# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





#### Technical data

MC44BS374CA Rev. 1.2 04/2004

PLL Tuned UHF and VHF Audio/Video High Integration Modulator

## MC44BS374CA



SO16NB Package

#### **Ordering Information**

| Device                                  | Temp Range   | Package             |
|-----------------------------------------|--------------|---------------------|
| MC44BS374CAD,R2                         | 0°C to +70°C | SO16NB              |
| MC44BS374CAEF,R2                        | 0°C to +70°C | SO16NB<br>Lead free |
| NOTE: For tape and reel, add R2 suffix. |              |                     |

#### Contents

| Features2                      |
|--------------------------------|
| Comparing the                  |
| MC44BS374CA to the             |
| MC44BC374C 3                   |
| Pin Descriptions3              |
| MC44BS374CA Functional         |
| Overview 4                     |
| Maximum Ratings5               |
| Thermal Ratings 5              |
| Electrostatic Discharge 5      |
| Electrical Characteristics . 6 |
| I2C Bit Mapping7               |
| I2C Programming                |
| Modulator High Frequency       |
| Characteristics 10             |
| Video Characteristics 11       |
| Audio Characteristics 13       |
| Characterization               |
| Measurement Conditions         |
| 14                             |
| MC44BS374CA Modes of           |
| Operation                      |
| High Speed I2C Compatible      |
| Bus 24                         |
| Pin Circuit Schematics 27      |
| Application Diagram 28         |
| MC44BS374CA Evaluation         |
| Board Layout and               |
| Schematic 29                   |
| Packaging Instructions 31      |
| Marking Instructions 31        |
| Case Outline 32                |

The MC44BS374CA audio and video modulator is for use in VCRs, set-top boxes, and similar devices.

- Multi standard
- TV output level 82dBuV typical
- 5V and 3.3V compatible  $I^2C$  bus

Figure 1 shows the pin connections.

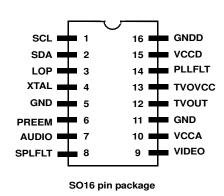



Figure 1. MC44BS374CA Pin Connections



This document contains information on a product under development. Freescale reserves the right to change c discontinue this product without notice. © Motorola, Inc., 2003. All rights reserved.



### 1 Features

The MC44BS374CA is a Multi-Standard, PAL/NTSC Modulator.

The channel is set by an on-chip high-speed  $I^2C$  compatible bus receiver. A Phase-Locked Loop (PLL) tunes the modulator over the full UHF range.

The modulator incorporates a sound subcarrier oscillator and uses a second PLL to derive 4.5, 5.5, 6.0, and 6.5MHz subcarrier frequencies. These frequencies are selectable by bus.

The picture-to-sound ratio may be adjusted using the bus. In addition, an on-chip video test pattern generator can be switched ON with a 1 KHz audio test signal.

The MC44BS374CA also has the following features:

- Integrated on-chip programmable UHF oscillator
- No external varicaps diodes/inductor or tuned components
- Extremely low external components count
- Channel 21-69 UHF operation
- VHF range possible by internal dividers (30MHz-450MHz)
- Boosted TVout level (82 dBuV typical)
- High speed read and write I<sup>2</sup>C-bus compatible (800kHz)
- I<sup>2</sup>C-bus 5V and 3.3V compatible
- Fixed video modulation depth (82% typical)
- Peak White Clip disabled by bus
- Programmable picture/sound carrier ratio (12dB and 16dB)
- Integrated on-chip programmable sound subcarrier oscillator (4.5, 5.5, 6.0 and 6.5 MHz) No external varicaps
- On-chip video test pattern generator with sound test signal (1kHz)
- Low-power programmable modulator standby mode
- Transient output inhibit during PLL Lock-up at power-ON
- Logical Output Port controlled by bus
- ESD protection, minimum 4 kV

### 2 Comparing the MC44BS374CA to the MC44BC374C

Compared to the MC44BC374C devices, the MC44BS374CA has the following improvements:

- Higher output level (82 dBuV versus 74.5 dBuV)
- Higher Video signal to noise (+ 3 dB)
- I<sup>2</sup>C-bus 3.3V compatible
- Lower power consumption in normal and standby modes (-2 mA)
- The device can be powered down without holding the  $I^2C$  lines down.
- TB1 bit is no more available (limited compatibility with MC44355 devices no more available)
- Switch between the two integrated VCO's controlled directly by the frequency divider (@ 700 MHz)

### 3 Pin Descriptions

| Pin number | Pin Name | Description                               |
|------------|----------|-------------------------------------------|
| 1          | SCL      | I2C clock                                 |
| 2          | SDA      | I2C data                                  |
| 3          | LOP      | Logical output port controlled by I2C bus |
| 4          | XTAL     | Crystal                                   |
| 5          | GND      | Ground                                    |
| 6          | PREEMP   | Pre-emphasis capacitor                    |
| 7          | AUDIO    | Audio input                               |
| 8          | SPLFLT   | Sound PLL loop filter                     |
| 9          | VIDEO    | Video input                               |
| 10         | VCCA     | Main analog supply voltage                |
| 11         | GND      | Analog ground                             |
| 12         | TVOUT    | TV output signal                          |
| 13         | TVOVCC   | TV output stage supply voltage            |
| 14         | PLLFLT   | RF PLL loop filter                        |
| 15         | VCCD     | Digital supply voltage                    |
| 16         | GNDD     | Digital ground                            |

Table 1. Package Pin Descriptions

### 4 MC44BS374CA Functional Overview

Figure 2 shows a simplified block diagram of the MC44BS374CA device.

The MC44BS374CA device has three main sections:

- 1. A high speed  $I^2C$ -compatible bus section
- 2. A PLL section to synthesize the UHF/VHF output channel frequency (from an integrated UHF oscillator, divided for VHF output)
- 3. A modulator section, which accepts audio and video inputs, then uses them to modulate the UHF/VHF carrier

An on-chip video test pattern generator with an audio test signal is included.

The MC44BS374CA operates as a multi-standard modulator and can handle the following systems using the same external circuit components: B/G, I, D/K, M/N.

High frequency BiCMOS technology allows integration of the UHF tank circuit and certain filtering functions.

