imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual 4-Input Multiplexer

The MC74AC153/74ACT153 is a high–speed dual 4–input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non–inverted) form. In addition to multiplexer operation, the MC74AC153/74ACT153 can act as a function generator and generate any two functions of three variables.

- Outputs Source/Sink 24 mA
- 'ACT153 Has TTL Compatible Inputs
- These are Pb–Free Devices

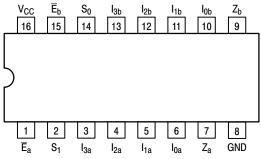


Figure 1. Pinout: 16–Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION
I _{0a} -I _{3a}	Side A Data Inputs
I _{0b} –I _{3b}	Side B Data Inputs
S ₀ , S ₁	Common Select Inputs
Ea	Side A Enable Input
E _b	Side B Enable Input
Za	Side A Output
Z _b	Side B Output

TRUTH TABLE

Select Inputs			Inputs (a or b)					
S ₀	S ₁	Ē	I ₀	I ₁	l ₂	l ₃	Z	
Х	Х	Н	Х	Х	Х	Х	L	
L	L	L	L	Х	Х	Х	L	
L	L	L	Н	Х	Х	Х	Н	
Н	L	L	Х	L	Х	Х	L	
Н	L	L	х	Н	х	х	н	
L	Н	L	Х	Х	L	Х	L	
L	Н	L	Х	Х	Н	Х	Н	
Н	Н	L	Х	Х	Х	L	L	
Н	Н	L	Х	Х	Х	Н	Н	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

ON Semiconductor®

www.onsemi.com

MARKING

		DIAGRAMS
16 16 16 16 16 16 16 16 16 16 16 16 16 1	SOIC-16 D SUFFIX CASE 751B	16 8 8 8 8 8 8 8 8 xxx153G AWLYWW 1 8 8 8 8 8 8 8
16- T	TSSOP-16 DT SUFFIX CASE 948F	
xxx	= AC or AC	
A WL or L	= Assembly = Wafer Lot	Location
Y	= Year	
-	V = Work Wee	
G or ■	= Pb–Free F	гаскаде
(Note: Microo	dot may be in	either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

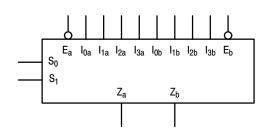


Figure 2. Logic Symbol

FUNCTIONAL DESCRIPTION

The MC74AC153/74ACT153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (S₀, S₁). The two 4-input multiplexer circuits have individual active-LOW Enables ($\overline{E}_{a}, \overline{E}_{b}$) which can be used to strobe the outputs independently. When the Enables ($\overline{E}_{a}, \overline{E}_{b}$) are HIGH, the corresponding outputs (Z_a, Z_b) are forced LOW. The MC74AC153/74ACT153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.

$$Z_{a} = \overline{E}_{a} \bullet (I_{0a} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1a} \bullet \overline{S}_{1} \bullet S_{0} + I_{2a} \bullet S_{1} \bullet \overline{S}_{0} + I_{3a} \bullet S_{1} \bullet S_{0})$$

