## imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





# 56F8367/56F8167

Data Sheet

Preliminary Technical Data

56F8300 16-bit Digital Signal Controllers

MC56F8367 Rev. 9 11/2009



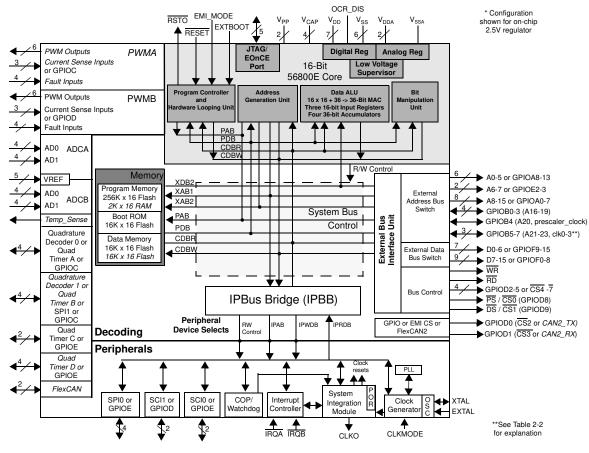
freescale.com



#### **Document Revision History**

| Version History | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Rev 0           | Pre-release, Alpha customers only                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Rev 1.0         | Initial Public Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Rev 2.0         | Added output voltage maximum value and note to clarify in <b>Table 10-1</b> .; also removed overall life expectancy note, since life expectancy is dependent on customer usage and must be determined by reliability engineering. Clarified value and unit measure for Maximum allowed P <sub>D</sub> in <b>Table 10-3</b> . Corrected note about average value for Flash Data Retention in <b>Table 10-4</b> . Added new RoHS-compliant orderable part numbers in <b>Table 13-1</b> . |  |  |  |  |  |
| Rev 3.0         | Added 160MAPBGA information, TA equation updated in Table 10-4 and additional minor edits throughout data sheet                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Rev 4.0         | Deleted formula for Max Ambient Operating Temperature (Automotive) and Max Ambient<br>Operating Temperature (Industrial) and corrected Flash Endurance to 10,000 in<br><b>Table 10-4</b> . Added RoHS-compliance and "pb-free" language to back cover.                                                                                                                                                                                                                                 |  |  |  |  |  |
| Rev 5.0         | Correcting MBGA pin assignments in Table 2-2 for MOSI0 and MISO0                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Rev 6.0         | Added information/corrected state during reset in Table 2-2. Clarified external reference crystal frequency for PLL in Table 10-14 by increasing maximum value to 8.4MHz.                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Rev 7.0         | Corrected CLKO and HOME1 labels in Figure 11-2 and Table 11-2; replaced "Tri-stated" with an explanation in State During Reset column in Table 2-2.                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Rev. 8          | Added the following note to the description of the TMS signal in Table 2-2:                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                 | <b>Note:</b> Always tie the TMS pin to V <sub>DD</sub> through a 2.2K resistor.                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                 | <ul> <li>Added the following note to the description of the TRST signal in Table 2-2:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                 | <b>Note:</b> For normal operation, connect $\overline{\text{TRST}}$ directly to $V_{\text{SS}}$ . If the design is to be used in a debugging environment, $\overline{\text{TRST}}$ may be tied to $V_{\text{SS}}$ through a 1K resistor.                                                                                                                                                                                                                                               |  |  |  |  |  |
| Rev. 9          | <ul> <li>Add Figure 10-1 showing current voltage characteristics.</li> <li>In Table 10-24, correct interpretation of Calibration Factors to be viewed as worst case factors.</li> </ul>                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

Please see http://www.freescale.com for the most current data sheet revision.




## 56F8367/56F8167 General Description

Note: Features in italics are NOT available in the 56F8167 device.

- Up to 60 MIPS at 60MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- Access up to 4MB of off-chip program and 32MB of data memory
- Chip Select Logic for glueless interface to ROM and SRAM
- 512KB of Program Flash
- 4KB of Program RAM
- 32KB of Data Flash
- 32KB of Data RAM
- 32KB Boot Flash
- Up to two 6-channel PWM modules
- Four 4-channel, 12-bit ADCs

- Temperature Sensor
- Up to two Quadrature Decoders
- Optional on-chip regulator
- Up to two FlexCAN modules
- Two Serial Communication Interfaces (SCIs)
- Up to two Serial Peripheral Interfaces (SPIs)
- Up to four general-purpose Quad Timers
- Computer Operating Properly (COP) / Watchdog
- JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, real-time debugging
- Up to 76 GPIO lines
- 160-pin LQFP Package and 160 MAPBGA