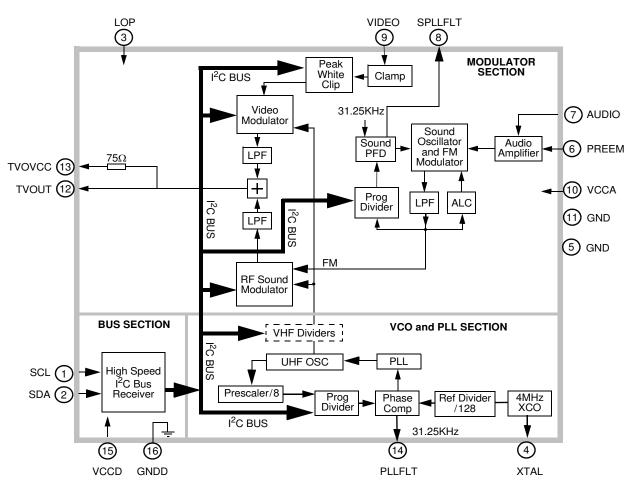



Figure 2. MC44BS374CA Simplified Block Diagram



### 5 Maximum Ratings

| Sym     | Parameter                             |     | Unit |
|---------|---------------------------------------|-----|------|
| Vcc     | Supply voltage                        | 6   | V    |
| Tamin   | Minimum operating ambient temperature | 0   | °C   |
| Tamax   | Maximum operating ambient temperature | +70 | °C   |
| Tstgmin | Minimum storage temperature           | -65 | °C   |
| Tstgmax | Maximum storage temperature           | 150 | °C   |
| Tj      | Junction Temperature                  | 150 | °C   |

This device contains protection circuitry to guard against damage due to high static voltage or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation, input and output voltages should be constrained to the ranges indicated in the Recommended Operating Conditions.

**Note:** Maximum ratings are those values beyond which damage to the device may occur. For functional operation, values should be restricted to the Recommended Operating Condition.

Note: Meets Moisture Sensitivity Level 1, no dry pack required.

### 6 Thermal Ratings

| Sym               | Parameter                                   | Value | Unit |
|-------------------|---------------------------------------------|-------|------|
| R <sub>thja</sub> | Thermal resistance from Junction to Ambient | 102   | °C/W |

### 7 Electrostatic Discharge

Electrostatic Discharge (ESD) tests are done on all pin

| Sym | Parameter                                           | Min  | Unit |
|-----|-----------------------------------------------------|------|------|
| ESD | MM (Machine Model) - MIL STD 883C method 3015-7     | 400  | V    |
| ESD | HBM (Human Body Model) - MIL STD 883C method 3015-7 | 4000 | V    |

### 8 Electrical Characteristics

- A = 100% tested
- B = 100% Correlation tested
- C = Characterized on samples
- D = Design parameter

See Characterization conditions section for each C type parameter.

### 8.1 Operating Conditions

Unless otherwise stated:  $V_{cc}$ =5.0V, Ambient Temperture=25°C, Video Input  $1V_{p-p}$ , 10-step grayscale. RF output into 75 Ohm load.

#### NOTE:

Specifications only valid for envelope demodulation.

| Parameter                                                             | Min      | Тур      | Max       | Unit     | Notes                                | Туре   |
|-----------------------------------------------------------------------|----------|----------|-----------|----------|--------------------------------------|--------|
| Operating supply voltage range                                        | 4.5      | 5.0      | 5.5       | V        |                                      | В      |
| Total supply current                                                  | 42       | 50       | 58        | mA       | All sections active                  | А      |
| Total standby mode supply current                                     | 3        | 5        | 7         | mA       | OSC, SO, ATT=1<br>Bus Section active | А      |
| Test pattern sync pulse width                                         | 3        | 4.7      | 6.5       | μS       |                                      | В      |
| Sound comparator charge pump current<br>During locking<br>When locked | 7<br>0.7 | 10<br>1  | 12<br>1.5 | μA<br>μA |                                      | A<br>A |
| RF comparator charge pump current                                     | 60       | 100      | 150       | μA       |                                      | А      |
| Crystal oscillator stability-negative resistance                      | 1        | -        | -         | KΩ       |                                      | D      |
| Logic Output Port<br>Saturation voltage at I=2mA<br>Leakage current   | -        | 160<br>- | 300<br>1  | mV<br>μA |                                      | A<br>A |

 Table 2.
 Operating Conditions

## 9 I<sup>2</sup>C Bit Mapping

NP

| WRITE           | EMODE Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 A                                    |                                                               |       |       |       | ACK   |       |       |       |     |
|-----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----|
| CA-CHIP ADDR    | ESS 1 1 0 0 1 0 1 0                                                                        |                                                               |       |       | ACK   |       |       |       |       |     |
| C1-High Order B | Bits 1 0 SO LOP PS X3 X2 0 A0                                                              |                                                               |       |       | ACK   |       |       |       |       |     |
| C0-Low Order B  | its                                                                                        | PWC OSC ATT SFD1 SFD0 0 X5 X4 A                               |       |       |       | ACK   |       |       |       |     |
| FM-High Order E | Bits                                                                                       | 0                                                             | TPEN  | N11   | N10   | N9    | N8    | N7    | N6    | ACK |
| FL-Low Order Bi | ts                                                                                         | N5                                                            | N4    | N3    | N2    | N1    | N0    | X1    | X0    | ACK |
| READ            | MODE                                                                                       | Bit 7                                                         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | ACK |
| CHIP ADDRESS    | 6                                                                                          | 1                                                             | 1     | 0     | 0     | 1     | 0     | 1     | 1     | ACK |
| R-Status Byte   |                                                                                            | -                                                             | -     | -     | -     | -     | Y2    | Y1    | OOR   | -   |
| Bit Name        | Description                                                                                |                                                               |       |       |       |       |       |       |       |     |
| PWC             | Peak White Clip                                                                            | enable/di                                                     | sable |       |       |       |       |       |       |     |
| OSC             | UHF oscillator Of                                                                          | UHF oscillator ON/OFF                                         |       |       |       |       |       |       |       |     |
| ATT             | Modulator output                                                                           | Modulator output attenuated-sound and video modulators ON/OFF |       |       |       |       |       |       |       |     |
| SFD0, 1         | Sound subcarrier                                                                           | Sound subcarrier frequency control bits                       |       |       |       |       |       |       |       |     |
| SO              | Sound Oscillator                                                                           | Sound Oscillator ON/OFF                                       |       |       |       |       |       |       |       |     |
| LOP             | Logic Output Por                                                                           |                                                               |       |       |       |       |       |       |       |     |
| PS              | Picture-to-sound                                                                           | Picture-to-sound carrier ratio                                |       |       |       |       |       |       |       |     |
| TPEN            | Test pattern enab                                                                          | Test pattern enable-picture and sound                         |       |       |       |       |       |       |       |     |
| X5X0            | Test mode bits-All bits are 0 for normal operation (see Test Mode tables, page 6 & page 7) |                                                               |       |       |       |       |       |       |       |     |
| N0N11           | UHF frequency programming bits, in steps of 250kHz                                         |                                                               |       |       |       |       |       |       |       |     |
| OOR             | RF oscillator out-of-frequency range information                                           |                                                               |       |       |       |       |       |       |       |     |
| Y1, Y2          | RF oscillator oper                                                                         | RF oscillator operating range information                     |       |       |       |       |       |       |       |     |



