

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Octal Transparent Latch with 3-State Outputs

The MC74AC373/74ACT373 consists of eight latches with 3–state outputs for bus organized system applications. The flip–flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the bus output is in the high impedance state.

Features

- Eight Latches in a Single Package
- 3-State Outputs for Bus Interfacing
- Outputs Source/Sink 24 mA
- 'ACT373 Has TTL Compatible Inputs
- These are Pb-Free Devices

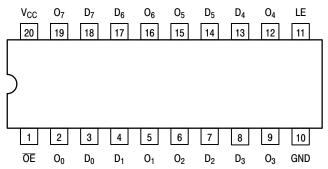


Figure 1. Pinout: 20-Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION
D ₀ -D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
O ₀ -O ₇	3-State Latch Outputs

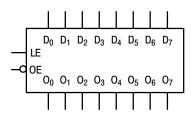


Figure 2. Logic Symbol

ON Semiconductor®

www.onsemi.com

SOIC-20W DW SUFFIX CASE 751D

TSSOP-20 DT SUFFIX CASE 948E

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

DEVICE MARKING INFORMATION

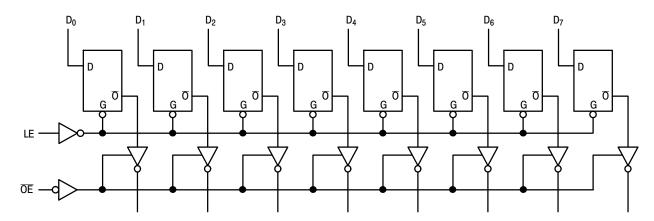
See general marking information in the device marking section on page 9 of this data sheet.

TRUTH TABLE

	Inputs					
ŌĒ	LE	D _n	On			
Н	Х	Χ	Z			
L	Н	L	L			
L	Н	Н	Н			
L	L	X	O_0			

H = HIGH Voltage Level

L = LOW Voltage Level


Z = High Impedance

X = Immaterial

O₀ = Previous O₀ before LOW-to-HIGH Transition of Clock

FUNCTIONAL DESCRIPTION

The MC74AC373/74ACT373 contains eight D-type latches with 3-state standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable ($\overline{\rm OE}$) input. When $\overline{\rm OE}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\rm OE}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

MAXIMUM RATINGS

Symbol	ı	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to G	GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GN	-0.5 to V_{CC} +0.5	V	
V _{OUT}	DC Output Voltage (Referenced to G	GND) (Note 1)	-0.5 to V_{CC} +0.5	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±50	mA
I _{OUT}	DC Output Sink/Source Current		±50	mA
I _{CC}	DC Supply Current, per Output Pin		±50	mA
I _{GND}	DC Ground Current, per Output Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead temperature, 1 mm from Case	for 10 Seconds	260	°C
T _J	Junction Temperature Under Bias		140	°C
θЈА	Thermal Resistance (Note 2)	SOIC TSSOP	65.8 110.7	°C/W
MSL	Moisture Sensitivity	SOIC TSSOP	Level 3 Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	> 2000 > 200 > 1000	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 6)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. I_{OUT} absolute maximum rating must be observed.
- The package thermal impedance is calculated in accordance with JESD 51–7.
 Tested to EIA/JESD22–A114–A.
- Tested to EIA/JESD22-A115-A.
- 5. Tested to JESD22-C101-A.
- 6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V	Cumply Valtage	′AC	2.0	5.0	6.0	V
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	٧
		V _{CC} @ 3.0 V	_	150	-	
t _r , t _f	Input Rise and Fall Time (Note 7) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
	The Boxlood oxeopt estimate inputs	-	25	-		
	Input Rise and Fall Time (Note 8)	V _{CC} @ 4.5 V	-	10	-	ns/V
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	TIS/ V
T _A	Operating Ambient Temperature Range	-40	25	85	°C	
I _{OH}	Output Current – High	-	_	-24	mA	
I _{OL}	Output Current – Low		-	-	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- V_{IN} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74.	AC	74AC		
Symbol	Parameter	V _{CC} (V)	T _A = +	₊25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Typ Guaranteed Limits			
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	$^{*}V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA $I_{OH} -24 \text{ mA}$ -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟUΤ} = 50 μΑ
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA I_{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
I _{OZ}	Maximum 3–State Current	5.5	-	±0.5	±5.0	μΑ	$\begin{aligned} &V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ &V_{I} = V_{CC}, GND \\ &V_{O} = V_{CC}, GND \end{aligned}$
I _{OLD}	†Minimum Dynamic Output Current	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}		5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
lcc	Maximum Quiescent Supply Current	5.5	-	8.0	80	μА	$V_{IN} = V_{CC}$ or GND

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

*All outputs loaded; thresholds on input associated with output under test.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See AND8277/D at www.onsemi.com)

				74AC		74.	AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF		T _A = - to +8 C _L = 9		Unit	Fig. No.	
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay D _n to O _n	3.3 5.0	1.5 1.5	10 7.0	13.5 9.5	1.5 1.5	15 10.5	ns	3–5
t _{PHL}	Propagation Delay D _n to O _n	3.3 5.0	1.5 1.5	9.5 7.0	13 9.5	1.5 1.5	14.5 10.5	ns	3–5
t _{PLH}	Propagation Delay LE to O _n	3.3 5.0	1.5 1.5	10 7.5	13.5 9.5	1.5 1.5	15 10.5	ns	3–6
t _{PHL}	Propagation Delay LE to O _n	3.3 5.0	1.5 1.5	9.5 7.0	12.5 9.5	1.5 1.5	14 10.5	ns	3–6
t _{PZH}	Output Enable Time	3.3 5.0	1.5 1.5	9.0 7.0	11.5 8.5	1.0 1.0	13 9.5	ns	3–7
t _{PZL}	Output Enable Time	3.3 5.0	1.5 1.5	8.5 6.5	11.5 8.5	1.0 1.0	13 9.5	ns	3–8
t _{PHZ}	Output Disable Time	3.3 5.0	1.5 1.5	10 8.0	12.5 11	1.0 1.0	14.5 12.5	ns	3–7
t _{PLZ}	Output Disable Time	3.3 5.0	1.5 1.5	8.0 6.5	11.5 8.5	1.0 1.0	12.5 10	ns	3–8

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

			74	AC	74AC		
Symbol	Parameter	V _{CC} *	T _A = 4 C _L = 5	⊦25°C 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guaran	teed Minimum		
t _s	Setup Time, HIGH or LOW D _n to LE	3.3 5.0	3.5 2.0	5.5 4.0	6.0 4.5	ns	3–9
t _h	Hold Time, HIGH or LOW D _n to LE	3.3 5.0	−3.0 −1.5	1.0 1.0	1.0 1.0	ns	3–9
t _w	LE Pulse Width, HIGH	3.3 5.0	4.0 2.0	5.5 4.0	6.0 4.5	ns	3–6

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74 <i>A</i>	CT	74ACT		
Symbol	Parameter	V _{CC} (V)			T _A = -40°C to +85°C	Unit	Conditions
			Typ Gua		ranteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	٧	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5	- -	3.86 4.86	3.76 4.76	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{ mA}$ $= -24 \text{ mA}$
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5	_ _	0.36 0.36	0.44 0.44	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ $^{24} \text{ mA}$ ^{1}OL $^{24} \text{ mA}$
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	_	1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
l _{OZ}	Maximum 3-State Current	5.5	-	±0.5	±5.0	μΑ	$\begin{aligned} &V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ &V_{I} = V_{CC}, GND \\ &V_{O} = V_{CC}, GND \end{aligned}$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See AND8277/D at www.onsemi.com)

				74ACT		74	ACT		
Symbol	Parameter	V _{CC} *				Unit	Fig. No.		
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay D _n to O _n	5.0	2.5	8.5	10	1.5	11.5	ns	3–5
t _{PHL}	Propagation Delay D _n to O _n	5.0	2.0	8.0	10	1.5	11.5	ns	3–5
t _{PLH}	Propagation Delay LE to O _n	5.0	2.5	8.5	11	2.0	11.5	ns	3–6
t _{PHL}	Propagation Delay LE to O _n	5.0	2.0	8.0	10	1.5	11.5	ns	3–6
t _{PZH}	Output Enable Time	5.0	2.0	8.0	9.5	1.5	10.5	ns	3–7
t _{PZL}	Output Enable Time	5.0	2.0	7.5	9.0	1.5	10.5	ns	3–8
t _{PHZ}	Output Disable Time	5.0	2.5	9.0	11	2.5	12.5	ns	3–7
t _{PLZ}	Output Disable Time	5.0	1.5	7.5	8.5	1.0	10	ns	3–8

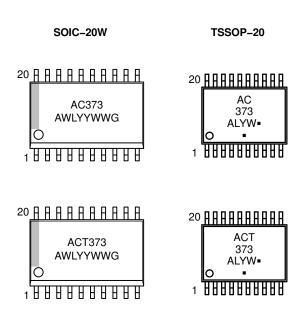
^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS (For Figures and Waveforms – See AND8277/D at www.onsemi.com)

				74ACT	74ACT										
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF		$T_{A} = +25^{\circ}C$ $C_{L} = 50 \text{ pF}$		T _A = +25°C C _L = 50 pF		T _A = +25°C C _L = 50 pF		T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guarantee	d Minimum										
t _s	Setup Time, HIGH or LOW D _n to LE	5.0	3.0	7.0	8.0	ns	3–9								
t _h	Hold Time, HIGH or LOW D _n to LE	5.0	0	0	1.0	ns	3–9								
t _w	LE Pulse Width, HIGH	5.0	2.0	7.0	8.0	ns	3–6								

^{*}Voltage Range 5.0 V is 5.0 V ±0.5 V.

CAPACITANCE

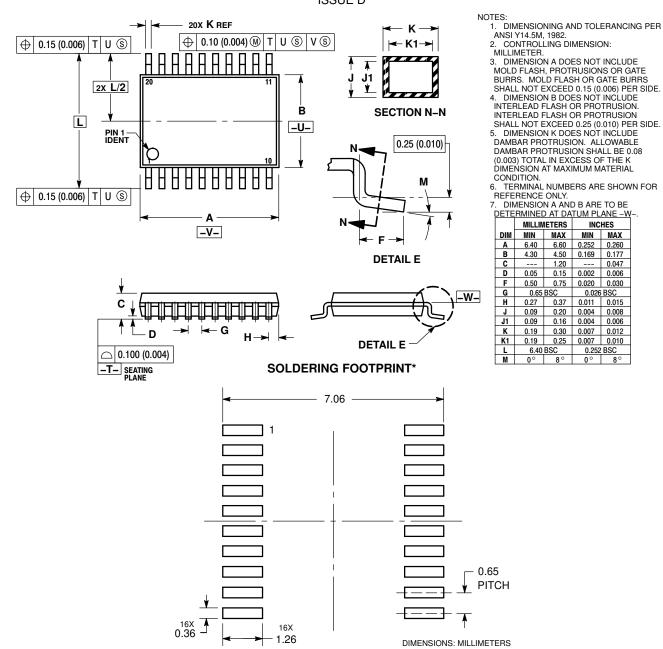

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	40	pF	V _{CC} = 5.0 V

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74AC373DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74AC373DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel
MC74ACT373DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74ACT373DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel
MC74AC373DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74AC373DTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel
MC74ACT373DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74ACT373DTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

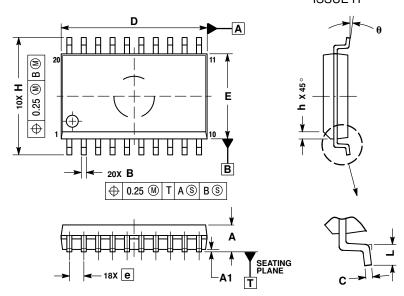
MARKING DIAGRAMS


A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Pa

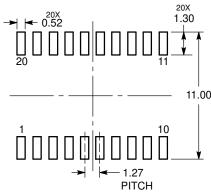
G or ■ = Pb–Free Package (Note: Microdot may be in either location)

PACKAGE DIMENSIONS


TSSOP-20 DT SUFFIX CASE 948E ISSUE D

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


SOIC-20W **DW SUFFIX** CASE 751D-05 **ISSUE H**

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
- PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL

	MILLIMETERS	
DIM	MIN	MAX
Α	2.35	2.65
A1	0.10	0.25
В	0.35	0.49
С	0.23	0.32
D	12.65	12.95
E	7.40	7.60
е	1.27 BSC	
Н	10.05	10.55
h	0.25	0.75
L	0.50	0.90
θ	0 °	7 °

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81–3–5817–1050