56F8367/56F8167 Block Diagram



## **Table of Contents**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1.1. 56F8367/56F8167 Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 1.2. Device Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 1.3. Award-Winning Development Environment 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 1.4. Architecture Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 1.5. Product Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 1.6. Data Sheet Conventions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| Part 2: Signal/Connection Descriptions 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 |
| 2.1. Introduction 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 2.2. Signal Pins 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| Part 3: On-Chip Clock Synthesis (OCCS) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 |
| 3.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 3.2. External Clock Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 3.3. Registers 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| Part 4: Memory Operating Modes (MEM) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 |
| 4.1. Introduction 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 4.2. Program Map 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 4.3. Interrupt Vector Table 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 4.4. Data Map 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| 4.5. Flash Memory Map 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 4.6. EOnCE Memory Map 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 4.7. Peripheral Memory Mapped Registers 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 4.8. Factory Programmed Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Devit 5: Interview Controller (ITCN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 |
| Part 5: Interrupt Controller (ITCN)8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
| 5.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 5.2. Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 5.3. Functional Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 5.4. Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 5.5. Operating Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 5.5. Operating Modes835.6. Register Descriptions84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 5.5. Operating Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |
| 5.5. Operating Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM) .11       .11         6.1. Overview       111                                                                                                                                                                                                                                                                                                                                                                                               | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM) .11         6.1. Overview       111         6.2. Features       111                                                                                                                                                                                                                                                                                                                                                                         | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM)       .11*         6.1. Overview       111         6.2. Features       111         6.3. Operating Modes       112                                                                                                                                                                                                                                                                                                                           | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM)       .11         6.1. Overview       111         6.2. Features       111         6.3. Operating Modes.       112         6.4. Operating Mode Register       112                                                                                                                                                                                                                                                                            | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM)       .11         6.1. Overview       111         6.2. Features       111         6.3. Operating Modes.       112         6.4. Operating Mode Register       112         6.5. Register Descriptions       113                                                                                                                                                                                                                               | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM)       .11         6.1. Overview       111         6.2. Features       111         6.3. Operating Modes       112         6.4. Operating Mode       112         6.5. Register Descriptions       113         6.6. Clock Generation Overview       127                                                                                                                                                                                        | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM)       .11         6.1. Overview       111         6.2. Features       111         6.3. Operating Modes       112         6.4. Operating Mode       112         6.5. Register Descriptions       113         6.6. Clock Generation Overview       127         6.7. Power Down Modes Overview       128                                                                                                                                       | 1 |
| 5.5. Operating Modes.835.6. Register Descriptions845.7. Resets110Part 6: System Integration Module (SIM) .116.1. Overview1116.2. Features1116.3. Operating Modes1126.4. Operating Modes1126.5. Register Descriptions1136.6. Clock Generation Overview1276.7. Power Down Modes Overview1286.8. Stop and Wait Mode Disable Function128                                                                                                                                                                                                                                                                 | 1 |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM)       .11         6.1. Overview       111         6.2. Features       111         6.3. Operating Modes       112         6.4. Operating Mode       112         6.5. Register Descriptions       113         6.6. Clock Generation Overview       127         6.7. Power Down Modes Overview       128                                                                                                                                       | 1 |
| 5.5. Operating Modes.835.6. Register Descriptions845.7. Resets110Part 6: System Integration Module (SIM) .116.1. Overview1116.2. Features1116.3. Operating Modes1126.4. Operating Modes1126.5. Register Descriptions1136.6. Clock Generation Overview1276.7. Power Down Modes Overview1286.8. Stop and Wait Mode Disable Function1286.9. Resets129                                                                                                                                                                                                                                                   |   |
| 5.5. Operating Modes.       83         5.6. Register Descriptions       84         5.7. Resets       110         Part 6: System Integration Module (SIM)       .11         6.1. Overview       111         6.2. Features       111         6.3. Operating Modes       112         6.4. Operating Modes       112         6.5. Register Descriptions       113         6.6. Clock Generation Overview       127         6.7. Power Down Modes Overview       128         6.8. Stop and Wait Mode Disable Function       128         6.9. Resets       129         Part 7: Security Features       128 |   |
| 5.5. Operating Modes.835.6. Register Descriptions845.7. Resets110Part 6: System Integration Module (SIM) .116.1. Overview1116.2. Features1116.3. Operating Modes1126.4. Operating Modes1126.5. Register Descriptions1136.6. Clock Generation Overview1276.7. Power Down Modes Overview1286.8. Stop and Wait Mode Disable Function1286.9. Resets129                                                                                                                                                                                                                                                   |   |

| Part 8: General Purpose Input/Output (GPIO)<br>132                      |
|-------------------------------------------------------------------------|
| 8.1. Introduction                                                       |
| 8.2. Memory Maps                                                        |
| -                                                                       |
| Part 9: Joint Test Action Group (JTAG). 1379.1. 56F8367 Information     |
| Part 10: Specifications 138                                             |
| 10.1. General Characteristics                                           |
| 10.2. DC Electrical Characteristics                                     |
| 10.4. Flash Memory Characteristics                                      |
| 10.5. External Clock Operation Timing147                                |
| 10.6. Phase Locked Loop Timing                                          |
| 10.7. Crystal Oscillator Timing                                         |
| 10.8. External Memory Interface Timing149                               |
| 10.9. Reset, Stop, Wait, Mode Select, and                               |
| Interrupt Timing                                                        |
| 10.10. Serial Peripheral Interface (SPI) Timing                         |
| 10.11. Quad Timer Timing                                                |
| 10.12. Quadrature Decoder Timing                                        |
| 10.13. Serial Communication Interface (SCI)                             |
| Timing                                                                  |
| 10.14. Controller Area Network (CAN) Timing .159                        |
| 10.15. JTAG Timing159                                                   |
| 10.16. Analog-to-Digital Converter (ADC)                                |
| Parameters                                                              |
| 10.17. Equivalent Circuit for ADC Inputs164<br>10.18. Power Consumption |
|                                                                         |
| Part 11: Packaging 166                                                  |
| 11.1. 56F8367 Package and Pin-Out                                       |
| Information                                                             |
| 11.2. 56F8167 Package and Pin-Out                                       |
| Information                                                             |
| Part 12: Design Considerations 177                                      |
| 12.1. Thermal Design Considerations                                     |
| 12.2. Electrical Design Considerations178                               |
| 12.3. Power Distribution and I/O Ring                                   |
| Implementation                                                          |
| Part 13: Ordering Information                                           |



## Part 1 Overview

#### 1.1 56F8367/56F8167 Features

#### 1.1.1 Core

- Efficient 16-bit 56800E family controller engine with dual Harvard architecture
- Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency
- Single-cycle  $16 \times 16$ -bit parallel Multiplier-Accumulator (MAC)
- Four 36-bit accumulators, including extension bits
- Arithmetic and logic multi-bit shifter
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Three internal address buses and one external address bus
- Four internal data buses and one external data bus
- Instruction set supports both DSP and controller functions
- Controller-style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/EOnCE debug programming interface

#### 1.1.2 Differences Between Devices

Table 1-1 outlines the key differences between the 56F8367 and 56F8167 devices.

| Feature            | 56F8367       | 56F8167       |  |
|--------------------|---------------|---------------|--|
| Guaranteed Speed   | 60MHz/60 MIPS | 40MHZ/40MIPS  |  |
| Program RAM        | 4KB           | Not Available |  |
| Data Flash         | 32KB          | Not Available |  |
| PWM                | 2 x 6         | 1 x 6         |  |
| CAN                | 2             | Not Available |  |
| Quad Timer         | 4             | 2             |  |
| Quadrature Decoder | 2 x 4         | 1 x 4         |  |
| Temperature Sensor | 1             | Not Available |  |
| Dedicated GPIO     | —             | 7             |  |

**Table 1-1 Device Differences** 



#### 1.1.3 Memory

Note: Features in italics are NOT available in the 56F8167 device.

- Harvard architecture permits as many as three simultaneous accesses to program and data memory
- Flash security protection feature
- On-chip memory, including a low-cost, high-volume Flash solution
  - 512KB of Program Flash
  - 4KB of Program RAM
  - 32KB of Data Flash
  - 32KB of Data RAM
  - 32KB of Boot Flash
- Off-chip memory expansion capabilities provide a simple method for interfacing additional external memory and/or peripheral devices
  - Access up to 4MB of external program memory or 32MB of external data memory
  - Chip select logic for glueless interface to ROM and SRAM
- EEPROM emulation capability

#### 1.1.4 Peripheral Circuits

Note: Features in italics are NOT available in the 56F8167 device.

