imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Order this document by MC68331TS/D Rev. 2

MC68331

Technical Summary **32-Bit Modular Microcontroller**

1 Introduction

The MC68331, a highly-integrated 32-bit microcontroller, combines high-performance data manipulation capabilities with powerful peripheral subsystems. The MCU is built up from standard modules that interface through a common intermodule bus (IMB). Standardization facilitates rapid development of devices tailored for specific applications.

The MCU incorporates a 32-bit CPU (CPU32), a system integration module (SIM), a general-purpose timer (GPT), and a queued serial module (QSM).

The MCU can either synthesize an internal clock signal from an external reference or use an external clock input directly. Operation with a 32.768-kHz reference frequency is standard. The maximum system clock speed is 20.97 MHz. Because MCU operation is fully static, register and memory contents are not affected by a loss of clock.

High-density complementary metal-oxide semiconductor (HCMOS) architecture makes the basic power consumption of the MCU low. Power consumption can be minimized by stopping the system clock. The CPU32 instruction set includes a low-power stop (LPSTOP) command that efficiently implements this capability.

Package Type	Temperature	Frequency (MHz)	Package Order Quantity	Order Number
132-Pin PQFP	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC331CFC16
			36 pc tray	MC68331CFC16
		20 MHz	2 pc tray	SPAKMC331CFC20
			36 pc tray	MC68331CFC20
	–40 to +105 °C	16 MHz	2 pc tray	SPAKMC331VFC16
			36 pc tray	MC68331VFC16
		20 MHz	2 pc tray	SPAKMC331VFC20
			36 pc tray	MC68331VFC20
	–40 to +125 °C	16 MHz	2 pc tray	SPAKMC331MFC16
			36 pc tray	MC68331MFC16
		20 MHz	2 pc tray	SPAKMC331MFC20
			36 pc tray	MC68331MFC20
144-Pin QFP	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC331CFV16
			44 pc tray	MC68331CFV16
		20 MHz	2 pc tray	SPAKMC331CFV20
			44 pc tray	MC68331CFV20
	-40 to +105 °C	16 MHz	2 pc tray	SPAKMC331VFV16
			44 pc tray	MC68331VFV16
		20 MHz	2 pc tray	SPAKMC331VFV20
			44 pc tray	MC68331VFV20
	–40 to +125 °C	16 MHz	2 pc tray	SPAKMC331MFV16
			44 pc tray	MC68331MFV16
		20 MHz	2 pc tray	SPAKMC331MFV20
			44 pc tray	MC68331MFV20

Table 1 Ordering Information

Section

1	1.1 1.2 1.3 1.4 1.5	Introduction Features Block Diagram Pin Assignments Address Map Intermodule Bus	1 4 5 6 8 8
2	2.1 2.2 2.3 2.4 2.5	Signal Descriptions Pin Characteristics MCU Power Connections MCU Driver Types Signal Characteristics Signal Function	9 10 10 10 10
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	System Integration Module Overview System Configuration and Protection System Clock External Bus Interface Chip Selects General-Purpose Input/Output Resets Interrupts Factory Test Block	14 16 21 24 28 35 37 39 41
4	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Central Processor Unit Overview Programming Model Status Register Data Types Addressing Modes Instruction Set Summary Background Debugging Mode	43 43 45 45 45 45 45 50
5	5.1 5.2 5.3 5.4 5.5	Queued Serial Module Overview Pin Function QSM Registers QSPI Submodule SCI Submodule	51 52 53 56 64
6	6.1 6.2 6.3 6.4	General-Purpose Timer Module Overview Capture/Compare Unit Pulse-Width Modulator GPT Registers	70 70 71 74 75
7		Summary of Changes	82

1.1 Features

- Modular Architecture
- Central Processing Unit (CPU32)
 - Upward Object Code Compatible
 - New Instructions for Controller Applications
 - 32-Bit Architecture
 - Virtual Memory Implementation
 - Loop Mode of Instruction Execution
 - Table Lookup and Interpolate Instruction
 - Improved Exception Handling for Controller Applications
 - Trace on Change of Flow
- Hardware Breakpoint Signal, Background Mode
- Fully Static Operation
- System Integration Module (SIM)
 - External Bus Support
 - Programmable Chip-Select Outputs
 - System Protection Logic
 - Watchdog Timer, Clock Monitor, and Bus Monitor
 - System Protection Logic
 - System Clock Based on 32.768-kHz Crystal for Low Power Operation
 - Test/Debug Submodule for Factory/User Test and Development
- Queued Serial Module (QSM)
 - Enhanced Serial Communication Interface (SCI), Universal Asynchronous Receiver Transmitter (UART): Modulus Baud Rate, Parity
 - Queued Serial Peripheral Interface (QSPI): 80-Byte RAM, Up to 16 Automatic Transfers
 - Dual Function I/O Ports
 - Continuous Cycling, 8 to 16 Bits per Transfer
- General-Purpose Timer (GPT)
 - Two 16-Bit Free-Running Counters With One Nine-Stage Prescaler
 - Three Input Capture Channels
 - Four Output Compare Channels
 - One Input Capture/Output Compare Channel
 - One Pulse Accumulator/Event Counter Input
- Two Pulse-Width Modulation Outputs
- Optional External Clock Input

1.2 Block Diagram

Figure 1 MCU Block Diagram

1.3 Pin Assignments

Figure 2 MC68331 132-Pin QFP Pin Assignments

331 144-PIN QFP

1.4 Address Map

The following figure is a map of the MCU internal addresses. Unimplemented blocks are mapped externally.