## 10 I<sup>2</sup>C Programming

#### Sound

| SFD1 | SFD0                                                                    | Sound Subcarrier Freq (MHz) |  |  |
|------|-------------------------------------------------------------------------|-----------------------------|--|--|
| 0    | 0                                                                       | 4.5                         |  |  |
| 0    | 1                                                                       | 5.5                         |  |  |
| 1    | 0                                                                       | 6.0                         |  |  |
| 1    | 1                                                                       | 6.5                         |  |  |
| PS   | Picture-to-Sound Ratio (dB)                                             |                             |  |  |
| 0    |                                                                         | 12                          |  |  |
| 1    |                                                                         | 16                          |  |  |
| SO   |                                                                         | Sound Oscillator            |  |  |
| 0    | Sound oscillator ON (Normal mode)                                       |                             |  |  |
| 1    | Sound oscillation disabled (oscillator and PLL section bias turned OFF) |                             |  |  |

#### Video

| PWC              | Peak White Clip                                                   |
|------------------|-------------------------------------------------------------------|
| 0                | Peak White Clip ON (System B/G)                                   |
| 1                | Peak White Clip OFF (System L)                                    |
|                  |                                                                   |
| TPEN             | Test Pattern Signal                                               |
| <b>TPEN</b><br>0 | Test Pattern Signal<br>Test pattern signal OFF (normal operation) |

#### UHF

| OSC | UHF Oscillator                                                        |
|-----|-----------------------------------------------------------------------|
| 0   | Normal operation                                                      |
| 1   | UHF oscillator disabled (oscillator and PLL sections bias turned OFF) |

| ATT | Modulator Output Attenuation                                                       |
|-----|------------------------------------------------------------------------------------|
|     | Normal operation                                                                   |
| 1   | Modulator output attenuation (sound and video modulators sections bias turned OFF. |

#### Standby Mode

| OSC | SO | ATT | Combination of 3-bits  |
|-----|----|-----|------------------------|
| 1   | 1  | 1   | Modulator standby mode |

#### Logic Output Port

| LOP | Description             |  |  |
|-----|-------------------------|--|--|
| 0   | Pin 3 is low voltage    |  |  |
| 1   | Pin 3 is high impedance |  |  |

#### WRITE MODE: Test Mode 1 and VHF Range

| X2 | X1 | X0 | State | Description                                                                                                                                                              |
|----|----|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | 0  | 0  | 1.a   | Normal operation                                                                                                                                                         |
| 0  | 0  | 1  | 1.b   | RF frequency divided for low frequency testing or VHF range: RF/2                                                                                                        |
| 0  | 1  | 0  | 1.c   | RF/4                                                                                                                                                                     |
| 0  | 1  | 1  | 1.d   | RF/8                                                                                                                                                                     |
| 1  | 0  | 0  | 1.e   | RF/16                                                                                                                                                                    |
| 1  | 0  | 1  | 1.f   | DC drive applied to modulators: Non-inverted video at TVOUT                                                                                                              |
| 1  | 1  | 0  | 1.g   | DC drive applied to modulators: Inverted video at TVOUT                                                                                                                  |
| 1  | 1  | 1  | 1.h   | Transient output inhibit disabled (ie speed up mode)<br>During this speed-up test mode, ATT=0 forces sound current source to $1\mu$ A, and ATT=1 forces it to $10\mu$ A. |

#### WRITE MODE: Test Mode 2

| X5 | X4 | X3 | State | Description                                                                                                                                                |
|----|----|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | 0  | 0  | 2.a   | Normal operation                                                                                                                                           |
| 0  | 0  | 1  | 2.b   | Test pattern generator DC verification (Test pattern DC test mode available)                                                                               |
| 0  | 1  | 0  | 2.c   | Program divider test (UHF program divider on PLLFILT pin and sound program divider on SPLLFIL pin)                                                         |
| 0  | 1  | 1  | 2.d   | Reference divider test (UHF reference divider on PLLFILT pin)                                                                                              |
| 1  | 0  | 0  | 2.e   | UHF phase comparison, upper source on PLLFILT pin Sound phase comparison $10 \mu A$ upper source on SPLLFIL (Only valid during transient output inhibit.)  |
| 1  | 0  | 1  | 2.f   | UHF phase comparison, lower source on PLLFILT pin<br>Sound phase comparison 10 µA lower source on SPLLFIL<br>(Only valid during transient output inhibit.) |
| 1  | 1  | 0  | 2.g   | Sound phase comparison 1 $\mu A$ upper source on SPLLFIL (Not valid during transient output inhibit.)                                                      |
| 1  | 1  | 1  | 2.h   | Sound phase comparison 1 $\mu A$ lower source on SPLLFIL (Not valid during transient output inhibit.)                                                      |

#### NOTE:

Test modes 1 and 2 are intended for manufacturing test purposes only and cannot be used for normal applications, except for VHF range (states 1.b to 1.e).

#### READ MODE

| OOR | Description                                               |
|-----|-----------------------------------------------------------|
| 0   | Normal operation, VCO in range                            |
| 1   | VCO out of range                                          |
| ¥1  | Description                                               |
| 0   | VCO out of range, frequency too low, only valid if OOR=1  |
| 1   | VCO out of range, frequency too high, only valid if OOR=1 |
| Y2  | Description                                               |
| 0   | High VCO is active                                        |
| 1   | Low VCO is active                                         |

### **11 Modulator High Frequency Characteristics**

Unless otherwise stated:  $V_{cc}$ =5.0V, Ambient Temperture=25°C, Video Input  $1V_{p-p}$ , 10-step grayscale. RF inputs/outputs into 75 Ohm load.

#### NOTE:

Specifications only valid for envelope demodulation.