- Pulse Width Modulator:
  - In the 56F8367, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense inputs, and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
  - In the 56F8167, one Pulse Width Modulator module, with six PWM outputs, three Current Sense inputs, and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
- Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels 2 and 3
- Quadrature Decoder:
  - In the 56F8367, two four-input Quadrature Decoders or two additional Quad Timers
  - In the 56F8167, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A
- Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip temperature
- Quad Timer:
  - In the 56F8367, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with two pins and Timer D with four pins
  - In the 56F8167, two general-purpose Quad Timers; Timer A works in conjunction with Quadrature Decoder 0 or GPIO and Timer C works in conjunction with GPIO
- Up to two FlexCAN (CAN Version 2.0 B-compliant) modules with 2-pin port for transmit and receive



- Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)
- Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO lines)
  - In the 56F8367, SPI1 can also be used as Quadrature Decoder 1, Quad Timer B or GPIO
  - In the 56F8167, SPI1 can alternately be used only as GPIO
- Computer Operating Properly (COP) / Watchdog timer
- Two dedicated external interrupt pins
- Up to 76 General Purpose I/O (GPIO) pins
- External reset input pin for hardware reset
- External reset output pin for system reset
- Integrated Low-Voltage Interrupt Module
- JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent debugging
- Software-programmable, Phase Lock Loop (PLL)-based frequency synthesizer for the core clock

#### 1.1.5 Energy Information

- Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs
- On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled
- On-chip regulators for digital and analog circuitry to lower cost and reduce noise
- Wait and Stop modes available
- ADC smart power management
- Each peripheral can be individually disabled to save power

### **1.2 Device Description**

The 56F8367 and 56F8167 are members of the 56800E core-based family of controllers. Each combines, on a single chip, the processing power of a Digital Signal Processor (DSP) and the functionality of a microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost, configuration flexibility, and compact program code, the 56F8367 and 56F8167 are well-suited for many applications. The device includes many peripherals that are especially useful for motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and control, *automotive* control (56F8367 only), engine management, noise suppression, remote utility metering, industrial control for power, lighting, and automation applications.

The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set allow straightforward generation of efficient, compact DSP and control code. The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized control applications.

The 56F8367 and 56F8167 support program execution from internal or external memories. Two data operands can be accessed from the on-chip data RAM per instruction cycle. These devices also provide two external dedicated interrupt lines and up to 76 General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.



#### 1.2.1 56F8367 Features

The 56F8367 controller includes 512KB of Program Flash and 32KB of Data Flash (each programmable through the JTAG port) with 4KB of Program RAM and 32KB of Data RAM. It also supports program execution from external memory.

A total of 32KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can be independently bulk erased or erased in page sizes. Program Flash page erase size is 1KB. Boot and Data Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk or page erased.

A key application-specific feature of the 56F8367 is the inclusion of two Pulse Width Modulator (PWM) modules. These modules each incorporate three complementary, individually programmable PWM signal output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12 PWM outputs) to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A "smoke-inhibit", write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.

The 56F8367 incorporates two Quadrature Decoders capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a time-out value to alarm when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded.

This controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four Quad Timers. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. Two Flex Controller Area Network (FlexCAN) interfaces (CAN Version 2.0 B-compliant) and an internal interrupt controller are a part of the 56F8367.

#### 1.2.2 56F8167 Features

The 56F8167 controller includes 128KB of Program Flash, programmable through the JTAG port, with 8KB of Data RAM. It also supports program execution from external memory.

A total of 8KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used to program the main Program Flash memory area, which can be independently bulk erased or erased in pages. Program Flash page erase size is 1KB. Boot Flash page erase size is 512 bytes and the Boot Flash memory can also be either bulk or page erased.



A key application-specific feature of the 56F8167 is the inclusion of one Pulse Width Modulator (PWM) module. This module incorporates three complementary, individually programmable PWM signal output pairs and can also support six independent PWM functions to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A "smoke-inhibit", write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.

The 56F8167 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded.

This controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An internal interrupt controller is also a part of the 56F8167.

## **1.3 Award-Winning Development Environment**

Processor Expert<sup>TM</sup> (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based software application creation with an expert knowledge system.

The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.



## **1.4 Architecture Block Diagram**

Note: Features in italics are NOT available in the 56F8167 device and are shaded in the following figures.

The 56F8367/56F8167 architecture is shown in **Figure 1-1** and **Figure 1-2**. **Figure 1-1** illustrates how the 56800E system buses communicate with internal memories, the external memory interface and the IPBus Bridge. **Table 1-2** lists the internal buses in the 56800E architecture and provides a brief description of their function. **Figure 1-2** shows the peripherals and control blocks connected to the IPBus Bridge. The figures do not show the on-board regulator and power and ground signals. They also do not show the multiplexing between peripherals or the dedicated GPIOs. Please see **Part 2**, **Signal/Connection Descriptions**, to see which signals are multiplexed with those of other peripherals.

Also shown in **Figure 1-2** are connections between the PWM, Timer C and ADC blocks. These connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions. In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer C input channel as indicated. The timer can then be used to introduce a controllable delay before generating its output signal. The timer output then triggers the ADC. To fully understand this interaction, please see the **56F8300 Peripheral User Manual** for clarification on the operation of all three of these peripherals.



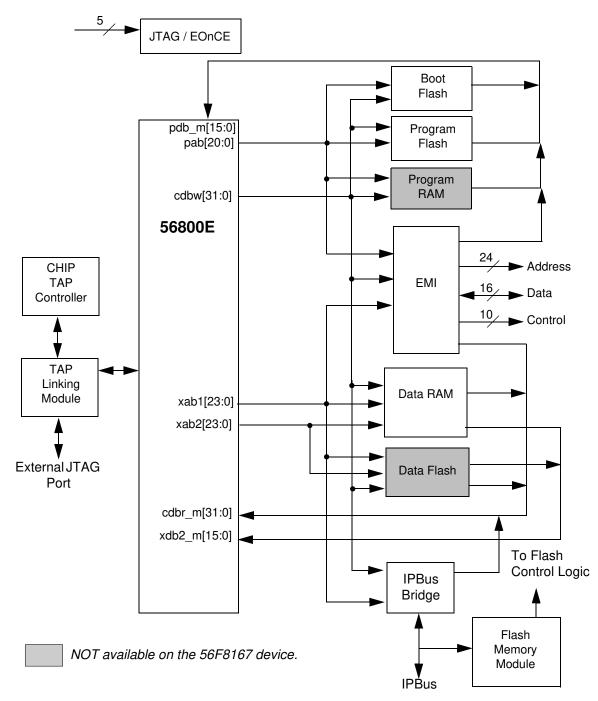
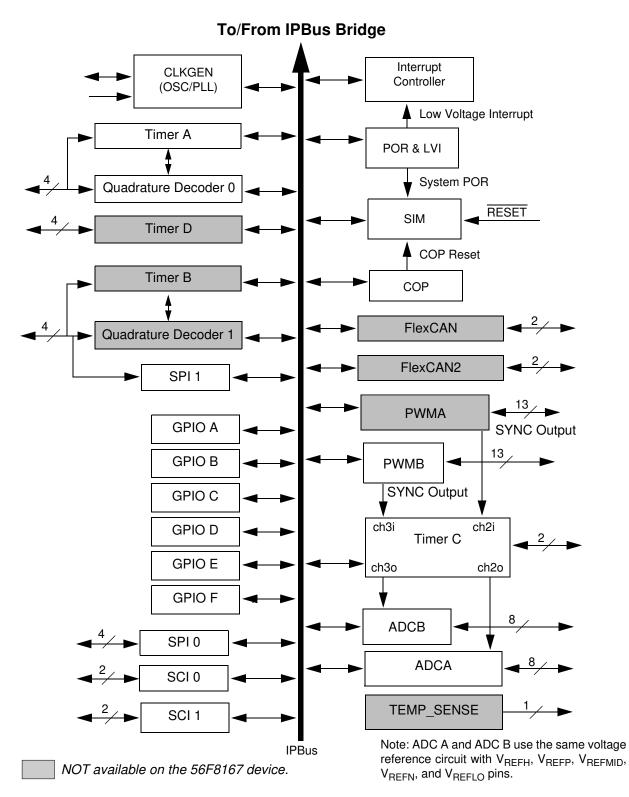