$$Z_{b} = \overline{E}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$$

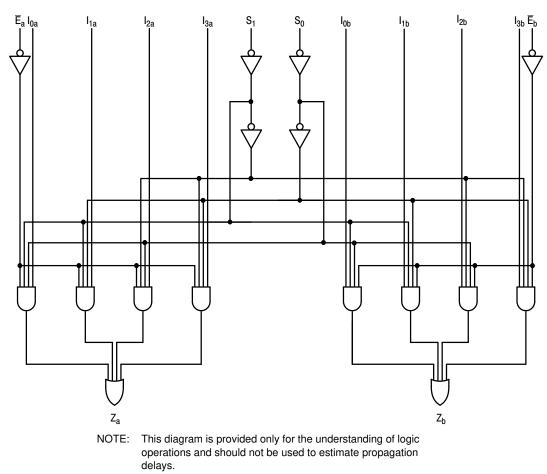


Figure 3. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		$-0.5 \le V_I \le V_{CC} + 0.5$	V
V _O	DC Output Voltage	(Note 1)	$-0.5 \leq V_O \leq V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±50	mA
I _O	DC Output Sink/Source Current		±50	mA
I _{CC}	DC Supply Current per Output Pin		±50	mA
I _{GND}	DC Ground Current per Output Pin		± 50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction temperature under Bias		+ 150	°C
θ_{JA}	Thermal Resistance (Note 2)	SOIC TSSOP	69.1 103.8	°C/W
P _D	Power Dissipation in Still Air at 65°C (Note 3)	SOIC TSSOP	500 500	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating Oxygen I	ndex: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	Machin	dy Model (Note 4) ne Model (Note 5) ce Model (Note 6)	> 2000 > 200 > 1000	V
I _{Latch-Up}	Latch–Up Performance Above V _{CC} and Below GNE	D at 85°C (Note 7)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Io absolute maximum rating must be observed.

The package thermal impedance is calculated in accordance with JESD51–7.
 500 mW at 65°C; derate to 300 mW by 10 mW/ from 65°C to 85°C.

4. Tested to EIA/JESD22-A114-A.

5. Tested to EIA/JESD22-A115-A.

6. Tested to JESD22-C101-A.

7. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
		′AC	2.0	5.0	6.0	
V _{CC}	Supply Voltage	′ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
		V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	no /\/
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	ns/V
TJ	Junction Temperature (PDIP)		_	-	140	°C
T _A	Operating Ambient Temperature Range		-40	25	85	°C
I _{OH}	Output Current – High		-	-	-24	mA
I _{OL}	Output Current – Low		_	-	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. V_{IN} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC		
Symbol	Parameter	V _{CC} (V)	T _A = -	+25°C $T_{A} = -40°C \text{ to } +85°C$		Unit	Conditions
			Тур	Gua	ranteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	v	$\label{eq:VOUT} \begin{array}{l} V_{OUT} = 0.1 \ V \\ \text{or} \ V_{CC} - 0.1 \ V \end{array}$
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	v	I _{OUT} = -50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	$\label{eq:VIN} \begin{array}{c} {}^{*}V_{IN} = V_{IL} \text{ or } V_{IH} \\ -12 \text{ mA} \\ I_{OH} -24 \text{ mA} \\ -24 \text{ mA} \end{array}$
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	v	I _{OUT} = 50 μA
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	$\label{eq:VIN} \begin{array}{c} {}^{*}V_{IN} = V_{IL} \text{ or } V_{IH} \\ 12 \text{ mA} \\ I_{OL} \\ 24 \text{ mA} \\ 24 \text{ mA} \end{array}$
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5	-	8.0	80	μA	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS

				74AC		74/	AC		
Symbol	Parameter		V_{CC}^{*} $T_{A} = +25^{\circ}C$ (V) $C_{L} = 50 \text{ pF}$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Unit	Fig. No.	
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z _n	3.3 5.0	2.5 2.0	9.5 6.5	15.0 11.0	2.5 2.0	17.5 12.5	ns	3–6
t _{PHL}	Propagation Delay S _n to Z _n	3.3 5.0	3.0 2.5	8.5 6.5	14.5 11.0	2.5 2.0	16.5 12.0	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_n to Z_n	3.3 5.0	2.5 1.5	8.0 5.5	13.5 9.5	2.0 1.5	16.0 11.0	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to Z_n	3.3 5.0	2.5 2.0	7.0 5.0	11.0 8.0	2.0 1.5	12.5 9.0	ns	3–6
t _{PLH}	Propagation Delay I_n to Z_n	3.3 5.0	2.5 1.5	7.5 5.5	12.5 9.0	2.0 1.5	14.5 10.5	ns	3–5
t _{PHL}	Propagation Delay I_n to Z_n	3.3 5.0	1.5 1.5	7.0 5.0	11.5 8.5	1.5 1.5	13.0 10.0	ns	3–5

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74 /	СТ	74ACT	Unit	
Symbol	Parameter	V _{CC} (V)	T _A = -	+25°C	T _A = –40°C to +85°C		Conditions
			Тур	Gua	ranteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA V_{OH} -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA I_{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μA	$V_{I} = V_{CC}, \text{ GND}$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5	_	8.0	80	μA	$V_{IN} = V_{CC}$ or GND