#### Table 3. High Frequency Characteristics

| Parameter                                                                                                                                                                               | Test Conditions                                                                                     | Min | Тур      | Max      | Unit | Туре |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|----------|----------|------|------|
| TVOUT output level                                                                                                                                                                      | Output signal from modulator section<br>See Figure 3. See Note 2                                    | 79  | 82       | 85       | dBμV | В    |
| UHF oscillator frequency                                                                                                                                                                |                                                                                                     | 460 | -        | 880      | MHz  | А    |
| VHF range                                                                                                                                                                               | From UHF oscillator internally divided                                                              | 45  | -        | 460      | MHz  | В    |
| TVOUT output attenuation                                                                                                                                                                | During transient output inhibit, or<br>when ATT bit is set to 1. See<br>Figure 3.<br>See Note 2     | 65  | 75       | -        | dBc  | В    |
| Sound subcarrier harmonics<br>(Fp+n*Fs)                                                                                                                                                 | Reference picture carrier. See Note 2                                                               | 50  | 63       | -        | dBc  | С    |
| Second harmonic of chroma subcarrier                                                                                                                                                    | Using red EBU bar. See Note 2                                                                       | 45  | 70       | -        | dBc  | С    |
| Chroma/Sound intermodulation:<br>Fp+ (Fsnd - Fchr)                                                                                                                                      | Using red EBU bar.See Note 2                                                                        | 65  | 82       | -        | dBc  | С    |
| Fo (picture carrier) harmonics                                                                                                                                                          | 2nd harmonic: CH21<br>3rd harmonic: CH21<br>Other channels: See Figure 3.<br>See NOTE 1. See Note 2 | -   | 38<br>58 | 50<br>70 | dBµV | С    |
| Out band (picture carrier) spurious                                                                                                                                                     | 1/2*Fo - 1/4*Fo - 3/2*Fo - 3/4*Fo<br>From 40MHz to 1GHz. See Note 2                                 | -   | -        | 10       | dBμV | С    |
| In band spurious (Fo@5MHz)                                                                                                                                                              | No video sound modulation.See Note 2                                                                | 65  | 75       | -        | dBc  | С    |
| Note:       1: Picture carrier harmonics are highly dependant on PCB layout and decoupling capacitors.         Note:       2: See "Characterization Measurement Conditions" on page 14. |                                                                                                     |     |          |          |      |      |

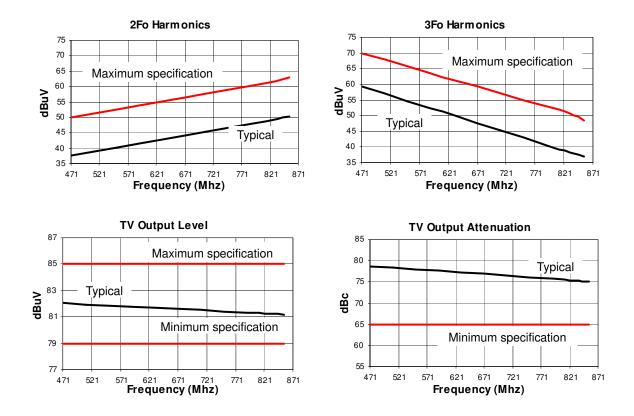



Figure 3. Typical High Frequency Performance

### **12 Video Characteristics**

Unless otherwise stated:  $V_{cc}$ =5.0V, Ambient Temperature=25°C, Video Input  $1V_{p-p}$ , 10-step grayscale. RF output into 75 Ohm load.

#### NOTE:

Specifications only valid for envelope demodulation.

| Parameter             | Test Conditions                                          | Min  | Тур  | Max  | Unit  | Туре |
|-----------------------|----------------------------------------------------------|------|------|------|-------|------|
| Video bandwidth       | Reference 0dB at 100kHz,<br>measured at 5MHz. See Note 2 | -1.5 | -0.8 | -    | dB    | С    |
| Video input level     | 750hm load                                               | -    | -    | 1.5  | Vcvbs | D    |
| Video input current   |                                                          | -    | 0.2  | 1    | μA    | Α    |
| Video input impedance |                                                          | 500  | -    | -    | KΩ    | А    |
| Peak White Clip       | Video Modulation depth for video=1.4V <sub>CVBS</sub>    | 90.5 | 94   | 97.5 | %     | В    |



| Parameter                                                          | Test Conditions                                                               |    | Тур         | Мах         | Unit | Туре |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------|----|-------------|-------------|------|------|
|                                                                    | No sound modulation,100% white video                                          |    |             |             |      |      |
| Video S/N                                                          | Using CCIR Rec.567 weighting filter<br>See Figure 4. See Note 2               |    | 56          | -           | dB   | С    |
|                                                                    | Unweighted. See Note 2                                                        | 48 | 53          | -           |      | С    |
| Differential Phase                                                 | CCIR Test Line 330, worst case from<br>the first 4 steps out of 5. See Note 2 |    | -           | 5           | deg  | С    |
| Differential Gain                                                  | CCIR Test Line 330, worst case from<br>the first 4 steps out of 5. See Note 2 |    | -           | 5           | %    | С    |
| Luma/Sync ratio                                                    | Input ratio 7.0:3.0                                                           |    | 7.0/<br>3.0 | 7.2/<br>2.8 | -    | В    |
| Video modulation depth                                             | ulation depth See Figure 4. See Note 2                                        |    | 82          | 88          | %    | В    |
| Note: 2: See "Characterization Measurement Conditions" on page 14. |                                                                               |    |             |             |      |      |

 Table 4.
 Video Performance Characteristics



Figure 4. Typical Video Performance



### **13 Audio Characteristics**

Unless otherwise stated:  $V_{cc}$ =5.0V, Ambient Temperture=25°C, Video Input  $1V_{p-p}$ , 10-step grayscale. RF inputs/outputs into 75 Ohm load.

#### NOTE:

Specifications only valid for envelope demodulation.