Figure 4 MCU Address Map

1.5 Intermodule Bus

The intermodule bus (IMB) is a standardized bus developed to facilitate both design and operation of modular microcontrollers. It contains circuitry to support exception processing, address space partitioning, multiple interrupt levels, and vectored interrupts. The standardized modules in the MCU communicate with one another and with external components through the IMB. The IMB in the MCU uses 24 address and 16 data lines.

2 Signal Descriptions

2.1 Pin Characteristics

The following table shows MCU pins and their characteristics. All inputs detect CMOS logic levels. All inputs can be put in a high-impedance state, but the method of doing this differs depending upon pin function. Refer to **Table 4**, for a description of output drivers. An entry in the discrete I/O column of **Table 2** indicates that a pin has an alternate I/O function. The port designation is given when it applies. Refer to the MCU Block Diagram for information about port organization.

Pin	Output	Input	Input	Discrete	Port
Mnemonic	Driver	Synchronized	Hysteresis	I/O	Designation
ADDR23/CS10/ECLK	A	Y	N	0	—
ADDR[22:19]/CS[9:6]	A	Y	N	0	PC[6:3]
ADDR[18:0]	A	Y	N		
ĀS	В	Y	N	I/O	PE5
AVEC	В	Y	N	I/O	PE2
BERR	В	Y	N	—	—
BG/CS1	В		—	—	—
BGACK/CS2	В	Y	N	—	—
BKPT/DSCLK	—	Y	Y	—	—
BR/CS0	В	Y	N		
CLKOUT	A	—	—	—	—
CSBOOT	В	—	—	—	—
DATA[15:0] ¹	Aw	Y	N	—	—
DS	В	Y	Ν	I/O	PE4
DSACK1	В	Y	N	I/O	PE1
DSACK0	В	Y	Ν	I/O	PE0
DSI/IFETCH	А	Y	Y		—
DSO/IPIPE	А		—	—	—
EXTAL ²	_	—	Special	_	—
FC[2:0]/CS[5:3]	А	Y	N	0	PC[2:0]
FREEZE/QUOT	А	—	—	_	—
IC4/OC5	A	Y	Y	I/O	GP4
IC[3:1]	А	Y	Y	I/O	GP[7:5]
HALT	Во	Y	N	_	—
IRQ[7:1]	В	Y	Y	I/O	PF[7:1]
MISO	Во	Y	Y	I/O	PQS0
MODCLK ¹	В	Y	N	I/O	PF0
MOSI	Bo	Y	Y	I/O	PQS1
OC[4:1]	А	Y	Y	I/O	GP[3:0]
PAI ³	—	Y	Y	I	—
PCLK ³	—	Y	Y	l	—
PCS0/SS	Во	Y	Y	I/O	PQS3
PCS[3:1]	Bo	Y	Y	I/O	PQS[6:4]
PWMA, PWMB	А	—	—	0	—
R/W	А	Y	N	—	—
RESET	Во	Y	Y	—	—
RMC	В	Y	N	I/O	PE3

Table 2	MCU	Pin	Charac	teristics
---------	-----	-----	--------	-----------

Table 2 MCO Fin Characteristics (Continued)					
Pin Mnemonic	Output Driver	Input Synchronized	Input Hysteresis	Discrete I/O	Port Designation
RXD	—	N	N		
SCK	Bo	Y	Y	I/O	PQS2
SIZ[1:0]	В	Y	N	I/O	PE[7:6]
TSC	_	Y	Y		

Y

Table 2 MCU Pin Characteristics (Continued)

NOTES:

1. DATA[15:0] are synchronized during reset only. MODCLK is synchronized only when used as an input port pin.

I/O

Special

Special

PQS7

Y

2. EXTAL, XFC, and XTAL are clock reference connections.

Во

3. PAI and PCLK can be used for discrete input, but are not part of an I/O port.

2.2 MCU Power Connections

TXD

XFC²

XTAL²

Table 3 MCU Power Connections

V _{DDSYN}	Clock Synthesizer Power
V _{SSE} /V _{DDE}	External Periphery Power (Source and Drain)
V _{SSI} /V _{DDI}	Internal Module Power (Source and Drain)

2.3 MCU Driver Types

Table 4 MCU Driver Types

Туре	I/O	Description	
А	0	Output-only signals that are always driven; no external pull-up required	
Aw	0	ype A output with weak P-channel pull-up during reset	
В	0	Three-state output that includes circuitry to pull up output before high impedance is es- tablished, to ensure rapid rise time. An external holding resistor is required to maintain logic level while the pin is in the high-impedance state.	
Во	0	Type B output that can be operated in an open-drain mode	

2.4 Signal Characteristics

Table 5 MCU Signal Characteristics

Signal Name	MCU Module	Signal Type	Active State
ADDR[23:0]	SIM	Bus	
ĀS	SIM	Output	0
AVEC	SIM	Input	0
BERR	SIM	Input	0
BG	SIM	Output	0
BGACK	SIM	Input	0
BKPT	CPU32	Input	0
BR	SIM	Input	0
CLKOUT	SIM	Output	
CS[10:0]	SIM	Output	0
CSBOOT	SIM	Output	0
DATA[15:0]	SIM	Bus	
DS	SIM	Output	0