Figure 1-1 System Bus Interfaces

- **Note:** Flash memories are encapsulated within the Flash Memory (FM) Module. Flash control is accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed between the core and the Flash memories.
- Note: The primary data RAM port is 32 bits wide. Other data ports are 16 bits.









| Name                     | Function                                                                                                                                                                                                                                                          |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Program Memory Interface |                                                                                                                                                                                                                                                                   |  |  |  |  |
| pdb_m[15:0]              | Program data bus for instruction word fetches or read operations.                                                                                                                                                                                                 |  |  |  |  |
| cdbw[15:0]               | Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus are used for writes to program memory.)                                                                                                                           |  |  |  |  |
| pab[20:0]                | Program memory address bus. Data is returned on pdb_m bus.                                                                                                                                                                                                        |  |  |  |  |
|                          | Primary Data Memory Interface Bus                                                                                                                                                                                                                                 |  |  |  |  |
| cdbr_m[31:0]             | Primary core data bus for memory reads. Addressed via xab1 bus.                                                                                                                                                                                                   |  |  |  |  |
| cdbw[31:0]               | Primary core data bus for memory writes. Addressed via xab1 bus.                                                                                                                                                                                                  |  |  |  |  |
| xab1[23:0]               | Primary data address bus. Capable of addressing bytes <sup>1</sup> , words, and long data types. Data is written on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.                                                                           |  |  |  |  |
|                          | Secondary Data Memory Interface                                                                                                                                                                                                                                   |  |  |  |  |
| xdb2_m[15:0]             | Secondary data bus used for secondary data address bus xab2 in the dual memory reads.                                                                                                                                                                             |  |  |  |  |
| xab2[23:0]               | Secondary data address bus used for the second of two simultaneous accesses. Capable of addressing only words. Data is returned on xdb2_m.                                                                                                                        |  |  |  |  |
| Peripheral Interface Bus |                                                                                                                                                                                                                                                                   |  |  |  |  |
| IPBus [15:0]             | Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate as the Primary Data Memory and therefore generates no delays when accessing the processor. Write data is obtained from cdbw. Read data is provided to cdbr_m. |  |  |  |  |

#### Table 1-2 Bus Signal Names

1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced to 0.



### **1.5 Product Documentation**

The documents in **Table 1-2** are required for a complete description and proper design with the 56F8367/56F8167 devices. Documentation is available from local Freescale distributors, Freescale semiconductor sales offices, Freescale Literature Distribution Centers, or online at **http://www.freescale.com**.

| Торіс                                     | Order Number                                                                                                               |                          |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| DSP56800E<br>Reference Manual             | Detailed description of the 56800E family architecture,<br>and 16-bit controller core processor and the instruction<br>set | DSP56800EERM             |  |
| 56F8300 Peripheral User<br>Manual         | Detailed description of peripherals of the 56F8300 devices                                                                 | MC56F8300UM              |  |
| 56F8300 SCI/CAN<br>Bootloader User Manual | Detailed description of the SCI/CAN Bootloaders<br>56F8300 family of devices                                               | MC56F83xxBLUM            |  |
| 56F8367/56F8167<br>Technical Data Sheet   | Electrical and timing specifications, pin descriptions, and package descriptions (this document)                           | MC56F8367                |  |
| Errata                                    | Details any chip issues that might be present                                                                              | MC56F8367E<br>MC56F8167E |  |

| Table 1-3 Chip | Documentation |
|----------------|---------------|
|----------------|---------------|

## 1.6 Data Sheet Conventions

This data sheet uses the following conventions:

 OVERBAR
 This is used to indicate a signal that is active when pulled low. For example, the RESET pin is active when low.

"asserted" A high true (active high) signal is high or a low true (active low) signal is low.

"deasserted" A high true (active high) signal is low or a low true (active low) signal is high.

| Examples: | Signal/Symbol | Logic State | Signal State | Voltage <sup>1</sup>             |
|-----------|---------------|-------------|--------------|----------------------------------|
|           | PIN           | True        | Asserted     | V <sub>IL</sub> /V <sub>OL</sub> |
|           | PIN           | False       | Deasserted   | V <sub>IH</sub> /V <sub>OH</sub> |
|           | PIN           | True        | Asserted     | V <sub>IH</sub> /V <sub>OH</sub> |
|           | PIN           | False       | Deasserted   | V <sub>IL</sub> /V <sub>OL</sub> |

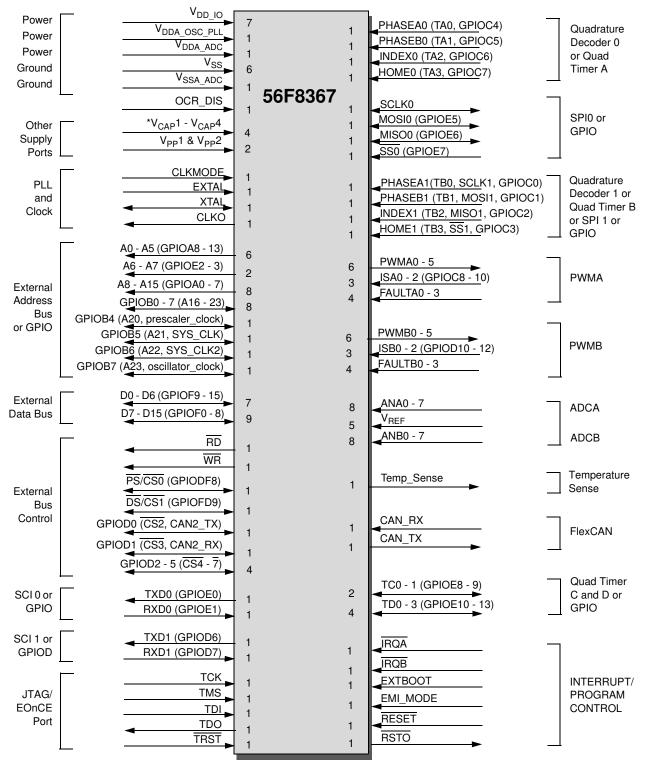
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.