#### Table 5. Audio Performance Characteristics

| Parameter                                                          | Test Conditions                                                                                                                    | Min     | Тур      | Max      | Unit | Туре |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|------|------|
| Picture-to-Sound ratio                                             | PS bit set to 0<br>PS bit set to 1                                                                                                 |         | 12<br>16 | 15<br>19 | dB   | В    |
|                                                                    | Using specific pre-emphasis circuit,<br>audio input level=205mVrms-audio frequ                                                     | uency=1 | kHz      |          |      |      |
| Audio modulation depth                                             | FM modulation: Fs=5.5, 6 or 6.5MHz<br>100% modulation=+/-50kHz FM<br>deviation                                                     | 76      | 80       | 84       | %    | В    |
|                                                                    | FM modulation: NTSC Fs=4.5MHz<br>100% modulation=+/-25kHz FM<br>deviation                                                          | 76      | 80       | 84       | %    | В    |
| Audio input resistance                                             |                                                                                                                                    | 45      | 53       | 61       | KΩ   | А    |
| Audio Frequency<br>response                                        | Reference 0dB at 1kHz,<br>using specified pre-emphasis circuit,<br>measure from 50Hz to 15kHz<br>Depends on loop filter components | -2.0    | -        | +2.0     | dB   | С    |
| Audio Distortion FM (THD only)                                     | at 1kHz, 100% modulation (±50kHz)<br>No video                                                                                      | -       | 0.2      | 0.8      | %    | С    |
| Audio S/N with Sync Buzz<br>FM                                     | Ref 1Khz, 50% modulation (+/-25Khz)<br>EBU color bars Video signal,<br>using CCIR 468.2 weighting filter                           | 50      | 54       | -        | dB   | С    |
| Note: 2: See "Characterization Measurement Conditions" on page 14. |                                                                                                                                    |         |          |          |      |      |

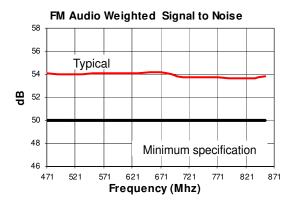
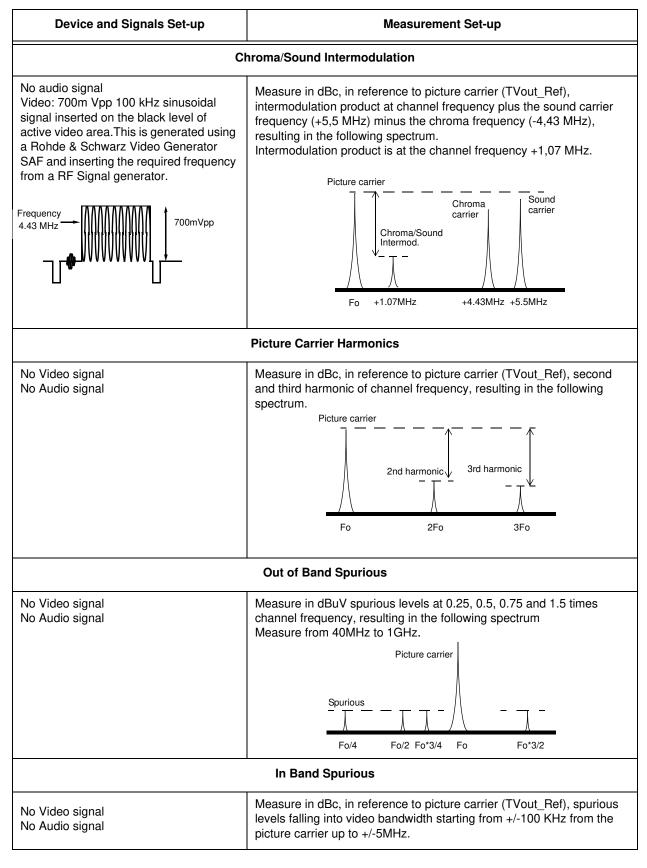



Figure 5. Typical Audio Performance

### 14 Characterization Measurement Conditions

The following list shows the MC44BS374CA default configuration unless otherwise specified.


- Peak White Clip enabled
- UHF oscillator ON
- Sound and video modulators ON
- Sound subcarrier frequency = 5.5 MHz
- Sound Oscillator ON
- Logic Output Port LOW
- Picture-to-sound carrier ratio = 12 dB
- Test pattern disabled
- All test mode bits are '0'
- Frequency from channel 21 to 69

RF Inputs / Output into 750hm Load using a 75 to 50 ohm transformation. Video Input 1Vpp. Audio pre-emphasis circuit enabled.



#### **Device and Signals Set-up Measurement Set-up TVOUT** output level Measured picture carrier in dBuV with the HP8596E Spectrum Analyzer using a 75 to 50 ohm transformation, all cables losses and Video: 10 steps grey scale transformation pads having been calibrated. No audio Measurement used as a reference for other tests: TVout Ref **TVOUT** output attenuation Measure in dBc picture carrier at ATT=1 with reference to picture ATT" bit = 1 carrier at ATT=0 No Video signal No Audio signal Sound Subcarrier Harmonics Video: 10 steps grey scale Measure in dBc second and third sound harmonics levels in reference No Audio signal to picture carrier (TVout Ref). Picture carrier Sound Icarrier Sound 2nd harm Sound 3rd harm +11MHz +16.5MHz Fo +5 5MHz Second Harmonics of Chroma subcarrier No audio Measure in dBc, in reference to picture carrier (TVout Ref), second Video: a 700m Vpp 100 kHz sinusoidal harmonic of chroma at channel frequency plus 2 times chroma signal is inserted on the black level of frequency, resulting in the following spectrum. active video area. Picture carrier Frequency 700mVpkpk 100Khz Sound Chroma carrier carrier Chroma 2nd Harmonic Fo +4.43MHz +5.5MHz +8.86MHz