Signal Name	MCU Module	Signal Type	Active State
DSACK[1:0]	SIM	Input	0
DSCLK	CPU32	Input	Serial Clock
DSI	CPU32	Input	(Serial Data)
DSO	CPU32	Output	(Serial Data)
EXTAL	SIM	Input	—
FC[2:0]	SIM	Output	—
FREEZE	SIM	Output	1
HALT	SIM	Input/Output	0
IC[4:1]	GPT	Input	—
IFETCH	CPU32	Output	—
IPIPE	CPU32	Output	—
IRQ[7:1]	SIM	Input	0
MISO	QSM	Input/Output	—
MODCLK	SIM	Input	—
MOSI	QSM	Input/Output	—
OC[5:1]	GPT	Output	—
PAI	GPT	Input	—
PC[6:0]	SIM	Output	(Port)
PCS[3:0]	QSM	Input/Output	—
PE[7:0]	SIM	Input/Output	(Port)
PF[7:0]	SIM	Input/Output	(Port)
PQS[7:0]	QSM	Input/Output	(Port)
PCLK	GPT	Input	—
PWMA, PWMB	GPT	Output	—
QUOT	SIM	Output	—
RESET	SIM	Input/Output	0
RMC	SIM	Output	0
R/W	SIM	Output	1/0
RXD	QSM	Input	—
SCK	QSM	Input/Output	—
SIZ[1:0]	SIM	Output	—
SS	QSM	Input	0
TSC	SIM	Input	—
TXD	QSM	Output	—
XFC	SIM	Input	—
XTAL	SIM	Output	—

Table 5 MCU Signal Characteristics (Continued)

2.5 Signal Function

Table 6 MCU Signal Function

Signal Name	Mnemonic	Function
Address Bus	ADDR[23:0]	24-bit address bus
Address Strobe	ĀS	Indicates that a valid address is on the address bus
Autovector	AVEC	Requests an automatic vector during interrupt acknowledge
Bus Error	BERR	Indicates that a bus error has occurred
Bus Grant	BG	Indicates that the MCU has relinquished the bus
Bus Grant Acknowledge	BGACK	Indicates that an external device has assumed bus mastership
Breakpoint	BKPT	Signals a hardware breakpoint to the CPU
Bus Request	BR	Indicates that an external device requires bus mastership
System Clockout	CLKOUT	System clock output
Chip Selects	CS[10:0]	Select external devices at programmed addresses

Signal Name	Mnemonic	Function
Boot Chip Select	CSBOOT	Chip select for external boot startup ROM
Data Bus	DATA[15:0]	16-bit data bus
Data Strobe	DS	During a read cycle, indicates when it is possible for an external device to place data on the data bus. During a write cycle, indicates that valid data is on the data bus.
Data and Size Acknowledge	DSACK[1:0]	Provide asynchronous data transfers and dynamic bus sizing
Development Serial In, Out, Clock	DSI, DSO, DSCLK	Serial I/O and clock for background debugging mode
Crystal Oscillator	EXTAL, XTAL	Connections for clock synthesizer circuit reference; a crystal or an external oscillator can be used
Function Codes	FC[2:0]	Identify processor state and current address space
Freeze	FREEZE	Indicates that the CPU has entered background mode
Halt	HALT	Suspend external bus activity
Input Capture	IC[3:1]	When a specified transition is detected on an input capture pin, the value in an internal GPT counter is latched
Input Capture 4/Output Compare 5	IC4/OC5	Can be configured for either an input capture or output compare
Instruction Pipeline	IPIPE, IFETCH	Indicate instruction pipeline activity
Interrupt Request Level	IRQ[7:1]	Provides an interrupt priority level to the CPU
Master In Slave Out	MISO	Serial input to QSPI in master mode; serial output from QSPI in slave mode
Clock Mode Select	MODCLK	Selects the source and type of system clock
Master Out Slave In	MOSI	Serial output from QSPI in master mode; serial input to QSPI in slave mode
Output Compare	OC[5:1]	Change state when the value of an internal GPT counter matches a value stored in a GPT control register
Pulse Accumulator Input	PAI	Signal input to the pulse accumulator
Port C	PC[6:0]	SIM digital output port signals
Auxiliary Timer Clock Input	PCLK	External clock dedicated to the GPT
Peripheral Chip Select	PCS[3:0]	QSPI peripheral chip selects
Port E	PE[7:0]	SIM digital I/O port signals
Port F	PF[7:0]	SIM digital I/O port signals
Port QS	PQS[7:0]	QSM digital I/O port signals
Pulse-Width Modulation	PWMA, PWMB	Output for PWM
Quotient Out	QUOT	Provides the quotient bit of the polynomial divider
Reset	RESET	System reset
Read-Modify-Write Cycle	RMC	Indicates an indivisible read-modify-write instruction
Read/Write	R/W	Indicates the direction of data transfer on the bus
SCI Receive Data	RXD	Serial input to the SCI
QSPI Serial Clock	SCK	Clock output from QSPI in master mode; clock input to QSPI in slave mode
Size	SIZ[1:0]	Indicates the number of bytes to be transferred during a bus cycle
Slave Select	SS	Causes serial transmission when QSPI is in slave mode; causes mode fault in master mode
Three-State Control	TSC	Places all output drivers in a high-impedance state
SCI Transmit Data	TXD	Serial output from the SCI
External Filter Capacitor	XFC	Connection for external phase-locked loop filter capacitor

Table 6 MCU Signal Function (Continued)

3 System Integration Module

The system integration module (SIM) consists of five functional blocks that control system start-up, initialization, configuration, and external bus.