## Part 2 Signal/Connection Descriptions

## 2.1 Introduction

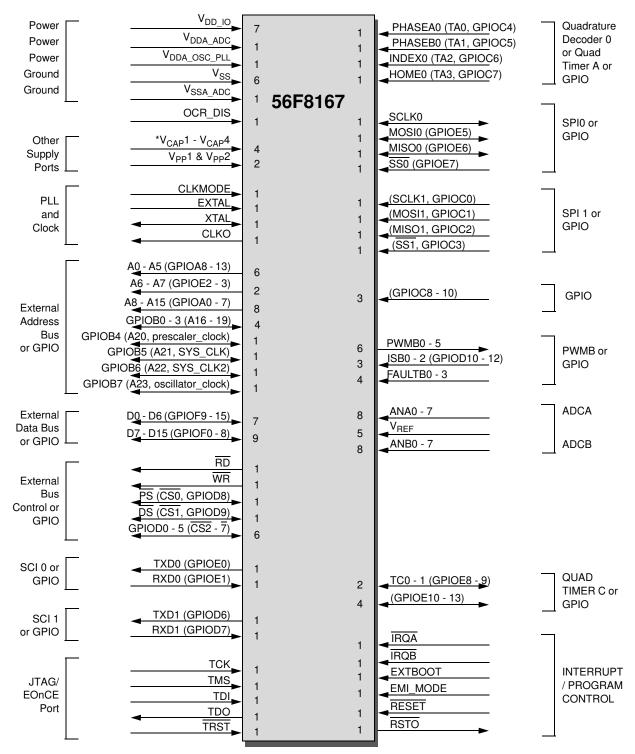
The input and output signals of the 56F8367 and 56F8167 are organized into functional groups, as detailed in **Table 2-1** and as illustrated in **Figure 2-1**. In **Table 2-2**, each table row describes the signal or signals present on a pin.


| Functional Oreun                                         | Number of Pins in Package |         |  |  |
|----------------------------------------------------------|---------------------------|---------|--|--|
| Functional Group                                         | 56F8367                   | 56F8167 |  |  |
| Power (V <sub>DD</sub> or V <sub>DDA</sub> )             | 9                         | 9       |  |  |
| Power Option Control                                     | 1                         | 1       |  |  |
| Ground (V <sub>SS</sub> or V <sub>SSA</sub> )            | 7                         | 7       |  |  |
| Supply Capacitors <sup>1</sup> & V <sub>PP</sub>         | 6                         | 6       |  |  |
| PLL and Clock                                            | 4                         | 4       |  |  |
| Address Bus                                              | 24                        | 24      |  |  |
| Data Bus                                                 | 16                        | 16      |  |  |
| Bus Control                                              | 10                        | 10      |  |  |
| Interrupt and Program Control                            | 6                         | 6       |  |  |
| Pulse Width Modulator (PWM) Ports                        | 26                        | 13      |  |  |
| Serial Peripheral Interface (SPI) Port 0                 | 4                         | 4       |  |  |
| Serial Peripheral Interface (SPI) Port 1                 | —                         | 4       |  |  |
| Quadrature Decoder Port 0 <sup>2</sup>                   | 4                         | 4       |  |  |
| Quadrature Decoder Port 1 <sup>3</sup>                   | 4                         | _       |  |  |
| Serial Communications Interface (SCI) Ports <sup>2</sup> | 4                         | 4       |  |  |
| CAN Ports                                                | 2                         | —       |  |  |
| Analog to Digital Converter (ADC) Ports                  | 21                        | 21      |  |  |
| Timer Module Ports                                       | 6                         | 2       |  |  |
| JTAG/Enhanced On-Chip Emulation (EOnCE)                  | 5                         | 5       |  |  |
| Temperature Sense                                        | 1                         | —       |  |  |
| Dedicated GPIO                                           | _                         | 7       |  |  |

1. If the on-chip regulator is disabled, the V<sub>CAP</sub> pins serve as 2.5V V<sub>DD</sub>  $_{\rm CORE}$  power inputs

2. Alternately, can function as Quad Timer pins

3. Pins in this section can function as Quad Timer, SPI #1, or GPIO






 $^{\ast}$  When the on-chip regulator is disabled, these four pins become 2.5V V\_{DD}  $_{\text{CORE}}$ 

#### Figure 2-1 56F8367 Signals Identified by Functional Group<sup>1</sup> (160-pin LQFP)

1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.



 $^{\ast}$  When the on-chip regulator is disabled, these four pins become 2.5V V\_{DD}  $_{\text{CORE}}$ 

#### Figure 2-2 56F8167 Signals Identified by Functional Group<sup>1</sup> (160-pin LQFP)

1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.



## 2.2 Signal Pins

After reset, each pin is configured for its primary function (listed first). Any alternate functionality must be programmed.

**Note:** *Signals in italics are NOT available in the* 56F8167 *device.* 

Note: The 160 Map Ball Grid Array is not available in the 56F8167 device.

If the "State During Reset" lists more than one state for a pin, the first state is the actual reset state. Other states show the reset condition of the alternate function, which you get if the alternate pin function is selected without changing the configuration of the alternate peripheral. For example, the A8/GPIOA0 pin shows that it is tri-stated during reset. If the GPIOA\_PER is changed to select the GPIO function of the pin, it will become an input if no other registers are changed.