#### Table 6. Measurement Conditions



#### Table 6. Measurement Conditions



| Device and Signals Set-up                                                                                                                                                                                                                                                                               | Measurement Set-up                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Video Bandwidth                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| No audio<br>Video: 600mVpp sinusoidal signal<br>inserted on the black level of active video<br>area.                                                                                                                                                                                                    | The Video signal is demodulated on the spectrum analyzer, and th<br>peak level of the 100KHz signal is measured as a reference. The<br>frequency is then swept from 100KHz to 5MHz, and then the differe<br>in dB from the 100KHz reference level is measured.                      |  |  |  |  |  |  |
| W                                                                                                                                                                                                                                                                                                       | eighted Video Signal to Noise                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Video: 100% White video signal - 1Vpk-<br>pk.<br>No Audio signal<br>This is measured using a Rohde &<br>Schwarz AMFS UHF Demodulator in B/G<br>(using a CCIR Rec. 567 weighting<br>network, 100kHz to 5MHz band with<br>sound trap and envelope detection, and a<br>Rohde & Schwarz UAF Video Analyzer. | The Video Analyzer measures the ratio between the amplitude of the active area of the video signal (700mV) and the noise level in Vrms on a video black level which is show below.<br>VideoS/N is calculated as 20 x log(700 /N) in dB.                                             |  |  |  |  |  |  |
| Unv                                                                                                                                                                                                                                                                                                     | weighted Video Signal to Noise                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Same as above with CCIR filter disabled.                                                                                                                                                                                                                                                                | Same as above.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | Video Differential Phase                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Video: 5 step Grey Scale- 1Vpk-pk.<br>No Audio signal<br>This is measured using a Rohde &<br>Schwarz AMFS UHF Demodulator in B/G<br>(using a CCIR Rec. 567 weighting<br>network, 100kHz to 5MHz band with<br>sound trap, and envelope detection, and<br>a Rohde & Schwarz UAF Video Analyzer.           | On line CCIR 330, the video analyzer DP measure consists of calculating the difference of the Chroma phase at the black level and the different chroma subcarrier phase angles at each step of the greyscale. The largest positive or negative difference indicates the distortion. |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | DIFF PHASE = $\frac{\text{the largest positive or negative difference}}{\text{the phase at position 0}} * 100\%$                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | The video analyzer method takes the worst step from the first 4 steps.                                                                                                                                                                                                              |  |  |  |  |  |  |

#### Table 6. Measurement Conditions

| Device and Signals Set-up                                                                                                                                                                                                                                                                    | Measurement Set-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Video Differential Gain                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Video: 5 step Grey Scale- 1Vpk-pk.<br>No Audio signal<br>This is measured using a Rohde &<br>Schwarz AMFS UHF Demodulator in B/G<br>(using a CCIR Rec. 567 weighting<br>network, 100kHz to 5MHz band with<br>sound trap and envelope detection, and a<br>Rohde & Schwarz UAF Video Analyzer. | On line CCIR 330 shown below, the video analyzer DG measure<br>consists of calculating the difference of the Chroma amplitude at the<br>black level and the different amplitudes at each step of the greyscale.<br>The largest positive or negative difference indicates the distortion.<br>$\qquad \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              | DIFF GAIN = $\frac{\text{the largest positive or negative difference}}{\text{the amplitude at position 0}} * 100\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              | The video analyzer method takes the worst step from the first 4 steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              | Video Modulation Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| No Audio signal<br>Video: 10 step grey scale                                                                                                                                                                                                                                                 | This is measured using a HP8596E Spectrum Analyzer with a TV<br>Trigger option, allowing demodulation and triggering on any specified<br>TV Line. The analyzer is centred on the maximum peak of the Video<br>signal and reduced to zero Hertz span in Linear mode to demodulate<br>the Video carrier.<br>$\int_{a} \int_{a} \int_{$ |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              | Picture to Sound ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| No Video signal<br>No Audio Signal<br>PS" bit set to 0 and 1                                                                                                                                                                                                                                 | Measure in dBc sound carrier in reference to picture carrier<br>(TVout_Ref) for PS" bit=0 (PS=12dB typical) and for PS" bit=1<br>(PS=16dB),<br>Picture carrier<br>-<br>Sound carrier<br>Fo +5.5Mhz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |

#### Table 6. Measurement Conditions



| Device and Signals Set-up                                                                                                                                                                                                                                                                                        | Measurement Set-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Audio Modulation Depth - FM Modulation                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Video Black Level<br>Audio signal: 1Khz, 205mVrms.<br>This is measured using a Rohde &<br>Schwarz AMFS Demodulator in B/G and<br>a HP8903A Audio Analyzer at 1kHz                                                                                                                                                | The audio signal 205mV at 1kHz is supplied by the Audio Analyzer,<br>and the FM demodulated signal deviation is indicated on the<br>Demodulator in Khz peak.<br>This value is then converted in% of FM deviation, based on specified<br>standards.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Audio Frequency response                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Video Black Level<br>Audio signal: 50Hz to 15KHz, 100mV <sub>rms</sub><br>This is measured using a Rohde &<br>Schwarz AMFS Demodulator in B/G and<br>a HP8903A.                                                                                                                                                  | The audio signal 1KHz 100mV <sub>rms</sub> is supplied by the Audio Analyzer,<br>demodulated by the Demodulator and the audio analyzer measures<br>the AC amplitude of this demodulated audio signal: this value is taken<br>as a reference (0dB).<br>The audio signal is then swept from 50Hz to 15KHz, and demodulated<br>AC amplitude is measured in dB relative to the 1KHz reference.<br>Audio pre-emphasis and de-emphasis circuits are engaged, all audio<br>analyzer filters are switched OFF.                                                                                                                                                           |  |  |  |  |  |  |  |
| Audio Distortion FM                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Audio: 1Khz, adjustable level<br>Video Black Level<br>This is measured using a Rohde &<br>Schwarz AMFS UHF Demodulator in B/G<br>and a HP8903A Audio Analyzer at 1kHz.<br>The output level of the Audio analyzer is<br>varied to obtain a deviation of 50kHz<br>indicated on the Demodulator.                    | The input arms detector of the Audio Analyzer converts the ac level<br>the combined signal + noise + distortion to dc. It then removes the<br>fundamental signal (1kHz) after having measured the frequency. The<br>output rms detector converts the residual noise + distortion to dc. Th<br>dc voltmeter measures both dc signals and calculates the ratio in% of<br>the two signals.<br>ADist = (Distorsion + Noise)/(Distorsion + Noise + Signal)                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Audio Signal to Noise                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Audio: 1Khz, adjustable level<br>Video: EBU Color Bars<br>This is measured using a Rohde &<br>Schwarz AMFS Demodulator in B/G and<br>a HP8903A Audio Analyzer at 1kHz. The<br>output level of the Audio analyzer is<br>varied to obtain a Modulation Deviation of<br>25kHz indicated on the AMFS<br>Demodulator. | The Audio Analyzer alternately turns ON and OFF it's internal audio source to make a measure of the Audio signal plus noise and then another measure of only the noise.<br>The measurement is made using the internal CCIR468-2 Filter of the Audio Analyzer together with the internal 30+/-2kHz (60dB/decade) Lowpass filters.<br>The AMFS demodulator uses a quasi-parallel demodulation as is the case in a normal TV set. In this mode the Nyquist filter is bypassed and the video carrier is used without added delay to effectuate intercarrier conversion. In this mode the phase noise information fully cancels out and the true S/N can be measured. |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                  | $ASN(dB) = 20 \times \log(Signal + Noise)/(Noise)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |

#### Table 6. Measurement Conditions

### 15 MC44BS374CA Modes of Operation

### 15.1 Power ON Settings

At power-ON, the MC44BS374CA is configured as follows:

|                                                                                                                                                                            |       |       |       |       | -     |       |       |       |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| WRITE MODE                                                                                                                                                                 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | ACK |
| C1-High Order Bits                                                                                                                                                         | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | ACK |
| C0-Low Order Bits                                                                                                                                                          | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | ACK |
| FM-High Order Bits                                                                                                                                                         | 0     | 0     | N11   | N10   | N9    | N8    | N7    | N6    | ACK |
| FL-Low Order Bits                                                                                                                                                          | N5    | N4    | N3    | N2    | N1    | N0    | 0     | 0     | ACK |
| Note:       N0 to N11 are set to have UHF oscillator on channel E36 (591.25MHz).         Note:       Peak White Clip is ON.         Note:       Sound frequency is 5.5MHz. |       |       |       |       |       |       |       |       |     |
| Note: Logic Output Port is low voltage.                                                                                                                                    |       |       |       |       |       |       |       |       |     |

Table 7. Power ON Settings

Note: Logic Output Port is low voltage

**Note:** Picture to sound ratio is 12dB.

### 15.2 Power Supply

The three device Vccs (pins 10, 13 and 15) must be applied at the same time to ensure all internal blocks are correctly biased. Do not bias any other pin before Vcc is applied to the MC44BS374CA.

When all Vccs are switched to 0V, SDA and SCL pins are high impedance.

### 15.3 Standby modes

During standby mode, the modulator is switched to low power consumption. That is, the sound oscillator, UHF oscillator, and the video and sound modulator section's bias are internally turned OFF. The  $I^2C$  bus section remains active.

The MC44BS374CA can be set to standby mode with a combination of 3 bits: OSC=1, SO=1 and ATT=1

### 15.4 Transient Output Inhibit

To minimize the risk of interference to other channels while the UHF PLL is acquiring a lock on the desired frequency, the Sound and Video modulators are turned OFF during a time out period for each of the following two cases:

- Power-ON from zero (i.e., all Vcc is switched from 0V to 5V).
- UHF oscillator power-ON from OFF state (i.e., OSC bit is switched from 1 to 0)

There is a time-out of 263ms until the output is enabled. This lets the UHF PLL settle to its programmed frequency. During the 263ms time-out, the sound PLL current source is set to  $10\mu$ A typical to speed up the locking time. After the 263ms time-out, the current source is switched to  $1\mu$ A. Use care when selecting loop filter components, to ensure the loop transient does not exceed this delay.



For test purposes, it is possible to disable the 263ms delay using Test Mode 1-State 1.h (this is called speed up mode).

### 15.5 UHF Oscillator-VHF range

The UHF oscillator is fully integrated and does not require any external components.

For low frequency testing or VHF range operation (test mode 1, states 1.b to 1.e), the UHF oscillator can be internally divided by: 2, 4, 8, or 16.

### 15.6 UHF PLL Section

The reference divider is a fixed divide-by-128, resulting in a reference frequency of 31.25 KHz with a 4.0 MHz crystal.

The prescaler is a fixed divide-by-8 and is permanently engaged.

The programmable divider division-ratio is controlled by the state of control bits N0 to N11. The divider-ratio N for a desired frequency F (in MHz) is given by:

$$N = \frac{F}{8} \times \frac{128}{4}$$

with:

 $N = 2048 \times N11 + 1024 \times N10 + \dots + 4 \times N2 + 2 \times N1 + N0$ 

#### NOTE:

Programming a division-ratio N=0 is not allowed.

### 15.7 Logic Output Port (LOP)

The LOP pin controls any logic function. The primary applications for the LOP are to control an external attenuator or an external switch, between the antenna input and TV output. A typical attenuator application with PIN diode is shown in Figure 6. The LOP pin switches the PIN attenuator depending on the signal strength of the Antenna Input. This reduces the risks of intermodulation in certain areas. The LOP can also be used as an OFF position bypass switch or for other logic functions in the application.

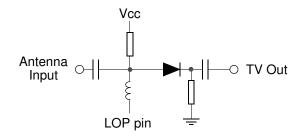



Figure 6. Typical Attenuator Application with Pin Diode

### 15.8 Video Section - Peak White Clip

The MC44BS374CA requires the following for proper video functionality:

- A composite video input with negative going sync pulses
- A nominal level of 1 Vpp

This signal is AC-coupled to the video input where the sync tip level is clamped.

The video signal is then passed to a Peak White Clip (PWC) circuit. The PWC circuit function soft-clips the top of the video waveform, if the sync tip amplitude to peak white clip goes too high. This avoids carrier over-modulation by the video. Clipping can be disabled by software.

### 15.9 Test Pattern Generator

The  $I^2C$  generates a simple test pattern, which can be switched under bus control to permit a TV receiver to easily tune to the modulator output. The pattern consists of two white vertical bars on a black background and a 976 Hz audio test signal.

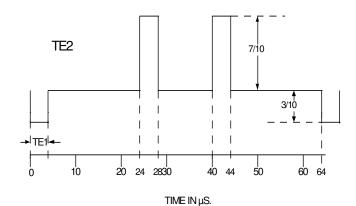



Figure 7. Test Pattern Generator



### 15.10 Sound Section

The oscillator is fully integrated and does not require any external components. An internal low-pass filter and matched structure provide very low harmonics levels.

The sound modulator system consists of an FM modulator incorporating the sound subcarrier oscillator. The audio input signal is AC-coupled into the amplifier, which then drives the modulator. The audio preemphasis circuit is a high-pass filter with an external capacitor and an internal resistor (106KOhms typical).

The recommended capacitor value for BG standard (with a time constant of 50µS) is 470 pF.

The recommended capacitor value for M/N standard (with a time constant of 75 µS) is 750 pF.

To increase the audio bandwidth at low frequencies it is possible to change the sound PLL loop filter. The recommended values are 220 nF and 22 nF. To increase the bandwidth at low frequencies (lower than 50 Hz), it is possible to use larger loop filter capacitor values. This will give a lower cut off frequency. In this case it is necessary to calcultate the new values of the loop filter according to the required Q factor and loop bandwidth. This is described in the following figure.