Figure 5 SIM Block Diagram

3.1 Overview

The system configuration and protection block controls MCU configuration and operating mode. The block also provides bus and software watchdog monitors.

The system clock generates clock signals used by the SIM, other IMB modules, and external devices. In addition, a periodic interrupt generator supports execution of time-critical control routines.

The external bus interface handles the transfer of information between IMB modules and external address space.

The chip-select block provides eleven general-purpose chip-select signals and a boot ROM chip-select signal. Both general-purpose and boot ROM chip-select signals have associated base address registers and option registers.

The system test block incorporates hardware necessary for testing the MCU. It is used to perform factory tests, and its use in normal applications is not supported.

The SIM control register address map occupies 128 bytes. Unused registers within the 128-byte address space return zeros when read. The "Access" column in the SIM address map below indicates which registers are accessible only at the supervisor privilege level and which can be assigned to either the supervisor or user privilege level, according to the value of the SUPV bit in the SIMCR.

Table 7 SIM Address Map

Access	Address	15 8 7			
S	\$YFFA00	SIM CONFIGURATION (SIMCR)			
S	\$YFFA02	FACTORY TEST (SIMTR)			
S	\$YFFA04	CLOCK SYNTHESIZE	R CONTROL (SYNCR)		
S	\$YFFA06	NOT USED	RESET STATUS REGISTER (RSR)		
S	\$YFFA08	MODULE TES	ST E (SIMTRE)		
S	\$YFFA0A	NOT USED	NOT USED		
S	\$YFFA0C	NOT USED	NOT USED		
S	\$YFFA0E	NOT USED	NOT USED		
S/U	\$YFFA10	NOT USED	PORT E DATA (PORTE0)		
S/U	\$YFFA12	NOT USED	PORT E DATA (PORTE1)		
S/U	\$YFFA14	NOT USED	PORT E DATA DIRECTION (DDRE)		
S	\$YFFA16	NOT USED	PORT E PIN ASSIGNMENT (PEPAR)		
S/U	\$YFFA18	NOT USED	PORT F DATA (PORTF0)		
S/U	\$YFFA1A	NOT USED	PORT F DATA (PORTF1)		
S/U	\$YFFA1C	NOT USED	PORT F DATA DIRECTION (DDRF)		
S	\$YFFA1E	NOT USED	PORT F PIN ASSIGNMENT (PFPAR)		
S	\$YFFA20	NOT USED	SYSTEM PROTECTION CONTROL (SYPCR)		
S	\$YFFA22	PERIODIC INTERRU	PT CONTROL (PICR)		
S	\$YFFA24	PERIODIC INTERR	UPT TIMING (PITR)		
S	\$YFFA26	NOT USED	SOFTWARE SERVICE (SWSR)		
S	\$YFFA28	NOT USED	NOT USED		
S	\$YFFA2A	NOT USED	NOT USED		
S	\$YFFA2C	NOT USED	NOT USED		
S	\$YFFA2E	NOT USED	NOT USED		
S	\$YFFA30	TEST MODULE MASTER SHIFT A (TSTMSRA)			
S	\$YFFA32	TEST MODULE MASTER SHIFT B (TSTMSRB)			
S	\$YFFA34	TEST MODULE SHI	FT COUNT (TSTSC)		
S	\$YFFA36	TEST MODULE REPETI	FION COUNTER (TSTRC)		
S	\$YFFA38	TEST MODULE C	CONTROL (CREG)		
S/U	\$YFFA3A	TEST MODULE DISTRIB	UTED REGISTER (DREG)		
	\$YFFA3C	NOT USED	NOT USED		
	\$YFFA3E	NOT USED	NOT USED		
S/U	\$YFFA40	NOT USED	PORT C DATA (PORTC)		
	\$YFFA42	NOT USED	NOT USED		
S	\$YFFA44	CHIP-SELECT PIN AS	SIGNMENT (CSPAR0)		
S	\$YFFA46	CHIP-SELECT PIN AS	SIGNMENT (CSPAR1)		
S	\$YFFA48	CHIP-SELECT BAS	E BOOT (CSBARBT)		
S	\$YFFA4A	CHIP-SELECT OPTI	ON BOOT (CSORBT)		
S	\$YFFA4C	CHIP-SELECT B	ASE 0 (CSBAR0)		
S	\$YFFA4E	CHIP-SELECT O	PTION 0 (CSOR0)		
S	\$YFFA50	CHIP-SELECT B	ASE 1 (CSBAR1)		
S	\$YFFA52	CHIP-SELECT O	PHON 1 (CSOR1)		
S	\$YFFA54	CHIP-SELECT B	ASE 2 (CSBAR2)		
S	\$YFFA56	CHIP-SELECT O	PTION 2 (CSOR2)		
S	\$YFFA58	CHIP-SELECT BASE 3 (CSBAR3)			
S	\$YFFA5A	CHIP-SELECT O	PTION 3 (CSOR3)		
S	\$YFFA5C	CHIP-SELECT B	ASE 4 (CSBAR4)		