**Note:** LQFP Pin numbers and MBGA Ball numbers do not always correlate in Table 2-2. Please contact factory for exact correlation.

| Signal<br>Name               | Pin<br>No. | Ball No. | Туре   | State<br>During<br>Reset | Signal Description                                                                                                                                                                                               |
|------------------------------|------------|----------|--------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>DD_IO</sub>           | 1          | F4       | Supply |                          | I/O Power — This pin supplies 3.3V power to the chip I/O interface and also the Processor core through the on-chip voltage                                                                                       |
| V <sub>DD_IO</sub>           | 16         | K5       |        |                          | regulator, if it is enabled.                                                                                                                                                                                     |
| V <sub>DD_IO</sub>           | 31         | E5       |        |                          |                                                                                                                                                                                                                  |
| V <sub>DD_IO</sub>           | 42         | K7       |        |                          |                                                                                                                                                                                                                  |
| V <sub>DD_IO</sub>           | 77         | E9       |        |                          |                                                                                                                                                                                                                  |
| V <sub>DD_IO</sub>           | 96         | K10      |        |                          |                                                                                                                                                                                                                  |
| V <sub>DD_IO</sub>           | 134        | F11      |        |                          |                                                                                                                                                                                                                  |
| V <sub>DDA_ADC</sub>         | 114        | C14      | Supply |                          | <b>ADC Power</b> — This pin supplies 3.3V power to the ADC modules. It must be connected to a clean analog power supply.                                                                                         |
| V <sub>DDA_OSC_</sub><br>PLL | 92         | K13      | Supply |                          | <b>Oscillator</b> and <b>PLL Power</b> — This pin supplies 3.3V power to the OSC and to the internal regulator that in turn supplies the Phase Locked Loop. It must be connected to a clean analog power supply. |

 Table 2-2
 Signal and Package Information for the 160-Pin LQFP and MBGA



| Signal<br>Name       | Pin<br>No. | Ball No.       | Туре         | State<br>During<br>Reset | Signal Description                                                                                                                                                                                                                                                       |
|----------------------|------------|----------------|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>SS</sub>      | 27         | J4             | Supply       |                          | $V_{SS}$ — These pins provide ground for chip logic and I/O drivers.                                                                                                                                                                                                     |
| V <sub>SS</sub>      | 41         | K11            |              |                          |                                                                                                                                                                                                                                                                          |
| V <sub>SS</sub>      | 74         | G11            |              |                          |                                                                                                                                                                                                                                                                          |
| V <sub>SS</sub>      | 80         | E7             |              |                          |                                                                                                                                                                                                                                                                          |
| V <sub>SS</sub>      | 125        | J11            |              |                          |                                                                                                                                                                                                                                                                          |
| V <sub>SS</sub>      | 160        | E6             |              |                          |                                                                                                                                                                                                                                                                          |
| V <sub>SSA_ADC</sub> | 115        | D12            | Supply       |                          | <b>ADC Analog Ground</b> — This pin supplies an analog ground to the ADC modules.                                                                                                                                                                                        |
| OCR_DIS              | 91         | K14            | Input        | Input                    | <ul> <li>On-Chip Regulator Disable —</li> <li>Tie this pin to V<sub>SS</sub> to enable the on-chip regulator</li> <li>Tie this pin to V<sub>DD</sub> to disable the on-chip regulator</li> <li>This pin is intended to be a static DC signal from power-up to</li> </ul> |
|                      |            |                |              |                          | shut down. Do not try to toggle this pin for power savings during operation.                                                                                                                                                                                             |
| V <sub>CAP</sub> 1*  | 62         | K8             | Supply       | Supply                   | $V_{CAP}$ 1 - 4 — When OCR_DIS is tied to $V_{SS}$ (regulator enabled),                                                                                                                                                                                                  |
| V <sub>CAP</sub> 2*  | 144        | E8             |              |                          | connect each pin to a $2.2\mu$ F or greater bypass capacitor in order<br>to bypass the core logic voltage regulator, required for proper chip                                                                                                                            |
| V <sub>CAP</sub> 3*  | 95         | H11            |              |                          | operation. When OCR_DIS is tied to $V_{DD}$ (regulator disabled), these pins become $V_{DD_CORE}$ and should be connected to a                                                                                                                                           |
| V <sub>CAP</sub> 4*  | 15         | G4             |              |                          | regulated 2.5V power supply.                                                                                                                                                                                                                                             |
|                      |            |                |              |                          | Note: This bypass is required even if the chip is powered with an external supply.                                                                                                                                                                                       |
| * When the on        | ı-chip re  | gulator is dis | sabled, thes | e four pins b            | ecome 2.5V V <sub>DD_CORE</sub> .                                                                                                                                                                                                                                        |
| V <sub>PP</sub> 1    | 141        | A7             | Input        | Input                    | V <sub>PP</sub> 1 - 2 — These pins should be left unconnected as an open                                                                                                                                                                                                 |
| V <sub>PP</sub> 2    | 2          | C2             |              |                          | circuit for normal functionality.                                                                                                                                                                                                                                        |
| CLKMODE              | 99         | H12            | Input        | Input                    | <b>Clock Input Mode Selection</b> — This input determines the function of the XTAL and EXTAL pins.                                                                                                                                                                       |
|                      |            |                |              |                          | 1 = External clock input on XTAL is used to directly drive the input clock of the chip. The EXTAL pin should be grounded.                                                                                                                                                |
|                      |            |                |              |                          | 0 = A crystal or ceramic resonator should be connected between XTAL and EXTAL.                                                                                                                                                                                           |
| EXTAL                | 94         | J12            | Input        | Input                    | <b>External Crystal Oscillator Input</b> — This input can be connected to an 8MHz external crystal. Tie this pin low if XTAL is driven by an external clock source.                                                                                                      |



| Signal<br>Name  | Pin<br>No. | Ball No.  | Туре             | State<br>During<br>Reset                                     | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|------------|-----------|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XTAL<br>CLKO    | 93<br>3    | K12<br>D3 | Input/<br>Output | Chip-driven<br>In reset,<br>output is<br>disabled            | <ul> <li>Crystal Oscillator Output — This output connects the internal crystal oscillator output to an external crystal.</li> <li>If an external clock is used, XTAL must be used as the input and EXTAL connected to GND.</li> <li>The input clock can be selected to provide the clock directly to the core. This input clock can also be selected as the input clock for the on-chip PLL.</li> <li>Clock Output — This pin outputs a buffered clock signal. Using the SIM CLKO Select Register (SIM_CLKOSR), this pin can be programmed as any of the following: disabled, CLK_MSTR</li> </ul> |
|                 |            |           |                  |                                                              | (system clock), IPBus clock, oscillator output, prescaler clock and<br>postscaler clock. Other signals are also available for test<br>purposes.<br>See Part 6.5.7 for details.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AO              | 154        | C3        | Output           | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | <ul> <li>Address Bus — A0 - A5 specify six of the address lines for external program or data memory accesses.</li> <li>Depending upon the state of the DRV bit in the EMI bus control register (BCR), A0 - A5 and EMI control signals are tri-stated when the external bus is inactive.</li> <li>Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.</li> </ul>                                                                                                                                                                                       |
| (GPIOA8)        |            |           | Input/<br>Output |                                                              | <b>Port A GPIO</b> — These six GPIO pins can be individually programmed as input or output pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A1<br>(GPIOA9)  | 10         | E3        |                  |                                                              | After reset, the default state is Address Bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A2<br>(GPIOA10) | 11         | E4        |                  |                                                              | To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOA_PUR register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A3<br>(GPIOA11) | 12         | F2        |                  |                                                              | Example: GPIOA8, clear bit 8 in the GPIOA_PUR register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A4<br>(GPIOA12) | 13         | F1        |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A5<br>(GPIOA13) | 14         | F3        |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Signal<br>Name  | Pin<br>No. | Ball No. | Туре                        | State<br>During<br>Reset                                     | Signal Description                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|------------|----------|-----------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A6              | 17         | G1       | Output                      | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | <ul> <li>Address Bus — A6 - A7 specify two of the address lines for external program or data memory accesses.</li> <li>Depending upon the state of the DRV bit in the EMI bus control register (BCR), A6 - A7 and EMI control signals are tri-stated when the external bus is inactive.</li> <li>Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.</li> </ul> |
| (GPIOE2)        |            |          | Schmitt                     |                                                              | Port E GPIO — These two GPIO pins can be individually                                                                                                                                                                                                                                                                                                                                                       |
| A7<br>(GPIOE3)  | 18         | G3       | Input/<br>Output            |                                                              | programmed as input or output pins.<br>After reset, the default state is Address Bus.<br>To deactivate the internal pull-up resistor, clear the appropriate<br>GPIO bit in the GPIOE_PUR register.<br>Example: GPIOE2, clear bit 2 in the GPIOE_PUR register.                                                                                                                                               |
| A8              | 19         | G2       | Output                      | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | Address Bus       A8 - A15 specify eight of the address lines for external program or data memory accesses.         Depending upon the state of the DRV bit in the EMI bus control register (BCR), A8 - A15 and EMI control signals are tri-stated when the external bus is inactive.         Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.               |
| (GPIOA0)        |            |          | Schmitt<br>Input/<br>Output |                                                              | <b>Port A GPIO</b> — These eight GPIO pins can be individually                                                                                                                                                                                                                                                                                                                                              |
| A9<br>(GPIOA1)  | 20         | H1       |                             |                                                              | programmed as input or output pins.<br>After reset, the default state is Address Bus.                                                                                                                                                                                                                                                                                                                       |
| A10<br>(GPIOA2) | 21         | H2       |                             |                                                              | To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOA_PUR register.                                                                                                                                                                                                                                                                                                      |
| A11<br>(GPIOA3) | 22         | H4       |                             |                                                              | Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.                                                                                                                                                                                                                                                                                                                                                     |
| A12<br>(GPIOA4) | 23         | H3       |                             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |
| A13<br>(GPIOA5) | 24         | J1       |                             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |
| A14<br>(GPIOA6) | 25         | J2       |                             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |
| A15<br>(GPIOA7) | 26         | J3       |                             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |



|                                           |            |          |                             |                              | 1                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------|------------|----------|-----------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal<br>Name                            | Pin<br>No. | Ball No. | Туре                        | State<br>During<br>Reset     | Signal Description                                                                                                                                                                                                                                                                                                            |
| GPIOB0                                    | 33         | L1       | Schmitt<br>Input/<br>Output | Input,<br>pull-up<br>enabled | <b>Port B GPIO</b> — These four GPIO pins can be programmed as input or output pins.                                                                                                                                                                                                                                          |
| (A16)                                     |            |          | Output                      |                              | Address Bus — A16 - A19 specify one of the address lines for                                                                                                                                                                                                                                                                  |
| GPIOB1<br>(A17)                           | 34         | L3       |                             |                              | external program or data memory accesses.<br>Depending upon the state of the DRV bit in the EMI bus control                                                                                                                                                                                                                   |
| GPIOB2<br>(A18)                           | 35         | L2       |                             |                              | register (BCR), A16 - A19 and EMI control signals are tri-stated when the external bus is inactive.                                                                                                                                                                                                                           |
| GPIOB3<br>(A19)                           | 36         | M1       |                             |                              | Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.                                                                                                                                                                                                                               |
|                                           |            |          |                             |                              | After reset, the startup state of GPIOB0 - GPIOB3 (GPIO or address) is determined as a function of EXTBOOT, EMI_MODE and the Flash security setting. See <b>Table 4-4</b> for further information on when this pin is configured as an address pin at reset. In all cases, this state may be changed by writing to GPIOB_PER. |
|                                           |            |          |                             |                              | To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOB_PUR register.                                                                                                                                                                                                                        |
| GPIOB4                                    | 37         | M2       | Schmitt<br>Input/<br>Output | Input,<br>pull-up<br>enabled | <b>Port B GPIO</b> — These four GPIO pins can be programmed as input or output pins.                                                                                                                                                                                                                                          |
| (A20)                                     |            |          | Output                      |                              | Address Bus — A20 - A23 specify one of the address lines for external program or data memory accesses.                                                                                                                                                                                                                        |
|                                           |            |          |                             |                              | Depending upon the state of the DRV bit in the EMI bus control register (BCR), A20–A23 and EMI control signals are tri-stated when the external bus is inactive.                                                                                                                                                              |
|                                           |            |          |                             |                              | Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.                                                                                                                                                                                                                               |
| (prescaler_<br>clock)                     |            |          | Output                      |                              | <b>Clock Outputs</b> — can be used to monitor the prescaler_clock,<br>SYS_CLK, SYS_CLK2 or oscillator_clock on GPIOB4 through<br>GPIOB7, respectively.                                                                                                                                                                        |
| GPIOB5<br>(A21)<br>(SYS_CLK)              | 46         | N4       |                             |                              | After reset, the default state is GPIO.                                                                                                                                                                                                                                                                                       |
| GPIOB6<br>(A22)<br>(SYS_CLK2)             | 47         | P3       |                             |                              | These pins can also be used to extend the external address bus to its full length or to view any of several system clocks. In these cases, the GPIO_B_PER can be used to individually disable the GPIO. The CLKOSR register in the SIM (see Part 6.5.7) can then                                                              |
| GPIOB7<br>(A23)<br>(oscillator_<br>clock) | 48         | M4       |                             |                              | be used to choose between address and clock functions.                                                                                                                                                                                                                                                                        |