#### Sound PLL loop filter calculation



Loop filter equation :

$$\omega o = \sqrt{\frac{Kpd * Kosc}{N * C1}}$$
,  $Q = \frac{1}{R * C1 * \omega o}$ , with:

- ωo = 3dB cut off frequency
- Kpd = 1uA : Phase detector current
- Kosc = 5MHz/V : sound oscillator slope (in fact Kosc=40MHz/prescaler divider =8) This provides 5 MHz/V
- N = sound divider ratio
- Q = quality factor

C2, added to minimize glitches, is usually set to one tenth the size of C1. Example :

 $\mathsf{Fref=31.25KHz} \rightarrow \mathsf{N=5.5MHz} \ / \ \mathsf{31.25KHz} = 176$ 

Assuming C1= 220 nF, then  $\omega o$  = 360 rad, and fo= 57Hz

Q depends on the desired frequency response ; Choosing Q = 0.7 as a starting point, then R= 18 k $\Omega$ . The resistance acts directly on the factor quality and can be adjusted to create peaking on the low frequency range. It is recommended to adjust the value of R experimentally depending on the application and requirements. In the proposed application schematic a value of 15 18 k $\Omega$  has been chosen.

#### Figure 8. Sound PLL Loop Filter Calculation

### 16 High Speed I<sup>2</sup>C Compatible Bus

### 16.1 Specification Conditions

Unless otherwise specified, Vcc=5.0V, TA=25°C.

| Electrical Characteristics                                | Symbol               | Min | Тур | Max        | Unit     | Туре   |
|-----------------------------------------------------------|----------------------|-----|-----|------------|----------|--------|
| SDA / SCL output current at 0V                            |                      | -5  | -2  | -          | μA       | А      |
| SDA / SCL low input level                                 | V <sub>IL</sub>      | -   | -   | 1.5        | V        | В      |
| SDA / SCL high input level                                | V <sub>IH</sub>      | 2.1 | -   | -          | V        | В      |
| SDA/SCL input current for input level from 0.4V to 0.3Vcc |                      | -5  | -   | 5          | μA       | С      |
| SDA/SCL input level                                       |                      | 0   | -   | Vcc+0,3    | V        | D      |
| SDA/SCL capacitance                                       |                      | -   | -   | 10         | pF       | С      |
| ACK low output level (3 mA sinking current)               |                      | -   | -   | 0.3        | V        | С      |
| ACK low output level (9 mA sinking current)               |                      | -   | -   | 0.8        | V        | С      |
| Timing Characteristics                                    | Symbol               | Min | Тур | Max        | Unit     | Туре   |
| Bus clock frequency                                       |                      | 0   | -   | 800        | kHz      | С      |
| Bus free time between stop and start                      | T <sub>buf</sub>     | 200 | -   | -          | ns       | С      |
| Setup time for start condition                            | T <sub>su;sta</sub>  | 500 | -   | -          | ns       | С      |
| Hold time for start condition                             | T <sub>hd;sta</sub>  | 500 | -   | -          | ns       | С      |
| Data setup time                                           | T <sub>su;dat</sub>  | 0   | -   | -          | ns       | С      |
| Data hold time                                            | T <sub>hd;dat</sub>  | 0   | -   | -          | ns       | С      |
| Setup time for stop condition                             | T <sub>su;sto</sub>  | 500 | -   | -          | ns       | С      |
| Hold time for stop condition                              | T <sub>hd;sto</sub>  | 500 | -   | -          | ns       | С      |
| Acknowledge propagation delay                             | T <sub>ack;low</sub> | -   | -   | 300        | ns       | С      |
| SDA fall time at 3ma sink I and 130pF load                |                      | -   | -   | 50         | ns       | С      |
| SDA fall time at 3ma sink I and 400pF load                |                      | -   | -   | 80         | ns       | С      |
| SDA rise time<br>SCL fall/rise time                       |                      | -   | -   | 300<br>300 | ns<br>ns | C<br>C |
| Pulse width of spikes suppressed by the input filter      |                      | -   | -   | 50         | ns       | С      |

### 16.2 Timing Definitions

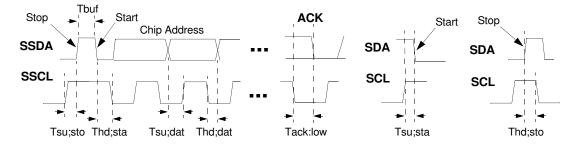



Figure 9. SSDA/SSCL Timing



### 16.3 Level Definitions

SDA/SCL high and low levels are designed to be compatible with 0-5V and 0-3.3V SDA / SCL signals.

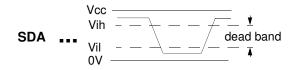



Figure 10. SDA/SCL Levels

### **16.4 High Speed I<sup>2</sup>C Compatible Bus Format**

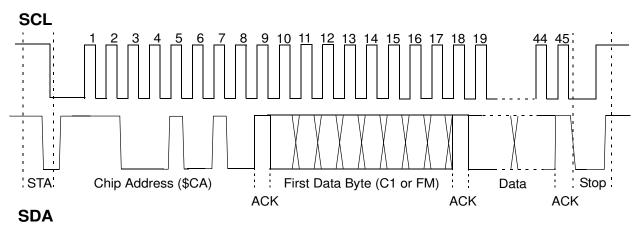



Figure 11. I<sup>2</sup>C Bus Timing

### 16.5 I<sup>2</sup>C Write Mode Format and Bus Receiver

The bus receiver operates the  $I^2C$  compatible data format. The chip address ( $I^2C$  bus) is as follows.

#### Table 8. Chip Address (I<sup>2</sup>C Bus)

1 1 0 0 1 0 1 0 (ACK) = \$CA (hex) in write mode

In write mode, each ninth data bit (bits 9, 18, 27, 36, and 45) is an acknowledge bit (ACK) during which the MCU sends a logic 1 and the Modulator circuit answers on the data line by pulling it low. Besides the chip address, the circuit needs two or four data bytes for operation. The following sequences of data bytes are the permitted incoming information:

| Example 1 | STA | CA | C1 | C0 | STO |    |     |
|-----------|-----|----|----|----|-----|----|-----|
| Example 2 | STA | CA | FM | FL | STO |    |     |
| Example 3 | STA | CA | C1 | C0 | FM  | FL | STO |
| Example 4 | STA | CA | FM | FL | C1  | C0 | STO |
| Note:     |     |    |    |    |     |    | •   |

Table 9. Permitted Data Bytes (Incoming Information)