Access	Address	15 8	7 0
S	\$YFFA5E	CHIP-SELECT OF	PTION 4 (CSOR4)
S	\$YFFA60	CHIP-SELECT B	ASE 5 (CSBAR5)
S	\$YFFA62	CHIP-SELECT OF	PTION 5 (CSOR5)
S	\$YFFA64	CHIP-SELECT B	ASE 6 (CSBAR6)
S	\$YFFA66	CHIP-SELECT OF	PTION 6 (CSOR6)
S	\$YFFA68	CHIP-SELECT B	ASE 7 (CSBAR7)
S	\$YFFA6A	CHIP-SELECT OF	PTION 7 (CSOR7)
S	\$YFFA6C	CHIP-SELECT B	ASE 8 (CSBAR8)
S	\$YFFA6E	CHIP-SELECT OF	PTION 8 (CSOR8)
S	\$YFFA70	CHIP-SELECT B	ASE 9 (CSBAR9)
S	\$YFFA72	CHIP-SELECT OF	PTION 9 (CSOR9)
S	\$YFFA74	CHIP-SELECT BA	SE 10 (CSBAR10)
S	\$YFFA76	CHIP-SELECT OP	TION 10 (CSOR10)
	\$YFFA78	NOT USED	NOT USED
	\$YFFA7A	NOT USED	NOT USED
	\$YFFA7C	NOT USED	NOT USED
	\$YFFA7E	NOT USED	NOT USED

Table 7 SIM Address Map (Continued)

Y = M111, where M is the logic state of the module mapping (MM) bit in the SIMCR.

3.2 System Configuration and Protection

This functional block provides configuration control for the entire MCU. It also performs interrupt arbitration, bus monitoring, and system test functions. MCU system protection includes a bus monitor, a HALT monitor, a spurious interrupt monitor, and a software watchdog timer. These functions have been made integral to the microcontroller to reduce the number of external components in a complete control system.

Figure 6 System Configuration and Protection Block

3.2.1 System Configuration

The SIM controls MCU configuration during normal operation and during internal testing.

SIMCR	SIMCR — SIM Configuration Register \$YFFA00														
15	14	13	12	11	10	9	8	7	6	5	4	3			0
EXOFF	FRZSW	FRZBM	0	SLVEN	0	SH	SHEN		MM	0	0	IARB			
RESET:															
0	0	0	0	DATA11	0	0	0	1	1	0	0	1	1	1	1

The SIM configuration register controls system configuration. It can be read or written at any time, except for the module mapping (MM) bit, which can be written only once.

EXOFF — External Clock Off

- 0 = The CLKOUT pin is driven from an internal clock source.
- 1 = The CLKOUT pin is placed in a high-impedance state.

FRZSW — Freeze Software Enable

- 0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer counters continue to run.
- 1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer counters are disabled, preventing interrupts during software debug.

FRZBM — Freeze Bus Monitor Enable

- 0 = When FREEZE is asserted, the bus monitor continues to operate.
- 1 = When FREEZE is asserted, the bus monitor is disabled.

SLVEN — Factory Test Mode Enabled

This bit is a read-only status bit that reflects the state of DATA11 during reset.

- 0 = IMB is not available to an external master.
- 1 = An external bus master has direct access to the IMB.

SHEN[1:0] — Show Cycle Enable

This field determines what the EBI does with the external bus during internal transfer operations. A show cycle allows internal transfers to be externally monitored. The table below shows whether show cycle data is driven externally, and whether external bus arbitration can occur. To prevent bus conflict, external peripherals must not be enabled during show cycles.

SHEN	Action
00	Show cycles disabled, external arbitration enabled
01	Show cycles enabled, external arbitration disabled
10	Show cycles enabled, external arbitration enabled
11	Show cycles enabled, external arbitration enabled, internal activity is halted by a bus grant

SUPV — Supervisor/Unrestricted Data Space

The SUPV bit places the SIM global registers in either supervisor or user data space.

- 0 = Registers with access controlled by the SUPV bit are accessible from either the user or supervisor privilege level.
- 1 = Registers with access controlled by the SUPV bit are restricted to supervisor access only.

MM — Module Mapping

- 0 = Internal modules are addressed from \$7FF000 -\$7FFFFF.
- 1 = Internal modules are addressed from \$FFF000 \$FFFFFF.

IARB[3:0] —Interrupt Arbitration Field

Each module that can generate interrupt requests has an interrupt arbitration (IARB) field. Arbitration between interrupt requests of the same priority is performed by serial contention between IARB field bit values. Contention must take place whenever an interrupt request is acknowledged, even when there is only a single pending request. An IARB field must have a non-zero value for contention to take place. If an interrupt request from a module with an IARB field value of %0000 is recognized, the CPU processes a spurious interrupt exception. Because the SIM routes external interrupt requests to the CPU, the SIM IARB field value is used for arbitration between internal and external interrupts of the same priority. The reset value of IARB for the SIM is %1111, and the reset IARB value for all other modules is %0000, which prevents SIM interrupts from being discarded during initialization.

3.2.2 System Protection Control Register

The system protection control register controls system monitor functions, software watchdog clock prescaling, and bus monitor timing. This register can be written only once following power-on or reset, but can be read at any time.

SYPCR —System Protection Control Register								\$YFF	FA21
15	8	7	6	5	4	3	2	1	0
NOT USED		SWE	SWP	SWT		HME	BME	BMT	
RESET:									
		1	MODCLK	0	0	0	Ο	0	0

SWE — Software Watchdog Enable

0 = Software watchdog disabled

1 = Software watchdog enabled

SWP —Software Watchdog Prescale

This bit controls the value of the software watchdog prescaler.

- 0 = Software watchdog clock not prescaled
- 1 = Software watchdog clock prescaled by 512

SWT[1:0] —Software Watchdog Timing

This field selects the divide ratio used to establish software watchdog time-out period. The following table gives the ratio for each combination of SWP and SWT bits.

SWP	SWT	Ratio
0	00	2 ⁹
0	01	2 ¹¹
0	10	2 ¹³
0	11	2 ¹⁵
1	00	2 ¹⁸
1	01	2 ²⁰
1	10	2 ²²
1	11	2 ²⁴

HME — Halt Monitor Enable

0 = Disable halt monitor function

1 = Enable halt monitor function

BME — Bus Monitor External Enable

0 = Disable bus monitor function for an internal to external bus cycle.

1 = Enable bus monitor function for an internal to external bus cycle.

BMT[1:0] —Bus Monitor Timing

This field selects a bus monitor time-out period as shown in the following table.

BMT	Bus Monitor Time-out Period								
00	64 System Clocks								
01	32 System Clocks								
10	16 System Clocks								
11	8 System Clocks								

3.2.3 Bus Monitor

The internal bus monitor checks for excessively long DSACK response times during normal bus cycles and for excessively long DSACK or AVEC response times during interrupt acknowledge cycles. The monitor asserts BERR if response time is excessive.

DSACK and AVEC response times are measured in clock cycles. The maximum allowable response time can be selected by setting the BMT field.

The monitor does not check DSACK response on the external bus unless the CPU initiates the bus cycle. The BME bit in the SYPCR enables the internal bus monitor for internal to external bus cycles. If a system contains external bus masters, an external bus monitor must be implemented and the internal to external bus monitor option must be disabled.

3.2.4 Halt Monitor

The halt monitor responds to an assertion of HALT on the internal bus. A flag in the reset status register (RSR) indicates that the last reset was caused by the halt monitor. The halt monitor reset can be inhibited by the HME bit in the SYPCR.

3.2.5 Spurious Interrupt Monitor

The spurious interrupt monitor issues BERR if no interrupt arbitration occurs during an interrupt-acknowledge cycle.

3.2.6 Software Watchdog

The software watchdog is controlled by SWE in the SYPCR. Once enabled, the watchdog requires that a service sequence be written to SWSR on a periodic basis. If servicing does not take place, the watchdog times out and issues a reset. This register can be written at any time, but returns zeros when read.

SWSR — Software Service Register \$YFFA27 15 8 7 6 5 4 3 2 1 NOT USED 0 0 0 0 0 0 0 RESET: 0 0 0 0 0 0 0

Register shown with read value

Perform a software watchdog service sequence as follows:

- 1. Write \$55 to SWSR.
- 2. Write \$AA to SWSR.

Both writes must occur before time-out in the order listed, but any number of instructions can be executed between the two writes.

The watchdog clock rate is affected by SWP and SWT in SYPCR. When SWT[1:0] are modified, a watchdog service sequence must be performed before the new time-out period takes effect.

The reset value of SWP is affected by the state of the MODCLK pin on the rising edge of reset, as shown in the following table.

MODCLK	SWP
0	1
1	0

3.2.7 Periodic Interrupt Timer

The periodic interrupt timer (PIT) generates interrupts of specified priorities at specified intervals. Timing for the PIT is provided by a programmable prescaler driven by the system clock.

PICR —	- Perio	dic Inte	errupt C	Control		\$YFFA22										
15	14	13	12	11	10		8	7	7							
0	0	0	0	0		PIRQL			PIV							
RESET:																
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	

This register contains information concerning periodic interrupt priority and vectoring. Bits [10:0] can be read or written at any time. Bits [15:11] are unimplemented and always return zero.

PIRQL[2:0] — Periodic Interrupt Request Level

The following table shows what interrupt request level is asserted when a periodic interrupt is generated. If a PIT interrupt and an external IRQ signal of the same priority occur simultaneously, the PIT interrupt is serviced first. The periodic timer continues to run when the interrupt is disabled.

0

0

0

PIRQL	Interrupt Request Level
000	Periodic Interrupt Disabled
001	Interrupt Request Level 1
010	Interrupt Request Level 2
011	Interrupt Request Level 3
100	Interrupt Request Level 4
101	Interrupt Request Level 5
110	Interrupt Request Level 6
111	Interrupt Request Level 7

PIV[7:0] — Periodic Interrupt Vector

The bits of this field contain the vector generated in response to an interrupt from the periodic timer. When the SIM responds, the periodic interrupt vector is placed on the bus.

PITR —	'ITR — Periodic Interrupt Timer Register \$YFFA24														
15	14	13	12	11	10	9	8	7							0
0	0	0	0	0	0	0	PTP				Р	ITM			
RESET:															
0	0	0	0	0	0	0	MODCLK	0	0	0	0	0	0	0	0
												**			

The PITR contains the count value for the periodic timer. A zero value turns off the periodic timer. This register can be read or written at any time.

PTP — Periodic Timer Prescaler Control

0 = Periodic timer clock not prescaled

1 = Periodic timer clock prescaled by a value of 512

The reset state of PTP is the complement of the state of the MODCLK signal during reset.

PITM[7:0] — Periodic Interrupt Timing Modulus Field

This is an 8-bit timing modulus. The period of the timer can be calculated as follows: PIT Period = [(PITM)(Prescaler)(4)]/EXTAL

where

PIT Period = Periodic interrupt timer period

PITM = Periodic interrupt timer register modulus (PITR[7:0])

EXTAL Frequency = Crystal frequency

Prescale = 512 or 1 depending on the state of the PTP bit in the PITR

3.3 System Clock

The system clock in the SIM provides timing signals for the IMB modules and for an external peripheral bus. Because MCU operation is fully static, register and memory contents are not affected when the clock rate changes. System hardware and software support changes in the clock rate during operation.

The system clock signal can be generated in three ways. An internal phase-locked loop can synthesize the clock from an internal or external frequency source, or the clock signal can be input from an external source.

Following is a block diagram of the clock submodule.

 2. RESISTANCE AND CAPACITANCE BASED ON A TEST CIRCUIT CONSTRUCTED WITH A DAISHINKU DMX-38 32.768-kHz CRYSTAL. SPECIFIC COMPONENTS MUST BE BASED ON CRYSTAL TYPE. CONTACT CRYSTAL VENDOR FOR EXACT CIRCUIT.

Figure 7 System Clock Block Diagram

3.3.1 Clock Sources

The state of the clock mode (MODCLK) pin during reset determines the clock source. When MODCLK is held high during reset, the clock synthesizer generates a clock signal from either a crystal oscillator or an external reference input. Clock synthesizer control register SYNCR determines operating frequency and various modes of operation. When MODCLK is held low during reset, the clock synthesizer is disabled, and an external system clock signal must be applied. When the synthesizer is disabled, SYN-CR control bits have no effect.

A reference crystal must be connected between the EXTAL and XTAL pins to use the internal oscillator. Use of a 32.768-kHz crystal is recommended. These crystals are inexpensive and readily available. If an external reference signal or an external system clock signal is applied through the EXTAL pin, the XTAL pin must be left floating. External reference signal frequency must be less than or equal to maximum specified reference frequency. External system clock signal frequency must be less than or equal to maximum specified system clock frequency.

When an external system clock signal is applied (i.e., the PLL is not used), duty cycle of the input is critical, especially at near maximum operating frequencies. The relationship between clock signal duty cycle and clock signal period is expressed:

Minimum external clock period =

minimum external clock high/low time 50% — percentage variation of external clock input duty cycle

3.3.2 Clock Synthesizer Operation

A voltage controlled oscillator (VCO) generates the system clock signal. A portion of the clock signal is fed back to a divider/counter. The divider controls the frequency of one input to a phase comparator. The other phase comparator input is a reference signal, either from the internal oscillator or from an external source. The comparator generates a control signal proportional to the difference in phase between its two inputs. The signal is low-pass filtered and used to correct VCO output frequency.

The synthesizer locks when VCO frequency is identical to reference frequency. Lock time is affected by the filter time constant and by the amount of difference between the two comparator inputs. Whenever comparator input changes, the synthesizer must re-lock. Lock status is shown by the SLOCK bit in SYN-CR.

The MCU does not come out of reset state until the synthesizer locks. Crystal type, characteristic frequency, and layout of external oscillator circuitry affect lock time.

The low-pass filter requires an external low-leakage capacitor, typically 0.1 µF, connected between the XFC and V_{DDSYN} pins.

V_{DDSYN} is used to power the clock circuits. A separate power source increases MCU noise immunity and can be used to run the clock when the MCU is powered down. Use a quiet power supply as the V_{DDSYN} source, since PLL stability depends on the VCO, which uses this supply. Place adequate external bypass capacitors as close as possible to the V_{DDSYN} pin to ensure stable operating frequency.

When the clock synthesizer is used, control register SYNCR determines operating frequency and various modes of operation. SYNCR can be read only when the processor is operating at the supervisor privilege level.

The SYNCR X bit controls a divide by two prescaler that is not in the synthesizer feedback loop. Setting X doubles clock speed without changing VCO speed. There is no VCO relock delay. The SYNCR W bit controls a 3-bit prescaler in the feedback divider. Setting W increases VCO speed by a factor of four. The SYNCR Y field determines the count modulus for a modulo 64 down counter, causing it to divide by a value of Y + 1. When either W or Y value changes, there is a VCO relock delay.

Clock frequency is determined by SYNCR bit settings as follows:

$$F_{\text{SYSTEM}} = F_{\text{REFERENCE}} \left[4(Y + 1)(2^{2W + X}) \right]$$

In order for the device to perform correctly, the clock frequency selected by the W, X, and Y bits must be within the limits specified for the MCU. The VCO frequency is twice the system clock frequency if X = 1 or four times the system clock frequency if X = 0.

The reset state of SYNCR (\$3F00) produces a modulus-64 count.

3.3.3 Clock Control

The clock control circuits determine system clock frequency and clock operation under special circumstances, such as following loss of synthesizer reference or during low-power operation. Clock source is determined by the logic state of the MODCLK pin during reset.

SYNCR — Clock Synthesizer Control Register \$YF														-FA04		
	15	14	13					8	7	6	5	4	3	2	1	0
	W	Х			Ň	Y			EDIV	0	0	SLIMP	SLOCK	RSTEN	STSIM	STEXT
I	RESET:															
	0	0	1	1	1	1	1	1	0	0	0	U	U	0	0	0

+ . **/ . .** . . .

