imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Octal Buffer/Line Driver with 3-State Outputs

The MC74AC240/74ACT240 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

Features

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- 'ACT240 Has TTL Compatible Inputs
- These are Pb-Free Devices

TRUTH TABLE

Inputs		Outputs
$\overline{\text{OE}}_1$	D	(Pins 12, 14, 16, 18)
L	L	Н
L	н	L
Н	Х	Z

NOTE: H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial Z = High Impedance

TRUTH TABLE

Inputs		Outputs
$\overline{\text{OE}}_2$	D	(Pins 3, 5, 7, 9)
L	L	Н
L	Н	L
Н	Х	Z

NOTE: H = HIGH Voltage Level L = LOW Voltage Level

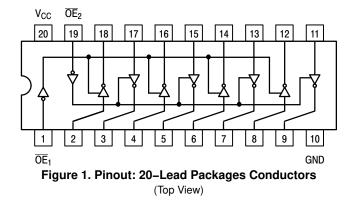
X = Immaterial

Z = High Impedance

ON Semiconductor®

www.onsemi.com

SOIC-20W **DW SUFFIX** CASE 751D


TSSOP-20 DT SUFFIX CASE 948E

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 7 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V	
V _{IN}	DC Input Voltage (Referenced to GND)		–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND) (Note 1)		–0.5 to V _{CC} +0.5	V
Ι _{ΙΚ}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±50	mA
I _{OUT}	DC Output Sink/Source Current		±50	mA
I _{CC}	DC Supply Current, per Output Pin		±50	mA
I _{GND}	DC Ground Current, per Output Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		140	°C
θ_{JA}	Thermal Resistance (Note 2)	SOIC TSSOP	65.8 110.7	°C/W
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V–0 @ 0.125 in	
V _{ESD}		uman Body Model (Note 3) Machine Model (Note 4) ged Device Model (Note 5)	> 2000 > 200 > 1000	V
I _{Latchup}	Latchup Performance Above V _{CC} and Be	elow GND at 85°C (Note 6)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

I₀ absolute maximum rating must be observed.
 The package thermal impedance is calculated in accordance with JESD 51–7.
 Tested to EIA/JESD22–A114–A.

4. Tested to EIA/JESD22-A115-A.

Tested to JESD22-C101-A. 5.

6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit	
N/	Cumple Mathema	′AC	2.0	5.0	6.0	M
V _{CC}	Supply Voltage	Ϋ́ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)	0	-	V _{CC}	V	
		V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	Input Rise and Fall Time (Note 7) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	-	
	Input Rise and Fall Time (Note 8)	V _{CC} @ 4.5 V	-	10	-	201
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	ns/V
T _A	Operating Ambient Temperature Range	-40	25	85	°C	
I _{OH}	Output Current – High			-	-24	mA
I _{OL}	Output Current – Low		_	_	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

7. V_{IN} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 8. V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC			
Symbol	Parameter	V _{CC}	T _A = +25°C		T _A =–40°C to +85°C	Unit	Conditions	
		(V)	Typ Gua		aranteed Limits			
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	l _{OUT} = -50 μA	
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA $I_{OH} -24 \text{ mA}$ -24 mA	
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	I _{OUT} = 50 μA	
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA I_{OL} 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}, GND$	
I _{OZ}	Maximum 3-State Current	5.5	-	±0.5	±5.0	μΑ	$\label{eq:VI} \begin{array}{l} V_{I}\left(OE\right)=V_{IL},V_{IH}\\ V_{I}=V_{CC},GND\\ V_{O}=V_{CC},GND \end{array}$	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Ma	
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Mi	
ICC	Maximum Quiescent Supply Current	5.5	-	8.0	80	μA	$V_{IN} = V_{CC}$ or GND	

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

				74AC		74	AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			$T_{A} = -40^{\circ}C$ to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max	1	
t _{PLH}	Propagation Delay Data to Output	3.3 5.0	1.5 1.5	6.0 4.5	8.0 6.5	1.0 1.0	9.0 7.0	ns	3–5
t _{PHL}	Propagation Delay Data to Output	3.3 5.0	1.5 1.5	5.5 4.5	8.0 6.0	1.0 1.0	8.5 6.5	ns	3–5
t _{PZH}	Output Enable Time	3.3 5.0	1.5 1.5	6.0 5.0	10.5 7.0	1.0 1.0	11.0 8.0	ns	3–7
t _{PZL}	Output Enable Time	3.3 5.0	1.5 1.5	7.0 5.5	10.0 8.0	1.0 1.0	11.0 8.5	ns	3–8
t _{PHZ}	Output Disable Time	3.3 5.0	1.5 1.5	7.0 6.5	10.0 9.0	1.0 1.0	10.5 9.5	ns	3–7
t _{PLZ}	Output Disable Time	3.3 5.0	1.5 1.5	7.5 6.5	10.5 9.0	1.0 1.0	11.5 9.5	ns	3–8

AC CHARACTERISTICS (For Figures and Waveforms - See AND8277/D at www.onsemi.com)

 * Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74	АСТ	74ACT		
Symbol	ymbol Parameter V_{CC} $T_A = +25^{\circ}C$ (V)		+25°C	T _A = −40°C to +85°C	Unit	Conditions	
		(•)	Тур	Typ Guaranteed Lin			
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	v	$V_{OUT} = 0.1 V$ or V _{CC} - 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	v	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} -24 \text{ mA}$ -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	v	l _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA I_{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μA	$V_{I} = V_{CC}, GND$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OZ}	Maximum 3–State Current	5.5	-	±0.5	±5.0	μΑ	$ \begin{array}{l} V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ V_{I} = V_{CC}, GND \\ V_{O} = V_{CC}, GND \end{array} $
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μA	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

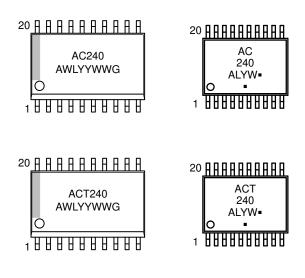
			74ACT				74ACT		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = −40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay Data to Output	5.0	1.5	6.0	8.5	1.5	9.5	ns	3–5
t _{PHL}	Propagation Delay Data to Output	5.0	1.5	5.5	7.5	1.5	8.5	ns	3–5
t _{PZH}	Output Enable Time	5.0	1.5	7.0	8.5	1.0	9.5	ns	3–7
t _{PZL}	Output Enable Time	5.0	2.0	7.0	9.5	1.5	10.5	ns	3–8
t _{PHZ}	Output Disable Time	5.0	2.0	8.0	9.5	2.0	10.5	ns	3–7
t _{PLZ}	Output Disable Time	5.0	2.5	6.5	10.0	2.0	10.5	ns	3–8

*Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE

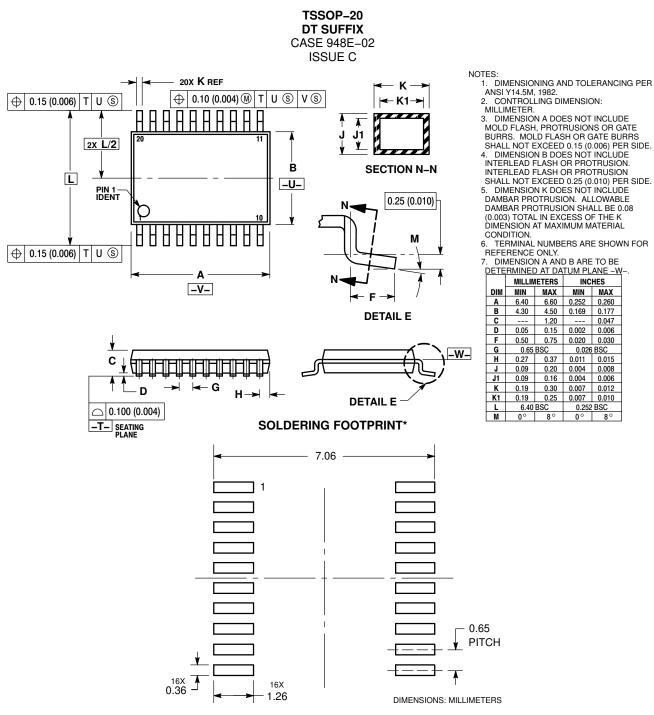
Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	45	pF	V _{CC} = 5.0 V

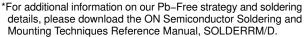
ORDERING INFORMATION


Device	Package	Shipping [†]
MC74AC240DWG		38 Units / Rail
MC74AC240DWR2G	SOIC-20	1000 / Tape & Reel
MC74ACT240DWG	(Pb-Free)	38 Units / Rail
MC74ACT240DWR2G		1000 / Tape & Reel
MC74AC240DTR2G	TSSOP-20	2500 / Tape & Reel
MC74ACT240DTR2G	(Pb-Free)	2500 / Tape & Reel

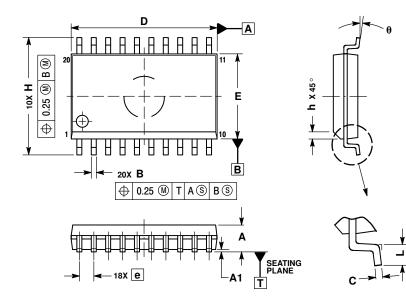
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS


SOIC-20W


TSSOP-20

А	= Assembly Location					
WL, L	= Wafer Lot					
YY, Y	= Year					
WW, W	= Work Week					
G or ■	= Pb–Free Package					
(Note: Microdot may be in either location)						


PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

SOIC-20W **DW SUFFIX** CASE 751D-05 **ISSUE G**

NOTES

DIMENSIONS ARE IN MILLIMETERS 1. 2.

- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR 5 PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS						
DIM	MIN	MAX					
Α	2.35	2.65					
A1	0.10	0.25					
В	0.35	0.49					
C	0.23	0.32					
D	12.65	12.95					
E	7.40	7.60					
e	1.27	BSC					
Н	10.05	10.55					
h	0.25	0.75					
L	0.50	0.90					
θ	0 °	7 °					
L.	÷	-					

ON Semiconductor and the unarrest are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative