filter time)	—	T1	_	μs	
Overtemperature	shutdown					
T _{OTLD}	Overtemperature Detection Threshold	180	195	210	°C	
t _{OT_LD}	Overtemperature Detection Filter Time	_	T1	—	μs	

6.5 Analog to digital converter (x3ch)

ADC is referenced to VCC5 voltage and converts the voltage on 10 bits. It is used to read the following voltages:

- Three analog input pins: ADINx
- Internal voltage supplies (VINT_A, VINT_D, V_{PRE10}, V_{PRE12}, V_{GS_PD})
- Average temperature of die, which is used by the temperature warning detection circuit (TEMP). Refer to the SPI Message Structure, Message #9.
- Current to voltage converter for current regulation of LSD1-4