When the on-chip clock synthesizer is used, system clock frequency is controlled by the bits in the upper byte of SYNCR. Bits in the lower byte show status of or control operation of internal and external clocks. The SYNCR can be read or written only when the CPU is operating at the supervisor privilege level.

W — Frequency Control (VCO)

This bit controls a prescaler tap in the synthesizer feedback loop. Setting the bit increases the VCO speed by a factor of four. VCO relock delay is required.

X — Frequency Control Bit (Prescale)

This bit controls a divide by two prescaler that is not in the synthesizer feedback loop. Setting the bit doubles clock speed without changing the VCO speed. There is no VCO relock delay.

Y[5:0] — Frequency Control (Counter)

The Y field controls the modulus down counter in the synthesizer feedback loop, causing it to divide by a value of Y + 1. Values range from 0 to 63. VCO relock delay is required.

EDIV - E Clock Divide Rate

0 = ECLK frequency is system clock divided by 8.

1 = ECLK frequency is system clock divided by 16.

ECLK is an external M6800 bus clock available on pin ADDR23. Refer to 3.5 Chip Selects for more information.

SLIMP — Limp Mode Flag

0 = External crystal is VCO reference.

1 = Loss of crystal reference.

When the on-chip synthesizer is used, loss of reference frequency causes SLIMP to be set. The VCO continues to run using the base control voltage. Maximum limp frequency is maximum specified system clock frequency. X-bit state affects limp frequency.

SLOCK — Synthesizer Lock Flag

0 = VCO is enabled, but has not locked.

1 = VCO has locked on the desired frequency (or system clock is external).

The MCU maintains reset state until the synthesizer locks, but SLOCK does not indicate synthesizer lock status until after the user writes to SYNCR.

RSTEN—Reset Enable

- 0 = Loss of crystal causes the MCU to operate in limp mode.
- 1 = Loss of crystal causes system reset.

STSIM —Stop Mode SIM Clock

- 0 = When LPSTOP is executed, the SIM clock is driven from the crystal oscillator and the VCO is turned off to conserve power.
- 1 = When LPSTOP is executed, the SIM clock is driven from the VCO.

STEXT — Stop Mode External Clock

- 0 = When LPSTOP is executed, the CLKOUT signal is held negated to conserve power.
- 1 = When LPSTOP is executed, the CLKOUT signal is driven from the SIM clock, as determined by the state of the STSIM bit.

3.4 External Bus Interface

The external bus interface (EBI) transfers information between the internal MCU bus and external devices. The external bus has 24 address lines and 16 data lines.

The EBI provides dynamic sizing between 8-bit and 16-bit data accesses. It supports byte, word, and long-word transfers. Ports are accessed through the use of asynchronous cycles controlled by the data transfer (SIZ1 and SIZ0) and data size acknowledge pins (DSACK1 and DSACK0). Multiple bus cycles may be required for a transfer to or from an 8-bit port.

Port width is the maximum number of bits accepted or provided during a bus transfer. External devices must follow the handshake protocol described below. Control signals indicate the beginning of the cycle, the address space, the size of the transfer, and the type of cycle. The selected device controls the length of the cycle. Strobe signals, one for the address bus and another for the data bus, indicate the validity of an address and provide timing information for data. The EBI operates in an asynchronous mode for any port width.

To add flexibility and minimize the necessity for external logic, MCU chip-select logic can be synchronized with EBI transfers. Chip-select logic can also provide internally-generated bus control signals for these accesses. Refer to **3.5 Chip Selects** for more information.

3.4.1 Bus Control Signals

The CPU initiates a bus cycle by driving the address, size, function code, and read/write outputs. At the beginning of the cycle, size signals SIZ0 and SIZ1 are driven along with the function code signals. The size signals indicate the number of bytes remaining to be transferred during an operand cycle. They are valid while the address strobe (\overline{AS}) is asserted. The following table shows SIZ0 and SIZ1 encoding. The read/write (R/W) signal determines the direction of the transfer during a bus cycle. This signal changes state, when required, at the beginning of a bus cycle, and is valid while \overline{AS} is asserted. R/W only changes state when a write cycle is preceded by a read cycle or vice versa. The signal can remain low for two consecutive write cycles.

SIZ1	SIZ0	Transfer Size
0	1	Byte
1	0	Word
1	1	Three Byte
0	0	Long Word

Table 8 Size Signal Encoding

3.4.2 Function Codes

The CPU32 automatically generates function code signals FC[2:0]. The function codes can be considered address extensions that automatically select one of eight address spaces to which an address applies. These spaces are designated as either user or supervisor, and program or data spaces. Address space 7 is designated CPU space. CPU space is used for control information not normally associated with read or write bus cycles. Function codes are valid while \overline{AS} is asserted.

FC2	FC1	FC0	Address Space
0	0	0	Reserved
0	0	1	User Data Space
0	1	0	User Program Space
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Supervisor Data Space
1	1	0	Supervisor Program Space
1	1	1	CPU Space

Table 9 CPU32 Address Space Encoding

3.4.3 Address Bus

Address bus signals ADDR[23:0] define the address of the most significant byte to be transferred during a bus cycle. The MCU places the address on the bus at the beginning of a bus cycle. The address is valid while $\overline{\text{AS}}$ is asserted.