| Signal<br>Name  | Pin<br>No. | Ball No. | Туре             | State<br>During<br>Reset                                     | Signal Description                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                     |
|-----------------|------------|----------|------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| D0<br>(GPIOF9)  | 70         | P10      | Input/<br>Output | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | <ul> <li>Data Bus — D0 - D6 specify part of the data for external program or data memory accesses.</li> <li>Depending upon the state of the DRV bit in the EMI bus control register (BCR), D0–D6 are tri-stated when the external bus is inactive.</li> <li>Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.</li> </ul> |                                                                                                                                     |
| D1<br>(GPIOF10) | 71         | N10      | Input/<br>Output |                                                              | <b>Port F GPIO</b> — These seven GPIO pins can be individually programmed as input or output pins.                                                                                                                                                                                                                                                                     |                                                                                                                                     |
| D2<br>(GPIOF11) | 83         | P14      |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                        | After reset, these pins default to the EMI Data Bus function.<br>To deactivate the internal pull-up resistor, clear the appropriate |
| D3<br>(GPIOF12) | 86         | L13      |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                        | GPIO bit in the GPIOF_PUR register.<br>Example: GPIOF9, clear bit 9 in the GPIOF_PUR register.                                      |
| D4<br>(GPIOF13) | 88         | L14      |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                     |
| D5<br>(GPIOF14) | 89         | L12      |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                     |
| D6<br>(GPIOF15) | 90         | L11      |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                     |



| Signal<br>Name  | Pin<br>No. | Ball No. | Туре             | State<br>During<br>Reset                                     | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------|----------|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D7              | 28         | К1       | Input/<br>Output | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | <ul> <li>Data Bus — D7 - D15 specify part of the data for external program or data memory accesses.</li> <li>Depending upon the state of the DRV bit in the EMI bus control register (BCR), D7 - D15 are tri-stated when the external bus is inactive.</li> <li>Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |
| (GPIOF0)        |            |          | Input/<br>Output |                                                              | <b>Port F GPIO</b> — These nine GPIO pins can be individually programmed as input or output pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D8<br>(GPIOF1)  | 29         | K3       |                  |                                                              | At reset, these pins default to Data Bus functionality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D9<br>(GPIOF2)  | 30         | K2       |                  |                                                              | To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOF_PUR register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D10<br>(GPIOF3) | 32         | K4       |                  |                                                              | Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D11<br>(GPIOF4) | 149        | A5       |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D12<br>(GPIOF5) | 150        | A4       |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D13<br>(GPIOF6) | 151        | B5       |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D14<br>(GPIOF7) | 152        | C4       |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D15<br>(GPIOF8) | 153        | A3       |                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RD              | 52         | P5       | Output           | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | <ul> <li>Read Enable — RD is asserted during external memory read cycles. When RD is asserted low, pins D0 - D15 become inputs and an external device is enabled onto the data bus. When RD is deasserted high, the external data is latched inside the device. When RD is asserted, it qualifies the A0 - A23, PS, DS, and CSn pins. RD can be connected directly to the OE pin of a static RAM or ROM.</li> <li>Depending upon the state of the DRV bit in the EMI bus control register (BCR), RD is tri-stated when the external bus is inactive.</li> <li>Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.</li> <li>To deactivate the internal pull-up resistor, set the CTRL bit in the SIM_PUDR register.</li> </ul> |



| ·              | 1          | 1        |                  |                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|------------|----------|------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal<br>Name | Pin<br>No. | Ball No. | Туре             | State<br>During<br>Reset                                     | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WR             | 51         | L4       | Output           | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | <b>Write Enable</b> — $\overline{\text{WR}}$ is asserted during external memory write cycles. When $\overline{\text{WR}}$ is asserted low, pins D0 - D15 become outputs and the device puts data on the bus. When $\overline{\text{WR}}$ is deasserted high, the external data is latched inside the external device. When $\overline{\text{WR}}$ is asserted, it qualifies the A0 - A23, PS, DS, and CSn pins. WR can be connected directly to the WE pin of a static RAM. |
|                |            |          |                  |                                                              | Depending upon the state of the DRV bit in the EMI bus control register (BCR), $\overline{WR}$ is tri-stated when the external bus is inactive.                                                                                                                                                                                                                                                                                                                             |
|                |            |          |                  |                                                              | Most designs will want to change the DRV state to $DRV = 1$ instead of using the default setting.                                                                                                                                                                                                                                                                                                                                                                           |
|                |            |          |                  |                                                              | To deactivate the internal pull-up resistor, set the CTRL bit in the SIM_PUDR register.                                                                                                                                                                                                                                                                                                                                                                                     |
| PS<br>(CS0)    | 53         | N6       | Output           | In reset,<br>output is<br>disabled,<br>pull-up is<br>enabled | <b>Program Memory Select</b> — This signal is actually $\overline{CS0}$ in the EMI, which is programmed at reset for compatibility with the 56F80x PS signal. PS is asserted low for external program memory access.                                                                                                                                                                                                                                                        |
|                |            |          |                  | enabled                                                      | Depending upon the state of the DRV bit in the EMI bus control register (BCR), $\overline{CS0}$ is tri-stated when the external bus is inactive.                                                                                                                                                                                                                                                                                                                            |
|                |            |          |                  |                                                              | $\overline{\text{CS0}}$ resets to provide the $\overline{\text{PS}}$ function as defined on the 56F80x devices.                                                                                                                                                                                                                                                                                                                                                             |
| (GPIOD8)       |            |          | Input/<br>Output |                                                              | <b>Port D GPIO</b> — This GPIO pin can be individually programmed as an input or output pin.                                                                                                                                                                                                                                                                                                                                                                                |
|                |            |          |                  |                                                              | To deactivate the internal pull-up resistor, clear bit 8 in the GPIOD_PUR register.                                                                                                                                                                                                                                                                                                                                                                                         |
| DS<br>(CS1)    | 54         | L5       | Output           | In reset,<br>output is<br>disabled,                          | <b>Data Memory Select</b> — This signal is actually $\overline{CS1}$ in the EMI, which is programmed at reset for compatibility with the 56F80x $\overline{DS}$ signal. $\overline{DS}$ is asserted low for external data memory access.                                                                                                                                                                                                                                    |
|                |            |          |                  | pull-up is<br>enabled                                        | Depending upon the state of the DRV bit in the EMI bus control register (BCR), $\overline{CS1}$ is tri-stated when the external bus is inactive.                                                                                                                                                                                                                                                                                                                            |
|                |            |          |                  |                                                              | $\overline{\text{CS1}}$ resets to provide the $\overline{\text{DS}}$ function as defined on the 56F80x devices.                                                                                                                                                                                                                                                                                                                                                             |
| (GPIOD9)       |            |          | Input/<br>Output |                                                              | <b>Port D GPIO</b> — This GPIO pin can be individually programmed as an input or output pin.                                                                                                                                                                                                                                                                                                                                                                                |
|                |            |          |                  |                                                              | To deactivate the internal pull-up resistor, clear bit 9 in the GPIOD_PUR register.                                                                                                                                                                                                                                                                                                                                                                                         |