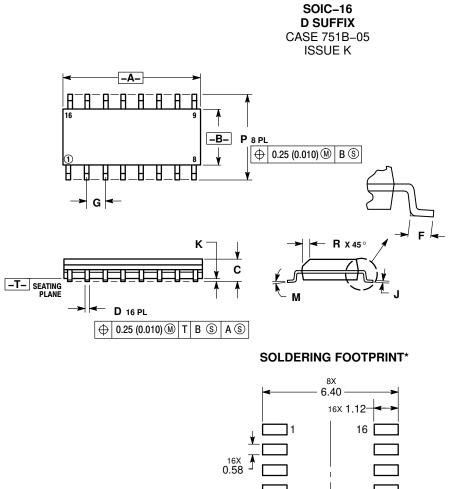
*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS

				74ACT		74 A	СТ		
Symbol	Parameter	V_{CC}^{*} $T_{A} = +25^{\circ}C$ (V) $C_{L} = 50 \text{ pF}$		T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.		
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z _n	5.0	3.0	7.0	11.5	2.0	13.5	ns	3–6
t _{PHL}	Propagation Delay S _n to Z _n	5.0	3.0	7.0	11.5	2.5	13.5	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_n to Z_n	5.0	2.0	6.5	10.5	2.0	12.5	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to Z_n	5.0	3.0	6.0	9.5	2.5	11.0	ns	3–6
t _{PLH}	Propagation Delay I_n to Z_n	5.0	2.5	5.5	9.5	2.0	11.0	ns	3–5
t _{PHL}	Propagation Delay I_n to Z_n	5.0	2.0	5.5	9.5	2.0	11.0	ns	3–5

*Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE

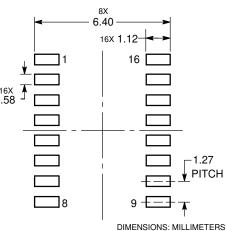

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	65	pF	V _{CC} = 5.0 V

ORDERING INFORMATION

Device Order Number	Package	Shipping [†]
MC74AC153DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74AC153DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74AC153DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel
MC74ACT153DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74ACT153DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74ACT153DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

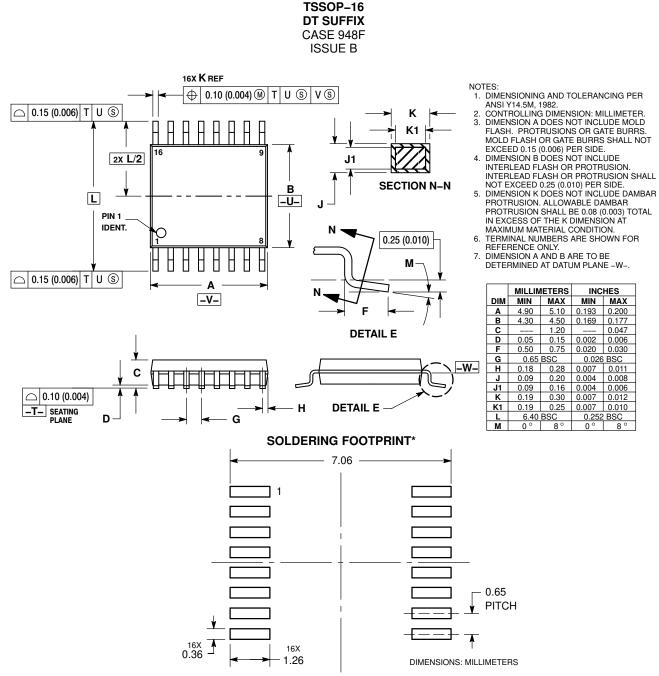
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

VI4.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 2. 3.


PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 5.

	MILLIN	IETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	9.80	10.00	0.386	0.393			
В	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.27	BSC	0.050) BSC			
J	0.19	0.25	0.008	0.009			
K	0.10	0.25	0.004	0.009			
М	0 °	7°	0 °	7°			
Ρ	5.80	6.20	0.229	0.244			
R	0.25	0.50	0.010	0.019			

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

0.047

8

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the inter

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Disperse 401 02 700 0010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative